
APPRENTISSAGE STATISTIQUE - MS ENSAI - 2025-2026
Fiche de synthèse 1 : comparaisons des méthodes de ML

1 Introduction

C’est une première version : abondance d’erreurs
garantie. Merci de me faire des retours ! Dans certains
cas, on trouve une propriété et son exacte inverse
entre les différents sites... Lorsque RAS est indiqué,
c’est que je n’ai pas - pour l’instant - de remarques
particulières à émettre sur le sujet.

Les critères de comparaison :

• 1. Classification et/ou régression.

• 2. Performances (en termes d’"accuracy").

• 3. Rapidité à traiter les données (en temps de
calcul).

• 4. Facilité à entraîner le modèle (en terme de
temps de calcul ou de nombre de données
d’entraînement).

• 5. Taille de stockage du modèle.

• 6. Versatilité : traite tout type de données,
numériques, catégorielles. Hypothèses sur la
structure des données. Prends en compte ou non
les dépendances stochastiques ou les
dépendances fonctionnelles complexes.

• 7. Adapté aux grands jeux de données (n grand).

• 8. Adapté aux grandes dimensions (d grand).

• 9. Peut-elle traiter le cas d > n ?

• 10. Simplicité à mettre en œuvre (nombre de
paramètres à déterminer).

• 11. Calibration des paramètres (choix délicat
d’un paramètre).

• 12. Robustesse à l’échelle des données (scaling :
nécessite ou non une normalisation).

• 13. Robustesse au bruit et aux valeurs aberrantes.

• 14. Sensibilité au sur-apprentissage.

• 15. Réduit le biais ou la variance.

• 16. Permet l’obtention de probabilités, de
vraisemblances ou de scores.

• 17. Interprétabilité.

2 Régression linéaire (RLin)

• 1. C/R : régression uniquement.

• 2. Perf. : correctes si données vraiment linéaires,
mauvaises sinon.

• 3. Rapidité : rapide. Mise à jour rapide si
nouvelles données.

• 4. Entraîn. : rapide. Mise à jour rapide si
nouvelles données.

• 5. Taille : efficace sur de grands jeux de données,
peu de données à stocker.

• 6. Versatilité : non. Hypothèse de linéarité
restrictive. Multicolinéarité délicate à gérer.

Traite les données catégorielles, mais de façon
pénible (provoque une augmentation de la
dimension importante).

• 7. n grand : efficace sur de grands jeux de
données.

• 8. d grand : peu efficace en grande dimension,
sauf si l’on ajoute un terme de régularisation.

• 9. d > n ? : seulement si terme de régularisation
(LASSO).

• 10. Mœ : implémentation facile, même pour de
grands jeux de données.

• 11. Calibration : difficile (trouver les
dépendances stochastiques, sélection des
variables difficiles à l’aide de nombreux tests).
Peut-être simplifié par l’utilisation du LASSO.

• 12. Robust. "scaling" : oui.

• 13. Robust. bruit : non; sensible aux valeurs
aberrantes.

• 14. Sur-app. : robuste si régularisation (LASSO,
etc.).

• 15. b/V : fort biais, faible variance. La
régularisation Ridge réduit la variance, le LASSO
également.

• 16. Score : non.

• 17. Interprétabilité : facile ; point fort de ce
modèle.

Paramètres :

— λ : terme de régularisation ou taux
d’apprentissage (si LASSO ou autre).

Forme de l’estimateur :

ŷ(x) = βT.x (1)

β vecteur des coefficients de la régression (y compris
biais).

3 Régression logistique (Rlog)

• 1. C/R : classification.

• 2. Perf. : bonnes en classification binaire sur des
données de petite taille. Nécessite un jeu de
données adapté à l’hypothèse de log-linéarité.

• 3. Rapidité : très efficace sur la classification
binaire.

• 4. Entraîn. : mise à jour rapide si nouvelles
données.

• 5. Taille : peu de données à stocker.

• 6. Versatilité : non. Hypothèse de (log) linéarité
restrictive. Multicolinéarité délicate à gérer
(risque d’augmentation forte de la dimension).

• 7. n grand : oui.

• 8. d grand : peu efficace en grande dimension
(sauf si régularisation).

• 9. d > n ? : non.

• 10. Mœ : facile si données binaires, moins
évident si plus de deux classes.

1

• 11. Calibration : difficile (trouver les
dépendances stochastiques, sélection des
variables difficiles à l’aide de nombreux tests).
On peut simplifier par utilisation de validation
croisée ou sélection automatique de variables.

• 12. Robust. "scaling" : oui.

• 13. Robust. bruit : non; sensible aux valeurs
aberrantes.

• 14. Sur-app. : robuste si utilisation d’un
paramètre de régularisation.

• 15. b/V : biais élevé, variance faible. La
régularisation réduit encore la variance.

• 16. Score : oui. Produit des probabilités en sortie.

• 17. Interprétabilité : assez facile.

Paramètres :

— λ : terme de régularisation ou taux
d’apprentissage (si LASSO ou autre).

Forme de l’estimateur :

ŷ(x) =Λ(βT.x) (2)

β vecteur des coefficients de la régression (y compris
biais). Λ fonction logistique.

4 Classifieur naïf de Bayes (CNB)

• 1. C/R : classification.

• 2. Perf. : mauvaises en moyenne, mais bonnes
avec des jeux de données de petite taille sur des
tâches simples. Utile en temps réel. Problème de
la fréquence zéro.

• 3. Rapidité : très rapide.

• 4. Entraîn. : très rapide.

• 5. Taille : RAS.

• 6. Versatilité : Non. Hypothèse d’indépendance
conditionnelle irréaliste. Permet de traiter des
données catégorielles, sous condition.

• 7. n grand : peu efficace.

• 8. d grand : assez efficace en grande dimension
(si tâche et données adaptées).

• 9. d > n ? : oui (mais attention au problème de la
fréquence zéro).

• 10. Mœ : très facile.

• 11. Calibration : très facile.

• 12. Robust. Scale : RAS.

• 13. Robust. bruit : RAS.

• 14. Sur-app. : RAS.

• 15. b/V : RAS.

• 16. Score : oui.

• 17. Interprétabilité : mauvaise.

Paramètres :

— Les probabilités a priori des classes et lois.

Forme de l’estimateur :

P[C|X1, ...,Xn] (3)

5 k plus proches voisins (kNN)

• 1. C/R : classification et régression.

• 2. Perf. : bonnes performances en moyenne,
mauvaises performances en grande dimension.

• 3. Rapidité : rapide et efficace en petite
dimension. Entrainement très rapide, prédiction
très lente.

• 4. Entraîn. : rapide.

• 5. Taille : nécessite de la mémoire pour stocker le
modèle. Très lourd si n est grand.

• 6. Versatilité : oui. Ne nécessite aucune
hypothèse sur les données. Mais ne modélise pas
bien les dépendances complexes.

• 7. n grand : prédiction très lente.

• 8. d grand : non adapté à la grande dimension.

• 9. d > n ? : oui.

• 10. Mœ : intuitif, très simple à mettre en œuvre.

• 11. Calibration : choix de k délicat.

• 12. Robust. "scaling" : oui. Nécessite de
normaliser les données.

• 13. Robust. bruit : très sensible au brui et faible
robustesse.

• 14. Sur-app. : RAS.

• 15. b/V :

• 16. Score : non.

• 17. Interprétabilité : mauvaise. S’occupe
uniquement des distances entre les données.

Paramètres :

— k nombre de voisins à considérer.

— M nombre d’éléments du dictionnaire (taille de
la partition (Am)m).

Forme de l’estimateur (en régression, puis
classification) :

ĝn(x) = η̂n(x) =
M∑

m=1
Ym1Am (x) (4)

ĝn(x) =1[η̂(x)≥1/2] =
M∑

m=1
1[Ym≥1/2]1Am (x) (5)

6 Arbres de décisions (DT)

• 1. C/R : classification et régression.

• 2. Perf. : généralement mauvaises pour un arbre
seul.

• 3. Rapidité : coût calculatoire faible si l’arbre est
petit, peut devenir lent si l’arbre est profond et d
grand.

• 4. Entraîn. : coût calculatoire faible.

• 5. Taille : nécessite un stockage important si
l’arbre a beaucoup de nœuds.

• 6. Versatilité : adapté aux données non linéaires,
continues ou discrètes, multiclasses ou
multimodes.

• 7. n grand : RAS.

2

• 8. d grand : en très grande dimension, l’arbre
devient peu informatif avec un fort risque de
sur-apprentissage.

• 9. d > n ? : oui.

• 10. Mœ : très simple à mettre en œuvre.

• 11. Calibration : facile selon certains auteurs,
délicate selon d’autres. Il faut bien choisir la
profondeur de l’arbre, le nombre de feuilles ou
autre critère d’arrêt, ainsi que le paramètre
al pha d’élagage de Breiman.

• 12. Robust. "scaling" : RAS.

• 13. Robust. bruit : assez robuste aux valeurs
aberrantes, mais très sensible au bruit dans les
variables explicatives et aux variations faibles du
jeu de données.

• 14. Sur-app. : très sensible au sur-apprentissage
et au bruit. Souvent instable.

• 15. b/V : faible biais, variance très élevée.

• 16. Score : oui.

• 17. Interprétabilité : oui en petite dimension,
mais peu interprétable en grande dimension.

Paramètres :
Comme pour les k-ppv, la taille de la partition est un
paramètre, mais cette taille est plutôt caractérisée par
la profondeur de l’arbre, l’effectif des feuilles, le
nombre maximum de feuilles, etc.

— k nombre de voisins à considérer.

— Profondeur maximale de l’arbre.

— Effectif maximal d’un nœud.

— α coefficient de régularisation pour l’élagage de
l’arbre.

Forme de l’estimateur (en régression, puis
classification) :

ĝn(x) = η̂n(x) =
M∑

m=1
Ym1Am (x) (6)

ĝn(x) =1[η̂(x)≥1/2] =
M∑

m=1
1[Ym≥1/2]1Am (x) (7)

7 Machine à vecteurs de support
(SVM)

• 1. C/R : classification et régression.

• 2. Perf. : très bonnes performances en dimension
moyennes, ainsi que sur des données fortement
non linéaires. Souvent moins performant que les
méthodes à base d’agrégation.

• 3. Rapidité : très rapide si linéaire, coût de calcul
important pour des noyaux non linéaires quand
n > 104.

• 4. Entraîn. : rapide si noyau linéaire, coût de
calcul important pour des noyaux non linéaires.

• 5. Taille : nécessite un espace mémoire
important s’il faut stocker beaucoup de vecteurs
supports. Mais pour un SVM linéaire, coût
mémoire léger.

• 6. Versatilité : oui, via le choix du noyau. Traite
des données très diverses, y compris corrélées.

• 7. n grand : oui pour n ∼ 103, bien moins efficace
pour des très grands jeux de données (> 50k)
dans le cas de noyaux non linéaires. Si le noyau
est linéaire, très efficace en grande dimension.

• 8. d grand : inefficace pour des grands jeux de
données.

• 9. d > n ? : oui.

• 10. Mœ : facile. Modèle peu complexe, mais
choix du noyau délicat.

• 11. Calibration : Nécessite un réglage précis du
paramètre de régularisation et du choix du
noyau.

• 12. Robust. "scaling" : normalisation obligatoire
sur les données.

• 13. Robust. bruit : non, les SVM sont sensibles au
bruit.

• 14. Sur-app. : assez robuste au sur-apprentissage
(paramètre de régularisation) pour n de taille
moyenne, mais sensible au bruit en grande
dimension.

• 15. b/V : biais faible, variance modérée.

• 16. Score : non.

• 17. Interprétabilité : mauvaise.

Les méthodes à noyaux sont moins universelles que
les méthodes à base d’agrégation (Boosting, Bagging,
Stacking) mais peuvent être plus efficaces que ces
dernières pour des données peu bruitées avec une
taille moyenne (quelques milliers).
Paramètres :

— t ou λ : paramètre de lissage et de régularisation.

— K type de noyau RKHS.

— ξ vecteur éventuel des variables d’écart
("slacking").

Forme de l’estimateur :

ĥSVM(x) =
n∑

i=1
αi K(xi , x) ∈ argmin

h∈H :||h||≤t

1

n

n∑
i=1

φ(−yi h(xi))

8 Boosting (Boo)

• 1. C/R : classification et régression.

• 2. Perf. : très bonnes performances (optimisée
sur les variantes XGBoost, LightGBM, Catboost).

• 3. Rapidité : Gradient Boosting et XGBoost (sur
un CPU) sont exigeants en temps de calcul,
LightGBM est rapide et XGBoost également sur
des GPU.

• 4. Entraîn. : exigeant en temps de calcul
(variantes optimisées).

• 5. Taille : nécessite un espace mémoire
important si des arbres sont utilisés comme
estimateurs constitutifs.LightGBM utilise des
leaf-wise trees très compacts et XGBoost peut
stocker des arbres compressés.

3

• 6. Versatilité : oui. Traite les données
catégorielles, complexes, structurées.

• 7. n grand : très bonnes performances si n grand,
mais temps de calcul important. XGBoost et
LightGBM sont très performants même pour
n > 106.

• 8. d grand : très bonnes performances si d grand,
mais temps de calcul important.

• 9. d > n ? : oui.

• 10. Mœ : calibration pas facile selon le nombre
de paramètres des estimateurs constitutifs.

• 11. Calibration : facile selon certains auteurs,
difficile selon d’autres... Boosting a beaucoup
d’hyperparamètres qu’il faut calibrer.

• 12. Robust. "scaling" : RAS. La normalisation
peut accélérer la convergence.

• 13. Robust. bruit : Gradient Boosting est sensible
aux données aberrantes et au bruit, mais
CatBoost est très robuste au bruit et XGBoost
robuste grâce à la régularisation.

• 14. Sur-app. : sensible au sur-apprentissage.

• 15. b/V : réduit biais, en théorie augmente la
variance, mais cette augmentation peut être
contrôlée facilement (utilisation d’arbres peu
profonds, choix du Learning Rate, nombre
d’itérations contrôlé).

• 16. Score : non.

• 17. Interprétabilité : mauvaise.

Paramètres :

— M : nombre de classifieurs faibles.

— choix des classifieurs faibles.

— λ : taux d’apprentissage (lissage, régularisation).

— Et en plus, tous les paramètres des estimateurs
faibles.

ĥM(x) =
(

M∑
m=1

αmhm(x)

)
régression. (8)

sgn
(
ĥM(x)

)
classification. (9)

9 Bagging et forêts aléatoires (RF)

• 1. C/R : classification et régression.

• 2. Perf. : généralement très bonnes
performances.

• 3. Rapidité : vitesse d’exécution rapide (calcul
parallélisable sur les arbres), mais peut être lent
si la forêt est très grande.

• 4. Entraîn. : temps d’entraînement important
(mais hautement parallélisable).

• 5. Taille : RAS. Peut devenir volumineux si
beaucoup d’arbres.

• 6. Versatilité : oui. Traite les données
catégorielles. Adapté également aux données
non linéaires. Ne gère pas les données textuelles
ou séquentielles.

• 7. n grand : efficace sur de très grands jeux de
données.

• 8. d grand : RAS. Bon pour grande dimension,
mais pas idéal si d est très grand.

• 9. d > n ? : oui.

• 10. Mœ : facile.

• 11. Calibration : facile selon certains auteurs,
difficile selon d’autres...

• 12. Robust. Scale : RAS.

• 13. Robust. bruit : très robuste contre le bruit et
les valeurs aberrantes.

• 14. Sur-app. : robuste contre le
sur-apprentissage.

• 15. b/V : réduit la variance.

• 16. Score : non.

• 17. Interprétabilité : pas bonne.

Paramètres :

— M : nombre de classifieurs faibles.

— choix des classifieurs faibles.

— Et en plus, tous les paramètres des estimateurs
faibles.

— Si forêt aléatoire : tous les paramètres d’un arbre
de décision.

η̂B(x) = 1

B

B∑
b=1

ηb(x) (10)

ηb construit par Bootstrap.

10 Stacking (Stk)

• 1. C/R : classification et régression.

• 2. Perf. : Excellente si bien paramétré.

• 3. Rapidité : exigeant en temps de calcul (même
si parallélisable).

• 4. Entraîn. : nécessite un temps d’entraînement
important si les modèles constituant sont lourds.
Donc dépend fortement des modèles utilisés.

• 5. Taille : stocke tous les modèles. Donc modèle
final potentiellement très volumineux.

• 6. Versatilité : oui. Traite les données
catégorielles. Adapté également aux données
non linéaires.

• 7. n grand : oui.

• 8. d grand : oui.

• 9. d > n ? : oui.

• 10. Mœ : difficile car il faut initialiser
différemment chaque estimateur constitutif.

• 11. Calibration : difficile car il faut initialiser
différemment chaque estimateur constitutif. Le
bon choix et la bonne combinaison des modèles
est délicate à calibrer.

• 12. Robust. Scale : dépend des estimateurs
constitutifs.

• 13. Robust. bruit : dépend des estimateurs
constitutifs.

4

• 14. Sur-app. : efficace contre le
sur-apprentissage, à condition d’avoir mis en
place une validation croisée interne et d’avoir un
méta modèle bien régularisé.

• 15. b/V : réduit le biais, pas forcément idem la
variance (mais celle-ci reste contrôlée).

• 16. Score : non.

• 17. Interprétabilité : mauvaise.

Paramètres :

— M : nombre de classifieurs constitutifs.

— choix des classifieurs constitutifs (tous
différents).

— Et en plus, tous les paramètres des estimateurs
constitutifs (tous différents).

ĥM(x) =
M∑

m=1
αmhm(x) (11)

11 Réseaux de neurones (NN)

• 1. C/R : classification et régression.

• 2. Perf. : généralement très bonnes
performances. Excellentes sur certains types de
données (vision, audio, textes). Mais parfois
performances moins bonnes que les techniques
à base d’agrégation.

• 3. Rapidité : Les réseaux de neurones nécessitent
des GPU, des dizaines/milliers d’epochs, un
algorithme de backpropagation très coûteux.
Donc : extrêmement lents à entraîner, mais
rapides en prédiction.

• 4. Entraîn. : nécessite un temps d’entraînement
important si les modèles constituant sont lourds.

• 5. Taille : nécessite un très grand volume de
données pour l’entraînement. Très coûteux en
ressources.

• 6. Versatilité : oui. Adapté à tout type de données.

• 7. n grand : adapté aux grands jeux de données.

• 8. d grand : adapté aux données en grande
dimension.

• 9. d > n ? : en principe oui, mais risque de
sur-apprentissage massif et nécessite une forte
régularisation.

• 10. Mœ : difficile.

• 11. Calibration : difficile ; de nombreux
paramètres à évaluer précisément.

• 12. Robust. Scale : nécessitent de la
normalisation, surtout pour des fonctions
d’activation de type ReLu ou tanh.

• 13. Robust. bruit : Non. les RN sont sensibles au
bruit qui nécessite de bien calibrer le dropout,
early stopping, weight decay.

• 14. Sur-app. : RAS.

• 15. b/V : faible biais, variance très élevée.

• 16. Score : non.

• 17. Interprétabilité : aucune interprétabilité
possible.

Paramètres :

— Nombre de couches.

— Dimension des couches.

— Taux d’apprentissage.

— Type d’optimiseur pour le gradient stochastique.

— Fonctions d’activation.

— Probabilité de "dropout".

— Nombre d’itérations ("epochs").

Forme de l’estimateur :

ŷ(x) =
L

i=1
σ(wT

i .x +bi) (12)

=σ(
wLσ

(
....σ

(
wT

1 .x +b1
)

...
))

(13)

où σ fonction d’activation (ReLU, logistique, tanh,
etc.), L est le nombre de couches.

5

	Introduction
	Régression linéaire (RLin)
	Régression logistique (Rlog)
	Classifieur naïf de Bayes (CNB)
	k plus proches voisins (kNN)
	Arbres de décisions (DT)
	Machine à vecteurs de support (SVM)
	Boosting (Boo)
	Bagging et forêts aléatoires (RF)
	Stacking (Stk)
	Réseaux de neurones (NN)

