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1 What is compressive sensing ?
Why is it useful ?

1.1 Film and digital camera
In the traditional digital signal processing approach,
one starts by acquiring (receiving, measuring, calcu-
lating, sampling) data before compressing them. The
acquisition step is often done from analog data which
are transformed into digital data (via sampling and
quantization). It is then necessary to compress data
in order to be able to transmit them on a network or
to store them in digital memories, for efficiency, time
sparing and economy of size. Compression can only
be done after the acquisition process.

Compressive sensing is a technique for sampling
and compressing data at the same time.

Let’s start with an example to concretely illustrate
the process of sampling, analog / digital conversion
and compression: let’s consider a film camera, with
which we want to take a picture, say, of the Eif-
fel Tower. The camera lenses are directed towards
the object to be photographed and the light passes
through them until it hits the photo film. The sil-
ver salts deposited on the plastic wrap are impressed
by the light and create a physical image on this film.
Suppose for simplicity that this image is a square of
size 1x1 cm (a typical real size is 24x36 mm). By en-
larging the negative, one can obtain photos of several
square meters while keeping the same level of details -
the same sharpness - as the image contained in these
few square millimeters. We can consider that the
number of points on the image is practically infinite
and mathematically model the image by a continuous
function

xR : [01]× [0, 1] −→ R ou R3 (1)

This function is analog because the data are prac-
tically continuous. The function takes its values in
R, if the filmstrip is in black and white, or R3 if the

filmstrip is in color, in order to obtain, for each point
of the image, either the luminosity, either the three
values of the components of each color. The value
x(t1, t2) at point (t1, t2) represents the luminosity of
the image at this point (we will consider from now
on that the image is in black and white). This value
varies continuously between 0 (if the point is com-
pletely black) and say 1 if it is white.

In a digital camera, the plastic film is replaced by
an array of photosensitive sensors, each of which cap-
tures the brightness of the rays it receives. There is
a fixed number N1 ×N2 of sensors and the image is
then a matrix of size N1×N2 whose number of points
(these are pixels) is finite and fixed. Likewise, the
value of the luminosity in each pixel must be quan-
tized. The image is then a discrete object that can be
mathematically represented by a matrix or a vector:

x : {1, N1} × {1, N2} −→ {0, 255} ou {0, 255}3 (2)

The set {0.255} is an example of the number of
different values that one can assign to the luminu-
osity (256 = 28 for a luminosity coded on 8 bits).
For current 4K UHD formats, the standard resolu-
tion is 3840× 2160 pixels, with 12 bits for color and
120 frames per second. The size of the files quickly
becomes gigantic and it is not possible to use them
without having first compressed them.

The compression step consists of two processes: the
first reduces the size, by various methods (we will see
one of them) and the other encodes the signal using
an entropy encoder. The resulting file (for example a
JPEG image) can then be used, transmitted, stored
or copied more easily.

When we want to use a compressed file, say an im-
age, it is necessary to decompress it via a new trans-
formation. We then get a file x̂ that we want to be
identical to the initial signal x.

When x = x̂, we say that the compression method
is "lossless" and when the two signals are not the
same, we say that the method is "lossy".

In conclusion of this introduction, the digital sig-
nal processing process requires a sampling step, then
a compression step. Compressive sensing tries to per-
form both operations at the same time.
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1.2 Sampling and compression: two
fundamental questions

1. Is it possible to perfectly reconstruct a continu-
ous signal (i.e. containing an infinity of values) from
a sample of a few measurements of that signal (i.e. a
few values of the signal measured at given moments)

2. Is it possible to reduce the size of a discrete
image without altering it?

1.2.1 The Shannon-Nyquist sampling theo-
rem

The answer to question 1. is yes, but ... There are two
conditions needed to reconstruct perfectly a function
from a certain number of its samples: on the one
hand, the signal must be restricted to a particular
class of signals (signals with limited spectrum width)
and on the other hand have enough samples: the sam-
pling rate must be twice the highest frequency.

There exists lots of different Fourier transforms for
differents types of signals: Fourier series for peri-
odic functions, usual Fourier transform for functions
of class L2 or L1 on Rn , FFT or DCT for finite
signals, Walsh transform for binary vectors, Fourier
transforms on a graph, on finite fields, groups, com-
mutative or not, wavelets, Gelfand transform, etc.

The Fourier transform of a function x ∈ L2(R) is

x̂(u) =

∫
R
x(t)e−2πiutdt (3)

It is an isometry on L2(R). The calculus of the
inverse Fourier transform makes it possible to recover
the initial signal from its transform:

x(t) =

∫
R
x̂(u)e2πiutdu (4)

Now, if the spectrum is included in [−B,B], then

x(t) =

∫ B

−B

x̂(u)e2πiutdu (5)

We will see that if we restrict ourselves to the space
L2[−B,B] of square integrable signals whose spec-
trum is bounded, of maximum frequency B, then we
can reconstruct the initial signal as long as the sam-
pling is carried out with a period less than or equal
to 1/2B.

Recall that the Fourier transform of a gate function
is a cardinal sine:

Π(t) = 1[−T
2 ,T2 ]

(t) ⇒ (6)

Π̂(u) = T
sin(πuT )

πuT
= T sinc(πuT ) (7)

The Dirac mass in 0 is the distribution defined by:

δ(t) =

{
0 if t ̸= 0
+∞ if t = 0

(8)

and by the property:∫
R
δ(t)dt = 1 (9)

Since δ is zero almost everywhere, its integral
(Lebesgue or Riemann) should be zero. δ therefore
cannot be a function. We can calculate its Fourier
transform in the sense of distributions (all the fol-
lowing calculations are done in the sense of distribu-
tions):

δ̂(u) = 1 (10)

The Dirac mass in 0 is the neutral element for the
convolution product:

∀x, x ⋆ δ = x (11)

The Dirac mass in n is the translated version of
the Dirac mass in 0:

δn(t) = δ(t− n) (12)

The convolution of a signal by a Dirac mass in n is
the translated signal by a n factor:

x ⋆ δn(t) = x(t− n) (13)

Let IIIT the Dirac comb with period T . It is de-
fined by

IIIT (t) =
∑
n∈Z

δ(t− nT ) (14)

Remember that the Fourier transform (in the sense
of distributions) of a Dirac comb IIIT is a Dirac comb
with period 1/T (up to a multiplicative factor):

ÎIIT (u) =
1

T
III1/T (u) (15)

Multiplying a signal by a Dirac comb si equivalent
to sample this signal at period T :

xe(t) = x(t)× IIIT (t) (16)

= x(t)×
∑
n∈Z

δ(t− nT ) (17)

=
∑
n∈Z

x(t)δ(t− nT ) (18)

=
∑
n∈Z

x(nT )δ(t− nT ) (19)

The passage from the penultimate to the last line
comes from the fact that the Dirac comb is zero ev-
erywhere except at the points nT . Here again, this
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calculation is only valid in the sense of distributions.
The result is a zero distribution almost everywhere
except at the points defined by the Dirac masses.
It is therefore a sequence (x(nT ))n∈Z of real num-
bers made up of a sample of measures from x. This
property is at the heart of the proof of the sampling
theorem.

Eventually, the Fourier transform permutes the
convolution product with the classical product:

x̂ ⋆ y(u) = x̂(u)× ŷ(u) (20)

x̂× y(u) = x̂ ⋆ ŷ(u) (21)

All this being stated, we can now prove Shannon’s
theorem:

Let x ∈ L2(R) be a square integrable signal. The
sampled T-period signal is :

xe(t) = x(t)× IIIT (t) (22)

Its Fourier transform is

x̂e(u) = x̂ ⋆
1

T
III1/T (u) (23)

=
1

T

∑
n∈Z

x̂ ⋆ δ(u− n/T ) (24)

=
1

T

∑
n∈Z

x̂(u− n/T ) (25)

In words, the spectrum of the sampled signal is
made of an infinity of copies from the spectrum of x,
each translated by a factor 1/T .

If the signal is bandlimited in [−B,B] and if

T ≤ 1

2B
(26)

then the different copies are of disjoint supports
and by a frequency windowing (ie by multiplying by
a gate function), we can recover a single copy of the
initial spectrum. Consider for this the function

ĥ(u) = T1[− 1
2T , 1

2T ]
(u) = T1[− 1

2 ,
1
2 ]
(Tu) (27)

it is the Fourier transform of the cardinal sine

h(t) = T
1

T
sinc(πt/T ) =

sin(πt/T )

πt/T
(28)

To window x̂(u), we multiply it by ĥ(u) and the
equality below is licit as long as the Shannon condi-
tion is satisfied:

x̂e(u)× ĥ(u) =
1

T

∑
n∈Z

x̂(u− n/T )× T1[− 1
2T , 1

2T ]
(u)

(29)

= x̂(u)× 1[− 1
2T , 1

2T ]
(u) (30)

thus,

x̂(u) = x̂e(u)× ĥ(u) = x̂e ⋆ h(u) (31)

and by inverse Fourier transform, one has

x(t) = xe ⋆ h(t) (32)

Replace xe by its expression:

x(t) = xe ⋆ h(t) (33)

=

(∑
n∈Z

x(nT )δnT

)
⋆ h(t) (34)

=
∑
n∈Z

x(nT ) [δnT ⋆ h(t)] (35)

=
∑
n∈Z

x(nT )h(t− nT ) (36)

=
∑
n∈Z

x(nT )sinc
( π
T
(t− nT )

)
(37)

When T = 1/2B it comes

x(t) =
∑
n∈Z

x(
n

2B
)sinc (2πBt− nπ) (38)

We have succeeded in reconstructing the sig-
nal x(t) from the sequence formed of its samples
(x(nT ))n. The formula also indicates that the fam-
ily (sinc(π(t− nT )/T ))n∈Z is an orthonormal basis of
the space of square integrable signals whose spectrum
is included in [−B,B].

Shannon’s theorem can be rigorously demonstrated
without using distributions (by the Poisson formula),
but the above demonstration has the interest of
clearly showing the links between the time domain
signal, the sampled signal and their Fourier trans-
forms.

When the condition on the sampling frequency is
not respected (in case of downsampling, below the
optimal rate), the copies of the spectrum of x(t) are
no longer disjoint and one speaks of aliasing effect.
It is then no longer possible to isolate the spectrum
of x and to reconstruct the time signal. The down-
sampling results in a "moiré" effect in the images:
periodic artefacts appear in areas, similar to what
can be observed by looking at two grids, one behind
the other. There also exists a problem of identifying
the initial signal: a too small number of interpola-
tion points can be verified by several different signals.
This is called signal ambiguity.

The sampling rate of a compact-disc is 44 kHz with
16 bits of quantization. It has been chosen to corre-
spond to a little bit more than twice the maximal
frequency that a human can hear (20 Hz - 20 kHz for
most people). Hi-Res audio proposes audio files with
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96 or 192 kHz and 24 bits of quantization. Most of
the people can’t hear any difference between a usual
CD file and a Hi-Res audio file.

What should be retained from this paragraph are
the two important conditions for the reconstruction:
the fact that the signals must be bandlimited and
the fact that the sampling must be carried out at a
frequency higher than twice the maximum frequency
of the signal.

1.2.2 Discrete cosine transform compression
method

We now answer question 2. There are many different
methods of compressing signals. The one presented
here, suitable for video, was used in the JPEG format
and uses sparsity of video signals.

DCT compression (discrete cosine transform) in di-
mension 2 is carried out by splitting the image into
blocks of N1 × N2 pixels (called tiles) and by ex-
pressing each of the blocks as a linear combination of
suitably chosen tiles.

Each tile is a matrix of real coefficients of size N1×
N2. We can therefore consider it as a real vector of
size N1 × N2 and choose a basis of the vector space
RN1×N2 to represent them. In what follows, we will
therefore keep in mind that each image block is an
element of a real vector space.

For the DCT, the N1×N2 chosen basis vectors are
cosine products. In the FFT (fast Fourier transform)
the functions of the basis are complex exponentials,
which can be broken down into sines and cosines; then
sines are transformed into cosines. It is thus possible
to construct an orthonormal basis of the space of dis-
crete signals of size N1 ×N2 only using cosines. We
can prove that the N1 ×N2 functions

ϕn1,n2
(k1, k2) = ... (39)

... cos

[
(2n1 + 1)π

2N1
k1

]
cos

[
(2n2 + 1)π

2N2
k2

]
(40)

form an orthogonal basis of RN1×N2 . By multiply-
ing by an adequate constant, this basis can be made
orthonormal (this is what we will assume, while for-
getting the constants). If the pixels of a digital image
are given by the vector x = (xn1,n2), the coefficients
of its DCT transform are

ck1,k2
=

N1−1∑
n1=0

N2−1∑
n2=0

xn1,n2
× ϕn1,n2

(k1, k2) (41)

Low frequencies (corresponding to areas of small
variations of luminuosity) are stored in the upper left
corner of the DCT image and high frequencies (cor-
responding to high changes of luminuosity like near

edges or textures) are stored in the lower right cor-
ner. The image is read in diagonal from low to high
frequencies. It must be noticed that most of the real
world images are sparse in some way.

DCT compression is better than discrete Fourier
transform, because the DCT is the mirrorerd func-
tion (symetrized) of the DFT. This eliminates the
Gibbs effect visible on some DFT, near the discon-
tinuity points of the signal. The Gibbs effect arises
when developping a periodic function which is not
continuous in every point. It causes high contrast
around the edges in digital images or echoes in MP3
files.

There exists other methods of compression like
Zipf’s algorithm (used in ZIP files), which are less
efficient because they do not exploit sparsity of the
initial signals.

For audio files, the FLAC (Free Lossless Audio
Codec) specification format describes a lossless com-
pression algorithm that is mostly still used more than
twenty years after its discovery.

2 How to formalize compressive
sensing ?

2.1 Sparse signals

A vector x is k-sparse if it has at most k non-zero
coordinates (and we obviously assume that k is very
small compared to n). The degree of sparsity of x is
measured with the function

||x||0 = card(supp(x)) (42)

||x||0 is equal to the number of non-zero coordi-
nates of x. It is not a mathematical norm (why?).
The set of signals k-Sparse is denoted by Σk. It is
not a vector space (why?).

Sparsity depends on the basis in which the vector
is given (cf. Lena’s DCT).

Most real-world signals are not exactly sparse, but
have coefficients close to zero. We have to consider
compressible vectors, whose coordinates tend rapidly
towards 0 and which can be approached by sparse
vectors. This leads to the following definitions:

The best s-sparse approximation of a vector x rel-
atively to the lp-norm is the vector σk(x)p given by

σk(x)p = min
y∈Σk

||x− y||p (43)

A simple way to get this approximation is to
threshold to 0 all the n − k smallest coefficients (in
absolute value) of x.
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A signal is said to be compressible if its coordinates
xi ranged in decreasing order satisfy

∃ C, q > 0 : |xi| ≤
C

iq
∀i = 1, ..., n (44)

We denote by xS a vector x whose coordinates in-
dexed elsewhere than in S have been set to 0. We
will denote by MS a matrix whose columns indexed
elsewhere than in S have been fixed at 0. We have in
particular

M = MS +MS (45)

and

MSx = MSxS = MxS (46)

Forall x ∈ Rn.

2.2 Mathematical model for compres-
sive sensing

In the traditional approach of digital signal process-
ing, a lot of data are sampled and then discarded at
the compression step. Is it possible to sample only
the data that will be useful ? This is the main objec-
tive of compressive sensing.

Mathematically the problem is very simple: we
have a vector of measurements

y = Mx (47)

formed by linear combinations of a vector x by a
known sensing matrix M . We would like to find x
given y and M , by exploiting the fact that x is s-
sparse.

There are many phenomena and operations in sig-
nal processing that can be modelized by a matrix
product: all classical transformations on finite sig-
nals (Fourier, wavelets, etc.) are linear. The same
goes for a lot of filtering, coding operations, etc.

Solving (47) is in fact the same as solving a simple
linear system. We can summarize this in the form of
the program P0:

P0 : x̂ = argmin
z:Mz=y

||z||0 (48)

In fact, there are three (big) issues:
1. The above program is not convex because of the

l0 norm. It cannot therefore be solved by conven-
tional optimization techniques.

2. It is a NP-hard problem: solving it amounts to
testing all the vectors whose support is of cardinality
k. There are

(
n
k

)
of them, which grows exponentialy

with n.

3. The linear system is underdetermined and there-
fore admits an infinity of solutions.

There are roughly three different philosophies for
tackling the problem in a practical way, which results
in algorithms of three different types: convex relax-
ation algorithms, greedy or thresholding algorithms.

A (false) problem to consider is that of signals
which are not sparse in the current basis, but in an-
other basis to be determined. The study of the algo-
rithm shows that the problem does not change and
that it is not necessary to know the basis in which
the signal is sparse, in order to to find the solution.

Compressive sensing is often presented as part of
the sparse representation methods, which is true, but
there are key differences between classic sparse meth-
ods and compressing sensing. In the former, the en-
coding is non-linear (it is used to determine a dic-
tionary, depending on the signal, in which the latter
is sparse) and the decoding is linear. In compress-
ing sensing, the encoding is linear (Mx is calculated)
while the decoding is non-linear (one of the families
of algorithms mentioned above is applied).

Both families seek to minimize the difference be-
tween the initial signal and its estimate with equiv-
alent decomposition, but different criteria. In a
way, sparsity representations try to determine a local
sparse solution, while compressive sensing determines
the sparsiest solution.

At this stage we have just posed the mathemat-
ical problem that interests us: to solve an under-
determined system by exploiting the sparsity of the
solution. We must now answer two questions:

1. Which matrices should be used as sensing ma-
trices?

2. What are the methods and algorithms that con-
cretely make it possible to find x from y?

2.3 Which sensing matrix to choose
and the RIP property

This section presents an interesting type of matrix to
solve the P0 problem and a simple method to obtain
such matrices.

Let ϵ > 0, and let k a given integer. A matrix M
satisfy the (ϵ, k)-RIP property if

∀x ∈ Σk, (1− ϵ)||x||22 ≤ ||Mx||22 ≤ (1 + ϵ)||x||22
(49)

In words, M doesn’t change two much the norm of
each k-sparse vector x. It should be clear that

(ϵ, k)− RIP ⇐⇒ ∀x ∈ Σk,

∣∣∣∣ ||Mx||22 − ||x||22
||x||22

∣∣∣∣ ≤ ϵ

(50)
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We recall that the spectral norm of a matrix is
defined par any of the following formula:

||M ||2 = sup
x ̸=0

||Mx||2
||x||2

(51)

= sup
||x||2=1

||Mx||2 (52)

= sup
||x||2≤1

||Mx||2 (53)

=
√
ρ(M ′M) (54)

= σmax(M) (55)

where ρ is the spectral radius (absolute value of
the largest eigenvalue) and σmax the largest singu-
lar value. In the case of a hermitian or symmetric
matrix, the spectral norm can be defined by

||A||2 = sup
x̸=0

⟨Ax, x⟩
||x||2

= ρ(A) (56)

This is the expression of the Rayleigh ratio, which
is maximised by the eigenvector relative to the largest
eigenvalue and in that case, the Rayleigh ratio is
equal to the spectral radius.

Remember that for every non-zero vector x and for
every subset S with less than k elements,

MSx = MSxS = MxS (57)

Therefore, for all non-zero x of Rn (sparse or not),

||MSx||22 − ||x||22 = ⟨MSx,MSx⟩ − ⟨x, x⟩ (58)
= ⟨M ′

SMSx, x⟩ − ⟨x, x⟩ (59)
= ⟨(M ′

SMS − I)x, x⟩ (60)

Thus,

(ϵ, k)− RIP ⇒ ∀x ̸= 0,∀S, ⟨(M ′
SMS − I)x, x⟩

||x||22
≤ ϵ

(61)

⇒ max
x ̸=0

⟨(M ′
SMS − I)x, x⟩

||x||22
≤ ϵ (62)

Now, since M ′
SMS − I is symmetric, the above ex-

pression is exactly the definition of the spectral norm.

⇒ ||M ′
SMS − I||2 ≤ ϵ (63)

In words, for any subset S of cardinality smaller
than the sparsity level k, the extracted matrix MS

behaves like an orthogonal isometry when it is ap-
plied to the support vectors S. Beware of the term
"extracted" because MS has the same size as M .

We can notice that it is necessary to impose a RIP
property with parameters (ϵ, 2k) if we want two k-
sparse vectors to have distinct images by M (see The-
orem 2.13 in Foucart & Rauhut regarding the NSP
property (null space property). In fact, we then have

||M(x− y)||22 > 0 (64)

Remember that if x, y ∈ Σk then (x − y) ∈ Σ2k

(take two disjoint supports).
Why is a sensing matrix with the RIP property of

interest in compressive sensing ? Recall that our goal
is to solve the following problem:

P0 : argmin
z:Mz=y

||z||0 (65)

In the previous lines, we proved in fact that
If M ∈ Rm×n and M is (ϵ, 2k)-RIP, then if x ∈ Σk

is solution, it is the only solution of P0. The NSP
property imposes anyway that the minimum number
of measurements m to retrieve all the k-sparse signals
is m ≥ 2k.

2.4 IHT: a sparse signal recovery al-
gorithm (at last)

The IHT algorithm (for Iterative Hard Tresholding)
iteratively calculates a solution to the P0 problem.
At each iteration t, it performs a hard thresholding
on a sparse candidate vector xt, i.e. it sets to 0 all
the coordinates below a threshold value, keeping only
the highest s coordinates in absolute value.

The function Hk is define as a function from Rn

onto Rn which changes a vector x into a k-sparse xS

where all the coordinates except the k largest have
been set to zero.

IHT :

{
x(0) = 0
xt+1 = Hk (x

t +M ′(y −Mxt))
(66)

The exit of the algorithm is

x̂ = lim
t→+∞

xt (67)

xt is equal to Hk ((I −M ′M)xt +M ′y) and y =
Mx,

y −Mxt = M(x− xt) (68)

The thresholding step if of the form

xt+1 = Hk

(
xt + erreur(x− xt)

)
(69)

The following Theorem shows the importance of
the RIP property for the success of IHT:

Theorem 1 Let M ∈ Rm×n with m << n and let
ϵ > 0. If M satisfies (ϵ, 3k)-RIP, then

||xt+1 − x|| ≤ 2ϵ||xt − x|| (70)

Specifically, if ϵ < 1/2 then x̂ = x
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Proof: let

ut = xt +M ′(y −Mxt) (71)

= xt +M ′M(x− xt) (72)

so that

xt+1 = Hk(u
t) (73)

For all x ∈ Σk, since xt+1 is by construction the
best k-sparse approximation of ut,

xt+1 = arg min
x∈Σk

||ut − x||2 (74)

so that, for all x,

||ut − xt+1||2 ≤ ||ut − x||2 (75)

||ut − xt+1||2 ≤ ||ut − xt||2 (76)

Now,

||ut − xt+1||2 = ||ut − x||2 + ||xt+1 − x||2... (77)

...− 2
〈
ut − x, xt+1 − x

〉
(78)

≤ ||ut − x||2 (79)

By reordering both members of the above inequal-
ity,

||xt+1 − x||2 ≤ 2
〈
ut − x, xt+1 − x

〉
(80)

= 2
〈
(I −M ′M)(xt − x), xt+1 − x

〉
(81)

= 2 ⟨•⟩ (82)

We have now to prove that

⟨•⟩ ≤ ϵ.||xt − x||.||xt+1 − x|| (83)

Let

u = xt − x (84)

v = xt+1 − x (85)
T = supp(u) ∪ supp(v) (86)

so that

T ⊂
(
supp(xt) ∪ supp(x) ∪ supp(xt+1)

)
(87)

This proves that card(T ) ≤ 3k

⟨(I −M ′M)u, v⟩ = u′
T (I −M ′

TMT )vT (88)
≤ ||(I −M ′

TMT )uT ||2||vT ||2 (89)
≤ ||(I −M ′

TMT )||2||uT ||2||vT ||2
(90)

≤ ϵ||uT ||2||vT ||2 (91)

By successively using the Cauchy-Schwarz inequal-
ity and the properties of the operator norm, one de-
duces

||xt+1 − x||2 ≤ (2ϵ).||xt − x||.||xt+1 − x|| (92)

⇐⇒ ||xt+1 − x|| ≤ (2ϵ)||xt − x|| (93)

⇒ ||xt − x|| ≤ (2ϵ)t||x|| (94)

The last inequality, for ϵ < 1/2 proves that the
application is a contractant one and that

lim
t→+∞

xt = x (95)

2.5 Gaussian concentration, RIP and
Johnson-Lindenstrauss Lemma

2.5.1 Concentration inequality

The question that comes immediately at the end of
the previous section is how to build a sensing matrix
that has the RIP property. The answer is very simple:
at random!

The measure concentration phenomenom for Gaus-
sian vectors makes it possible to demonstrate the fol-
lowing theorem:

Theorem 2 (CI: concentration inequality)
Let M ∈ Rm×n a matrix whose coefficients are
i.i.d. Gaussian random variables N (0, 1/m). Then,
∀x ∈ Rn, ∀ϵ ∈]0, 1[,

P
[∣∣||Mx||22 − ||x||22

∣∣ > ϵ||x||22
]
≤ 2e−mϵ2/12 (96)

Let ϕX(t) = E[etX ] the moment generating func-
tion of a random variable X.

We recall the expression of ϕX(t) for a centered
Gaussian random variable X ∼ N (0, σ2) and for a
chi square distribution:

ϕX(t) = eσ
2t2/2 (97)

ϕX2(t) =
1√

1− 2tσ2
(98)

(99)

The following proof will make use (without saying
it) of the Cramer transform. It is easy to see that

E
[
||Mx||22

]
= ||x||22 (100)

Let y = Mx, γ = ||x||22/m, and zi = y2i − γ so that
yi ∼ N (0, γ) and

γ = V(yi) = E
[
y2i
]
= ||x||22/m (101)

then
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||Mx||22 − ||x||22 =

m∑
i=1

zi = Sm (102)

Let A = A(M,x, ϵ) the event inside the probability

P
[∣∣||Mx||22 − ||x||22

∣∣ > ϵ||x||22
]

(103)
= P(A) (104)
= P [Sm > ϵmγ] + P [Sm < −ϵmγ] (105)

Using Markov inequality,

P [Sm > ϵmγ] ≤
E
[
etSm

]
etϵmγ

(106)

and by i.i.d. nature of the zi

P [Sm > ϵmγ] ≤ ϕzi(t)
me−mtϵγ = p(t)m (107)

with p(t) = ϕz1(t) exp(−tϵγ).

Since yi is Gaussian, y2i /γ ∼ χ2
1 and zi/γ + 1 is a

chi square distribution, so that

p(t) = E
[
exp

(
ty2i − tγ

)]
e−tϵγ (108)

=
e−t(1+ϵ)γ

√
1− 2γt

(109)

An easy calculus (do it !) shows that the minimum
of p(t) in R is reached in

t∗ =
1

2γ

ϵ

1 + ϵ
(110)

Then

ln p(t∗) =
1

2
ln(1 + ϵ)− ϵ/2 (111)

≤ 1

2
(ϵ− ϵ2/2 + ϵ3/3)− ϵ/2 (112)

≤ −ϵ2/4 + ϵ3/6 (113)

and

P [Sm > ϵmγ] ≤ exp
(
−m

(
ϵ2/4− ϵ3/6

))
(114)

P [Sm < −ϵmγ] ≤ exp
(
−m

(
ϵ2/4− ϵ3/6

))
(115)

Eventually,

P(A) ≤ 2 exp
(
−m

(
ϵ2/4− ϵ3/6

))
(116)

If 0 < ϵ < 1, it is clear that ϵ2/4 − ϵ3/6 < ϵ2/12
which gives a less optimal constant but a simpler
formula. □

P(A) tends rapidly to zero when m tends to infinity.

2.5.2 The Johnson-Lindenstrauss Lemma

(96) says that, for any fixed x ∈ Rn, when choosing a
Gaussian matrix M at random, the probability of the
event A = A(M,x, ϵ) is close to 1 for m high enough.
But M depends on x.

The RIP-(ϵ, k) property for M says that for any
x ∈ Σk, A(M,x, ϵ) is realized. For the RIP, a unique
matrix M should satisfies the inequality for all sparse
vectors, so that M shouldn’t depend on x.

The link between the two properties is given by the
Johnson-Lindenstrauss Lemma, a geometric theorem
which says that a small number of points relatively
to the dimension of the space can be projected in a
smaller space without altering the distances between
the points.

One possible and convenient form of the Lemma is
the following:

Theorem 3 (J.L. Lemma) Let M ∈ Rm×n a ma-
trix whose coefficients are i.i.d. Gaussian random
variables N (0, 1/m). Let ϵ ∈]0, 1[, let δ > 0, let Q a
finite set of vectors of cardinality |Q|. If m satisfies:

m >
12

ϵ2
ln

(
2|Q|
δ

)
(117)

Then

P
[
sup
x∈Q

∣∣∣∣ ||Mx||22
||x||22

− 1

∣∣∣∣ ≤ ϵ

]
≥ 1− δ (118)

Let us note RIP(ϵ, k) the event « the matrix M
satisfies the RIP proprerty of order (ϵ, k) ». Then,

RIP(ϵ, k) =
⋂

x∈Σk

A(M,x, ϵ) (119)

But this intersection is infinite and uncountable.

PM (RIP(ϵ, k)) = PM

[
∀x ∈ Σk : A(M,x, ϵ)

]
(120)

Proof of J.L. Lemma: let

B(M, ϵ) =

[
sup
x∈Q

∣∣∣∣ ||Mx||22
||x||22

− 1

∣∣∣∣ ≤ ϵ

]
(121)

B(M, ϵ) =
[
∃ x ∈ Q :

∣∣||Mx||22 − ||x||22
∣∣ > ϵ||x||22

]
= ∪x∈Q

[∣∣||Mx||22 − ||x||22
∣∣ > ϵ||x||22

]
so by the union bound,

P(B(M, ϵ)) ≤
∑
x∈Q

P (A(M,x, ϵ)) (122)

≤ 2|Q| exp
(
−mϵ2/12

)
(123)

Now the condition on m is equivalent to
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2|Q| exp(−mϵ2/12) < δ (124)

and the proof is complete. □

The last step between the concentration inequality,
the J-L Lemma and the RIP property is a covering
argument that will let us replace Q by Σk thanks to
the following result:

Theorem 4 Let ρ ∈]0, 1/2[. There exists a finite
subset U of the unit sphere
SS = {x ∈ Rn : supp(x) ⊂ S, |S| = k, ||x||2 = 1}
such that for all x ∈ SS

min
u∈U

||x− u||2 ≤ ρ (125)

and the cardinality of U satisfies

|U| ≤
(
1 +

2

ρ

)k

(126)

This means that we can choose a finite number of
points in the unit ball such that all points of the ball
are not far away from these points. We do not prove
this result (see Foucart).

Now, the CI gives, for ϵ ∈]0, 1[ (depending on ρ
and δ to be determined later),

P

(⋃
u∈U

A(M,u, ϵ)

)
≤ 2|U|e−mcϵ2 (127)

≤ 2

(
1 +

2

ρ

)k

e−mcϵ2 (128)

where c is a constant. In the last step, we have to
replace the finite set U by the infinite uncountable
Σk. Let B = A′

SAS − I. We recall that the RIP(ϵ, k)
property is equivalent to:

∀S ⊂ J1..nK s.t. |S| = k, ||M ′
SMS − I||2 ≤ ϵ (129)

The CI applied to u ∈ U gives

| ⟨Bu, u⟩ | ≤ ϵ, ∀u ∈ U (130)

Let x ∈ SS and u ∈ U such that ||x − u||2 ≤ ρ <
1/2.Then,

| ⟨Bx, x⟩ | = | ⟨Bu, u⟩+ ⟨B(x+ u), x− u⟩ | (131)
≤ | ⟨Bu, u⟩ |+ | ⟨B(x+ u), x− u⟩ | (132)
< ϵ+ ||B||2||x+ u||2||x− u||2 (133)
≤ ϵ+ 2ρ||B||2 (134)

Taking the maximum over x ∈ SS gives

||B||2 < ϵ+ 2ρ||B||2 (135)

so that

||B||2 <
ϵ

1− 2ρ
(136)

Now if we put ϵ = (1 − 2ρ)δ, then ||B||2 < δ so
that

P
[
||A′

SAS − I||2 ≥ δ
]
≤ ...

...2

(
1 +

2

ρ

)k

exp
(
−mc(1− 2ρ)2δ2

)
We have change a condition on the finite set U with

precision ϵ into a condition on the infinite set SS with
precision δ. Moreover, the sparsity k appears now in
the inequality. The condition can also be expressed
as follows:

P
[
||B||2 ≤ δ

]
= P

( ⋂
x∈SS

A(M,x, δ)

)
(137)

which is equivalent to

P
[
||B||2 ≥ δ

]
= P

( ⋃
x∈SS

A(M,x, δ)

)
(138)

≤ P

(⋃
u∈U

A(M,u, ϵ)

)
(139)

≤ 2

(
1 +

2

ρ

)k

exp
(
−mc(1− 2ρ)2δ2

)
(140)

Now, there exists exactly(
n
k

)
≤
(en
k

)k
possible sets SS of cardinality k (why do we not

write of cardinality ≤ k ?). In words,

Σ1
k =

⋃
S:|S|=k

SS (141)

where Σ1
k is the set of all vectors of norm 1 with a

support of cardinal k (and the union is finite). We can
drop the restriction to vectors of norm 1, because the
linearity of the transformation M makes the inequal-
ities equivalent (we can divide both side by ||x||2). A
last use of the union bound gives eventually

PM

(
RIP(δ, k)

)
≤

∑
S:|S|=k

P

( ⋃
x∈SS

A(M,x, δ)

)
(142)

≤ 2
(en
k

)k (
1 +

2

ρ

)k

exp
(
−mc(1− 2ρ)2δ2

)
(143)

We can know prove that the RIP property is al-
ways satisfied by a random Gaussian matrix with a
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probability arbitrary close to 1 (up to a factor τ),
as soon as the number m of measurements is greater
than a function of n and k:

2
(en
k

)k (
1 +

2

ρ

)k

exp
(
−mc(1− 2ρ)2δ2

)
≤ τ

⇐⇒ m ≥ k ln(en/k) + k ln(1 + 2/ρ) + ln(2/τ)

cδ2(1− 2ρ)2

⇐⇒ m ≥ Ck ln(en/k) + C ′k + C ′′ ln(2/τ)

Theorem 5 Let M ∈ Rm×n a matrix whose co-
efficients are i.i.d. Gaussian random variables
N (0, 1/m). For all ϵ ∈]0, 1[, M satisfies the (ϵ, k)-
RIP property as soon as

m ≥ C × k ln(en/k) (144)

with a probability arbitrary close to 1.

Which means that the number of measurements
needed to recover a k-sparse vector is roughly pro-
portional to k up to a logarithm factor in n/k.

Let’s summarize the main lines of the proof:

• Gaussian matrices satisfies CI: ∀x ∈
Rn, P (A(M,x, ϵ)) ∼ 1

• if x ∈ Q finite , the J.L. Lemma gives:
P (∀x ∈ Q : A(M,x, ϵ)) ∼ 1

• if x on the sphere, with support S and |S| = k,
covering property gives
P (∀x ∈ SS : A(M,x, ϵ)) ∼ 1

• if x ∈ Σk, union bound gives
P (∀x ∈ Σk : A(M,x, ϵ)) = P (RIP(ϵ, k)) ∼ 1

3 Recovery guarantees

3.1 Introduction and the RIP as a
first example

A guarantee of perfect recovery is a condition on the
sensing matrix M and the parameters n, k,m to en-
sure that the estimated sparse signal x̂, solution of a
reconstruction algorithm, is indeed equal to the ini-
tial signal x:

x = x̂ (145)

The condition can be deterministic or probably ap-
proximatively correct (PAC or one can also say "with
overwhelming probability") in which case a param-
eter τ measures how far the probability of perfect
recovery is from 1.

The guarantee can also be uniform if one single ma-
trix M allows the reconstruction of all sparse signal
x (M doesn’t depend on x) or non-uniform if, for any
fixed signal x, there exists a matrix M (depending on
x) that allows the reconstruction.

A guarantee can be sufficient, necessary, or both.
Note that a recovery guarantee depends on the na-

ture of the problem, but also on the algorithm used
to solve it. Let’s summarize:

• Deterministic framework:

– Uniform: ∃ M s.t. ∀x, x̂ = x
⇒ m = 2k necessary, but in fact, m = 2k
sufficient (in theory).

– Non uniform: ∀x,∃ M s.t. x̂ = x
⇒ m = k + 1 necessary, and in fact, m =
k + 1 often sufficient (in theory).

The problems are solved with algebraic methods
of recovery using interpolation Vandermonde or
FFT matrices. These methods are not stable,
not robust to noise or approximate sparsity.

• Random framework

– Uniform: PM (∀x, x̂ = x) ≥ 1− τ

– Non uniform:∀x,PM (x̂ = x) ≥ 1− τ

For example, the RIP property obtained with
random Gaussian matrix is uniform, necessary,
sufficient and probabilist (there exists determin-
istic matrix with RIP, but difficult to build and
less efficient than random ones). If M satisfies
the (ϵ, kp)-RIP condition, then with high proba-
bility, we can reconstruct every k- sparse vector
by using BP (if p = 2), IHT (if p = 3) or OMP
(if p = 12).

3.2 Spark and NSP
Let M be a m × n matrix. The spark of M is the
minimum number of columns that are linearly depen-
dent.

spark M = min
x̸=0

||x||0 subject to Mx = 0 (146)

The spark is the minimum weight of the non-trivial
vectors in the nullspace:

spark M = min {k : kerM ∩ Σk ̸= 0} (147)

The spark is clearly connected to the rank of the
sensing matrix: ∃ a set of spark M columns that
are dependent, so any set of spark M -1 columns are
free. The rank is the maximum number of linearly
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independent columns of M : ∃ at least a set of rank
M columns that are free, so any set of rank M+1
columns are dependent. In words,

spark M − 1 ≤ rank (148)

Let M be a m× n matrix with m ≤ n

• 2 ≤ spark M ≤ m+ 1

• in general spark M ̸=rank M + 1

• if M is a random matrix with i.i.d. entries and
continuous density, then spark M = rank M +1
with probability one.

• calculating spark M is complex.

• rank M can be computed via Gaussian elimina-
tion.

The spark gives a guarantee of unicity for the prob-
lem P0, but is also a necessary and sufficient solution
for recovery of any k-sparse vector under problem P0.
But solving this problem, as already said, is NP-hard.

Theorem 6 Let M ∈ Rm×n and k ≤ m. The fol-
lowing are equivalent:

• Every x ∈ Σk is the unique k-sparse solution of
Mz = Mx

• kerM ∩ Σ2k = {0}

• ∀S ⊂ J1, nK with |S| ≤ 2k, MS is injective

• Every subset of 2k columns of M are linearly
independent

• spark M > 2k

The first sentence has to be understood as follows:
forall x ∈ Σk, there is a unique solution to the equa-
tion Mz = Mx where the unknow is z. In words, x
is the only k-sparse solution of Mx = Mz; note that
this is exactly the problem P0. As a consequence,
exact recovery of every k-sparse vector needs

m ≥ 2k (149)

and we have already said that in fact, m = 2k
is sufficient for perfect recovery, but with unstable
methods not usable anymore in high dimension.

There is a strong link between spark and the the-
ory of error correcting codes (which is one possible
application for compressive sensing). If M is the gen-
erator matrix of a linear error correcting code, then
the spark of M is exactly the minimum distance of
the code.

So the spark gives a unicity recovery guarantee for
P0. The next guarantee, called null space property
(NSP), gives the same guarantee for P1.

Let M be an m× n matrix. Then M has the null
space property (NSP) of order k if, for all v ̸= 0 ∈
kerM and for all index sets S s.t. |S| ≤ k,

||vS ||1 < ||vS ||1 (150)

Where S is the complementary of S; equivalently,

||vS ||1 <
1

2
||v||1 (151)

The algebraic interpretation is that the vectors of
the kernel must not be too concentrate on small sub-
sets. The "weight" of the kernel vectors must be di-
luted within all their coordinates.

Before giving the geometric interpretation of NSP,
this is the right place to recall the geometric inter-
pretation of the problem Pp. Let’s recall that:

Pp : x̂ = argmin
z:Mz=y

||z||p (152)

Solving Pp is equivalent to find the vector(s) of
minimum p-norm, solution of the system Mz = y
(z is the unknown and y is fixed). The solution of
Mz = y formed a linear subspace of Rn. Solving Pp

is finding all vectors in the intersection of the smallest
ball ||z||p and the subspace Mz = y. The existence
and the unicity of the solution(s) depends on p, be-
cause the geometry of the unit balls depends on p:

p = 1
2 p = 1 p = 2

p = 0.2 p = 0.1 p = ∞

∀v ∈ kerM , x+ v is solution because Mx+Mv =
Mx. In fact, the subspace of solutions can be written
x+ kerM = {x+ v; v ∈ kerM}.

Let’s come back to the NSP and let’s take an ex-
ample in dimension n = 2. Suppose that x = (1, 0)′

is the 1-sparse vector to recover. The support of
x is S = {1} (x is colinear to the x axis). Let
M = (1, a) ∈ R1×2 the sensing matrix (i.e. we make
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one measure to recover the two dimensional vector
x). It is easy to see that ||x||0 = ||x||1 = 1 and that
kerM ∝ (−a, 1)′ is the linear space of all vectors col-
inear to v = (−a, 1)′. kerM is of dimension 1 and for
all v ∈ kerM , ||vS ||1 = |a| and ||vS ||1 = 1, so that M
verifies the NSP of order 1 if, and only if, |a| < 1.

As we can see in the figure below, the number of
intersections between the line x+kerM and the ball
||x||1 depends on the slope −1/a of the line. When
NSP is verified, i.e. when |a| < 1, there is one unique
solution, but when |a| ≥ 1, there exists more than
one solution.

x

x+ ker M

|a| < 1

|a| > 1

Theorem 7 Let M be an m×n matrix, and let k ≤
m. Then, the following are equivalent:

• If a solution x of P1 satisfies ||x||0 ≤ k, it is the
unique solution.

• M satisfies NSP of order k.

NSP is a necessary and sufficient condition that
guaranties to find the unique solution of P1 by using
||.||1 minimization algorithms.

3.3 ERC for OMP
At each iteration t, OMP:

• Selects most correlated atom with residue rt−1

(r0 = y):

λt = argmax
λ/∈Λt−1

|⟨rt−1,Mλ⟩| (153)

• Update estimated support Λt = Λt−1 ∪ {λt}

• Computes estimate xt and residue rt.
xt = argmin

z∈Rn:supp(z)⊂Λt

||y −Mz||2

=

{
xt|Λt = M†

Λty = (M ′
ΛtMΛt)

−1
M ′

Λty
xt|Λ t = 0

rt = y −Mxt = y −MΛt .xt|Λt = y − Pty = Qty

Pt = MΛtM†
Λt = MΛt (M ′

ΛtMΛt)
−1

M ′
Λt

and the scalar products are the

Wi(t) = |< rt−1,Mi >| (154)

The iteration t is a success if, and only if,

max
j∈Λt

|Wj(t)| ≥ max
j /∈Λt

|Wj(t)| (155)

Theorem 8 (ERC) OMP recovers any x of support
S s.t. |S| = k if, and only if, MS is injective and

max
i∈Sc

||M†
SMi|| < 1 (156)

Success for OMP ⇒ success for P1 (and BP) and
ERC for S ⇒ NSP for S with ||.||1.

3.4 Mutual coherence
The mutual coherence of a matrix M is the positive
real number

µ(M) = max
i ̸=j

∣∣∣∣〈 Mi

||Mi||
,

Mj

||Mj ||

〉∣∣∣∣ (157)

If the matrix M is normalized (i.e.
||Mj ||2 = 1, which we suppose from now on),
µ(M) = maxi ̸=j |⟨Mi,Mj⟩|.

µ = max
i ̸=j

|⟨Mi,Mj⟩| (158)

G = M ′M = (⟨Mi,Mj⟩)i,j is the Gram matrix of
M . Each coefficient gives a measures of the angle
between any pair of columns. It is easy to see that
µ ∈ [0, 1], µ = 0 ⇐⇒ columns of M are orthonormal
and µ = 1 ⇐⇒ some columns are colinear.

Welsh bound: µ ≥
√

n−m
m(n−1)Theorem 9

µ(M) <
1

2k − 1
(159)

is sufficient to perfectly recover any x ∈ Σk with
OMP, BP, P1. If x solution of P0, then x also solu-
tion of P1.

Theorem 10

µ(M) <
1

2k − 1

|xmin|
|xmax|

(160)

is sufficient to perfectly recover any x ∈ Σk with IHT.

The condition is tight: if µ(M) = (2k − 1)−1,∃ x
impossible to recover.

12



3.5 Connections between different
guarantees

Let M ∈ Rm×n with normalized columns.

• spark M ≥ 1 + 1/µ

• M is (ϵ, k)-RIP with ϵ = kµ, for all k < 1/µ.

• if M is (2k, ϵ)-RIP, then spark M > 2k.

• if M is (2k, ϵ)-RIP with ϵ <
√
2− 1 and

√
2ϵ

1− (1 +
√
2)ϵ

<

√
k

n

then M is NSP-2k

• If M has coherence µ, the minimum number of
measurements to recover x ∈ Σk is of order

m ≥ Cµ2k lnn

13


