
Compressive Sensing - 2022 - Computer Lab Correction

claude.petit

December 2022

1 Part 1 - Denoising 1D signals

1.1-1.2.
Code in Python:

import numpy as np

import matplotlib.pyplot as plt

# Generate a vector x

n = 128

k = 5

x = np.zeros([1, n])

for i in range(0, k):

x[0, i] = (i+1)/k

x = np.random.permutation(x.T).T

# Plot x

fig, axs = plt.subplots(1, figsize=(13, 5))

axs.stem(x.T, use_line_collection=True)

axs.set_title('x', fontsize=31)

plt.show()

# Add noise and generate y

y = np.empty([1, n])

y = x + np.random.normal(loc=0.0, scale=0.05,

size=(1, n))

# Plot y

fig, axs = plt.subplots(1, figsize=(13, 5))

axs.stem(y.T, use_line_collection=True)

axs.set_title('y + noise', fontsize=31)

plt.show()

1.3. Tykhonov regularization.

Let

φ(z) =
1

2
||z − y||22 +

λ

2
||z||22 (1)

φ is a function from Rn into R. To find the mini-
mum, we have to evaluate the gradient of the function
(using the nabla notation). We recall that

∇||x||22 = 2x (2)

Then it comes immediately that

∇φ(z) = 0 (3)

⇐⇒ z − y + λz = 0 (4)

⇐⇒ z =
y

1 + λ
(5)

(6)

This is indeed a minimum because the Hessian ma-
trix is definite negative (verify this !).

You can also work coordinate by coordinate:

φ(z) =

n∑
i=1

(zi − yi)2/2 + λ

n∑
i=1

z2i /2 (7)

The i-th coordinate of the gradient is

∂φ

∂zi
(z) = zi − yi + λzi (8)

Which is zero and changes of sign if, and only if,

zi =
1

λ+ 1
yi (9)

and we recover the same solution as previously
So the solution of the minimization problem is:

x̂ =
y

1 + λ
(10)

(11)

1.4. The solution is not sparse because it is propor-
tional to y which is not sparse also. The solution of
the problem (1) isn’t sparse because of the presence
of the euclidian norm.

Code in Python :

1



# Compute estimate as a function of lambda

def getEst(y, lambda):

xHat = (1/(1+lambda) * y.T).T

return(xHat)

lambda = 0.01

xHat = getEst(y, lambda)

L = [0.01, 0.05, 0.1, 0.2]

xHatLst = []

# Plot curves

for i in range(len(L)):

xHat = getEst(y, L[i])

xHatLst.append(xHat)

fig, axs = plt.subplots(1, figsize=(13, 5))

axs.stem(xHatLst[2].T, use_line_collection=True)

axs.set_title('$\hat{x}$ with lambda = 0.1',

fontsize=31)

plt.show()

1.5. The following minimization problem is called
Basis Pursuit Denoising (BPDN) and is equivalent to
the LASSO regression method (in Lagrangian formu-
lation):

x̂ = arg min
z∈Rn

(
1

2
||z − y||22 + λ||z||1

)
(12)

First, remark that

||z − y||22 = (z − y)′(z − y) = z′z − 2y′z + y′y (13)

y′y is a constant, so the minimization problem is
the same as finding

arg min
z∈Rn

(
−y′z + ||z||22/2 + λ||z||1

)
(14)

⇐⇒ arg min
z∈Rn

n∑
j=1

(
−yjzj + z2j /2 + λ|zj |

)
(15)

which is the sum of n independent optimization
problems. We can thus solve them independently in
R. Let

φ(z) = −yz + z2/2 + λ|z| (16)

φ is function from R to R of class C∞ except in 0
where it is non continuous. We split the problem in
two cases :

• if y > 0. Then z > 0 (why ?). In that case,

φ′(z) = 0 ⇐⇒ z = y − λ (17)

Due to z > 0, this is possible only if y > λ. If
not, the gradient doesn’t cancel and the minimum is
reached only if z = 0; indeed, φ(z) = z2/2 + (λ− y)z
for z ≥ 0 if minimum for z = 0.

• if y < 0. Then z < 0. As previously, φ′(z) = 0
if, and only if z = y + λ. Due to z < 0 this happens
only if y < −λ otherwise the minimum is reached in
z = 0.

We can now define the solution by defining the
function ”soft thresholding” as:

σλ(y) =

 y + λ if y ≤ −λ
0 if − λ ≤ y ≤ λ
y − λ if y ≥ λ

(18)

for y ∈ R. We extend this notation to Rn coor-
dinate by coordinate (without changing the name of
the function):

z = σλ(y) ⇐⇒ zi = σλ(yi) ∀i = 1, ..., n (19)

and conclude that the solution of the LASSO is

x̂ = σλ(y) (20)

Basis Pursuit (BP) and the LASSO are not the
same algorithms. In fact, there exists four methods
of optimization whose definitions are close : LASSO,
BP, BPDN and QCBP (quadratically constrained ba-
sis pursuit).

BP ⇐⇒
{

minz∈Rn ||z||1
s.t. Az = b

(21)

LASSO ⇐⇒
{

minz∈Rn ||Az − b||2
s.t. ||x||1 < τ

(22)

BPDN ⇐⇒ arg min
z∈Rn

(
1

2
||z − y||22 + λ||z||1

)
(23)

QCBP ⇐⇒
{

minz∈Rn ||z||1
s.t. ||Az − b||2 < ε

(24)

It can be shown (see Foucart p. 60-65 and Propo-
sition 3.2. p. 64 for complete proofs) that LASSO,
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BPDN and QCBP have same solutions (up to adapt-
ing constants).

Optimization methods are of the form:

min • s.t. ? (25)

In the BP algorithm we do not take into account
the full vector z, but only a linear transformation of
some of its components. This is achieved through a
matrix-vector multiplication. In the next part we will
do this by applying the Fourier transform operator

1.6.

def SoftThresh(y,lambd):

xhat = np.maximum(np.abs(y)-lambd,0)*np.sign(y)

return(xhat)

ST = SoftThresh(np.linspace(-10,10,100),2)

plt.plot(np.linspace(-10,10,100), ST)

other solution

def SoftTresh(y, lam):

n = y.shape[1]

xHat = np.empty([1, n])

for i in range(n):

if (y[0, i] <= -lam):

xHat[0, i] = y[0, i] + lam

elif (abs(y[0, i]) < lam):

xHat[0, i] = .0

elif (y[0, i] >= lam):

xHat[0, i] = y[0, i] - lam

return(xHat)

lambd = 0.1

xhat = SoftThresh(y,lambd)

plt.stem(x)

plt.stem(range(len(x)),xhat,linefmt = 'red')

plt.figure()

plt.stem(y)

plt.stem(range(len(x)),xhat,linefmt = 'red')

ran = np.arange(-10, 10.1, 0.1)

u = np.empty([1, ran.shape[0]])

u[0, :] = ran

lam = 2.

xHat = SoftTresh(u, lam)

plt.plot(u.T, xHat.T)

plt.show()

If y is small, it gets set equal to zero. When y
is larger than λ instead, its value is decreased by a
quantity equal to λ.

1.7.
Python code :

lamLst = [0.01, 0.05, 0.1, 0.2]

xHatLst = []

for i in range(len(lamLst)):

xHat = SoftTresh(y, lamLst[i])

xHatLst.append(xHat)

fig, axs = plt.subplots(3, 1, figsize=(13, 9))

axs[0].stem(xHatLst[2].T, use_line_collection=True)

axs[0].set_title('$\hat{x}$ obtained

with lambda = 0.1', fontsize=21)

axs[0].set_ylim(-0.1, 1.1)

axs[1].stem(x.T, use_line_collection=True)

axs[1].set_title('Original vector x', fontsize=21)

axs[1].set_ylim(-0.1, 1.1)

axs[2].stem(x.T-xHatLst[2].T, use_line_collection=True)

axs[2].set_title('Difference x - $\hat{x}$', fontsize=21)

axs[2].set_ylim(-0.1, 1.1)

plt.subplots_adjust(hspace=0.95)

plt.show()

The solution x̂ is sparse (even if not perfectly).
The position of the non zero values is perfectly re-
constructed. However, as we can see from the last
panel, the amplitude of the non zero entries of the
original vector is not perfectly obtained. In partic-
ular, the reconstructed values are smaller than the
original ones.

2 Part 2 - Random frequency
domain sampling and aliasing

2.1.
Code in Python :

import numpy as np

import matplotlib.pyplot as plt
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# generate a row vector

n = 128

k = 5

x = np.zeros([1, n])

for i in range(0, k):

x[0, i] = (i+1)/k

x[0, i] = (i+1)/k * 100.

# permute the positions

x = np.random.permutation(x.T).T

plt.stem(x.T, use_line_collection=True)

plt.show()

2.2-2.3.
Code in Python

X = np.fft.fft(x)

# X = np.fft.fftshift(x)

X.shape

plt.plot(X.T.real)

plt.show()

Xu = np.zeros([1, n], dtype=np.complex_)

for i in range(0, n, 4):

Xu[0, i] = X[0, i]

plt.plot(Xu.T)

plt.show()

xu = np.fft.ifft(Xu)*4

# get real an imaginary parts

xuReal = xu.real

xuComp = xu.imag

fig, axs = plt.subplots(3, 1, figsize=(20, 10))

#fig.suptitle('Vertically stacked subplots')

axs[0].stem(x.T, use_line_collection=True)

axs[1].stem(xuReal.T, use_line_collection=True)

axs[2].stem(xuComp.T, use_line_collection=True)

axs[0].title.set_text('x')

axs[1].title.set_text('xuReal')

axs[2].title.set_text('xuImag')

plt.show()

xu is periodic because it has been obtained from
a periodic sampling of the Fourier transform of x.
From this result we will not be able to reconstruct
the original result as we miss information about the
position of the non-zero entries.

2.4.
Code in Python:

indexes = np.arange(0, n, 1)

indexes = np.random.permutation(indexes.T).T

indexes = indexes[0:32]

Xr = np.zeros([1, n], dtype=np.complex_)

for i in (range(len(indexes))):

Xr[0, indexes[i]] = X[0, indexes[i]]

xr = np.fft.ifft(Xr)*4

# get real an imaginary parts

xrReal = xr.real

xrComp = xr.imag

fig, axs = plt.subplots(3, 1, figsize=(20, 10))

#fig.suptitle('Vertically stacked subplots')

axs[0].stem(x.T, use_line_collection=True)

axs[1].stem(xrReal.T, use_line_collection=True)

axs[2].stem(xrComp.T, use_line_collection=True)

axs[0].title.set_text('x')

axs[1].title.set_text('xrReal')

axs[2].title.set_text('xrImag')

plt.show()

In opposition with the previous case, we are now
able to make an infer on the position of the non-zero
elements of vector x. This is hampered by the fact
that the recovered x̂ is not sparse and there are some
sizable non-zero entries that do not correspond to
non-zero entries of vector x. We could therefore say
that the vector x̂ is affected by noise.

This example shows that a random sampling is de-
sirable.

The frequential undersampling adds noise to the
signal. This noise (called incoherent aliasing) is not
a real one and comes from the signal. We should be
able to suppress it). By random unsampling, we’ve
changed the ill-conditioned problem into a sparse sig-
nal denoising problem.

3 Part 3 - Reconstruction from
randomly sampled frequency
domain data

a.

Code in Python:
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import numpy as np

import matplotlib.pyplot as plt

# generate a row vector

n = 128

k = 5

x = np.zeros([1, n])

for i in range(0, k):

x[0, i] = (i+1)/k

# permute the positions

x = np.random.permutation(x.T).T

# Compute the Fourier transform X

# and undersample

X = np.fft.fft(x)/np.sqrt(n)

indexes = np.arange(0, n, 1)

indexes = np.random.permutation(indexes.T).T

indexes = indexes[0:32]

Y = np.zeros([1, n], dtype=np.complex_)

for i in (range(len(indexes))):

Y[0, indexes[i]] = X[0, indexes[i]]

y = np.fft.ifft(Y*np.sqrt(n)*4)

# get real an imaginary parts

yReal = y.real

yComp = y.imag

fig, axs = plt.subplots(3, 1, figsize=(20, 10))

#fig.suptitle('Vertically stacked subplots')

axs[0].stem(x.T, use_line_collection=True)

axs[1].stem(yReal.T, use_line_collection=True)

axs[2].stem(yComp.T, use_line_collection=True)

axs[0].set_title('$x$', fontsize=21)

axs[1].set_title('yReal', fontsize=21)

axs[2].set_title('yImag', fontsize=21)

plt.subplots_adjust(hspace=0.5)

plt.show()

#

# implement the Projection Over Convex Sets

# (POCS) # algorithm

def SoftTresh(y, lam):

n = y.shape[1]

xHat = np.empty([1, n], dtype='cfloat')

for i in range(n):

if (np.absolute(y[0, i]) < lam):

xHat[0, i] = .0

elif (np.absolute(y[0, i]) >= lam):

# xHat[0, i] = y[0, i] /

# (np.absolute(y[0, i]) *

# (np.absolute(y[0,

# i])-lam)).astype(complex)

real = y[0, i].real / np.absolute(

y[0, i]) * (np.absolute(

y[0, i])-lam)

imag = y[0, i].imag / np.absolute(

y[0, i]) * (np.absolute(

y[0, i])-lam)

xHat[0, i] = real + imag*1j

return(xHat)

#

def POCS(Y, lam, nIte, x):

XHat = Y # initialise

#print(np.linalg.norm(Y, ord=2))

xHatLst = []

errorLst = []

for i in range(0, nIte):

xHat = np.fft.ifft(XHat*np.sqrt(n))

#print(np.linalg.norm(xHat, ord=2))

xHat = SoftTresh(xHat, lam)

XHat = np.fft.fft(xHat)/np.sqrt(n)

#print(np.linalg.norm(XHat, ord=2))

#print("")

#indexes = np.where(Y == 0)[1]

indexes2 = np.where(Y != 0)[1]

#XHat[0, indexes] = XHat[0, indexes]

XHat[0, indexes2] = Y[0, indexes2]

xHatLst.append(xHat)

errorLst.append(sum((xHat.T.real-x.T)**2))

return(xHatLst, errorLst)

#

nIte = 100

lam = 0.01

xHatLst001, errorLst001 = POCS(Y, lam, nIte, x)

lam = 0.05

xHatLst005, errorLst005 = POCS(Y, lam, nIte, x)

lam = 0.1

xHatLst01, errorLst01 = POCS(Y, lam, nIte, x)

# Plot the estimate at each iteration

for i in range(len(xHatLst001)):

plt.stem(xHatLst001[i].T.real, use_line_collection=True)

plt.title('Evaluation {}, lambda = 0.01'.format(i))

plt.show()

#

plt.stem(x.T, use_line_collection=True)

plt.title('x')

plt.show()

#

plt.stem(x.T, use_line_collection=True)

plt.title('x')

plt.show()

#

for i in range(len(xHatLst005)):
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plt.stem(xHatLst005[i].T.real, use_line_collection=True)

plt.title('Evaluation {}, lambda = 0.05'.format(i))

plt.show()

#

for i in range(len(xHatLst01)):

plt.stem(xHatLst01[i].T.real, use_line_collection=True)

plt.title('Evaluation {}, lambda = 0.1'.format(i))

plt.show()

#

plt.stem(x.T, use_line_collection=True)

plt.title('x')

plt.show

# f. Plot The Error At Each Iteration

fig, axs = plt.subplots(3, 1, figsize=(15, 15))

axs[0].plot(errorLst001, 'bs')

axs[0].set_title('Error, lambda = 0.01',

fontsize=21)

# #axs[0].set_ylim(-0.1, 1.1)

axs[1].plot(errorLst005, 'bs')

axs[1].set_title('Error, lambda = 0.05',

fontsize=21)

# #axs[1].set_ylim(-0.1, 1.1)

axs[2].plot(errorLst01, 'bs')

axs[2].set_title('Error, lambda = 0.1',

fontsize=21)

# #axs[2].set_ylim(-0.1, 1.1)

# #plt.subplots_adjust(hspace=0.95)

plt.show()

# g. Repeat the iterative reconstruction for the

# equispaced undersampled signal

Y = np.zeros([1, n], dtype=np.complex_)

for i in range(0, n, 4):

Y[0, i] = X[0, i]

y = np.fft.ifft(Y*np.sqrt(n))*4

nIte = 100

lam = 0.01

xHatLst001, errorLst001 = POCS(Y, lam, nIte, x)

lam = 0.05

xHatLst005, errorLst005 = POCS(Y, lam, nIte, x)

lam = 0.1

xHatLst01, errorLst01 = POCS(Y, lam, nIte, x)

# Plot estimate at each iteration

for i in range(len(xHatLst001)):

plt.stem(xHatLst001[i].T.real, use_line_collection=True)

plt.title('Evaluation {}, lambda = 0.01'.format(i+1))

plt.show()

for i in range(len(xHatLst005)):

plt.stem(xHatLst005[i].T.real, use_line_collection=True)

plt.title('Evaluation {}, lambda = 0.05'.format(i+1))

plt.show()

# if (i == len(xHatLst005)-1):

# plt.stem(x.T, use_line_collection=True)

# plt.title('x'.format(i))

# plt.show()

plt.stem(x.T, use_line_collection=True)

plt.title('x')

plt.show()

#

for i in range(len(xHatLst01)):

plt.stem(xHatLst01[i].T.real, use_line_collection=True)

plt.title('Evaluation {}, lambda = 0.1'.format(i+1))

plt.show()

# if (i == len(xHatLst01)-1):

# plt.stem(x.T, use_line_collection=True)

# plt.title('x'.format(i))

# plt.show()
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