Compressive Sensing - 2022 - Computer Lab Correction

claude.petit

December 2022

1 Part 1 - Denoising 1D signals

1.1-1.2.
Code in Python:

import numpy as np
import matplotlib.pyplot as plt
Generate a vector x

n = 128
k=5
x = np.zeros([1, n])

for i in range(0, k):

x[0, il = (i+1)/k
x = np.random.permutation(x.T).T
Plot x
fig, axs = plt.subplots(l, figsize=(13, 5))
axs.stem(x.T, use_line_collection=True)
axs.set_title('x', fontsize=31)
plt.show()
Add noise and generate y
y = np.empty([1, n])
y = x + np.random.normal(loc=0.0, scale=0.05,
size=(1, n))
Plot y
fig, axs = plt.subplots(l, figsize=(13, 5))
axs.stem(y.T, use_line_collection=True)
axs.set_title('y + noise', fontsize=31)
plt.show()

1.3. Tykhonov regularization.

Let
(1)

¢ is a function from R”™ into R. To find the mini-
mum, we have to evaluate the gradient of the function
(using the nabla notation). We recall that

1 A
8(z) = 512 = 9l + 511213

V2|l = 22 (2)
Then it comes immediately that
V¢(z) =0 (3)
= z—y+Az=0 (4)
Y
== Y (5)
(6)

This is indeed a minimum because the Hessian ma-
trix is definite negative (verify this !).
You can also work coordinate by coordinate:
n n

6(2) = S (2 —)22+ A 222

i=1 =1

(7)

The i-th coordinate of the gradient is

0
o) = a it A 0
Which is zero and changes of sign if, and only if,
-y (9)
Zi = N+ 1yz

and we recover the same solution as previously
So the solution of the minimization problem is:

~ Y
T = T (10)
(11)

1.4. The solution is not sparse because it is propor-
tional to y which is not sparse also. The solution of
the problem (1) isn’t sparse because of the presence
of the euclidian norm.

Code in Python :

Compute estimate as a function of lambda
def getEst(y, lambda):
xHat = (1/(1+lambda) * y.T).T
return(xHat)
lambda = 0.01
xHat = getEst(y, lambda)
L = [0.01, 0.05, 0.1, 0.2]
xHatLst = []
Plot curves
for i in range(len(L)):
xHat = getEst(y, L[il)
xHatLst.append(xHat)
fig, axs = plt.subplots(l, figsize=(13, 5))
axs.stem(xHatLst[2].T, use_line_collection=True)
axs.set_title('\hat{x} with lambda = 0.1',
fontsize=31)
plt.show()

1.5. The following minimization problem is called
Basis Pursuit Denoising (BPDN) and is equivalent to
the LASSO regression method (in Lagrangian formu-
lation):

Z = arg min
z€R®

1
(31— slB+NEIL) (12
First, remark that
le=yll3= (-9 (z—y)=2"»—2y2+y'y (13)

y'y is a constant, so the minimization problem is
the same as finding

arg min (—y'= +[[#lB/2+ All=lh) (14)

= arg min z; (—yjzi +23/2+ Mzl) (15)
J:

which is the sum of n independent optimization
problems. We can thus solve them independently in
R. Let

$(2) = —yz + 2% /2 + A|z|

¢ is function from R to R of class C*° except in 0
where it is non continuous. We split the problem in
two cases :

(16)

e if y > 0. Then z > 0 (why 7). In that case,

P(2)=0 < 2=y— A (17)

Due to z > 0, this is possible only if y > A. If
not, the gradient doesn’t cancel and the minimum is
reached only if z = 0; indeed, ¢(z) = 22/2+ (A —y)z
for z > 0 if minimum for z = 0.

e if y < 0. Then z < 0. As previously, ¢'(z) =0
if, and only if z = y + A. Due to z < 0 this happens
only if y < —A otherwise the minimum is reached in
z=0.

We can now define the solution by defining the
function ”soft thresholding” as:

y+ A ify<—=A
ox(y)=4¢ 0 if —A<y<A (18)
y—X ify>A

for y € R. We extend this notation to R™ coor-
dinate by coordinate (without changing the name of
the function):

z=o0\y) <= z=o\(yi)) Vi=1,..,n (19)

and conclude that the solution of the LASSO is

T =ox(y) (20)

Basis Pursuit (BP) and the LASSO are not the
same algorithms. In fact, there exists four methods
of optimization whose definitions are close : LASSO,
BP, BPDN and QCBP (quadratically constrained ba-
sis pursuit).

minegn ||Z||1

BP < { st. Az=0b (21)

min.egn ||Az — b||2

st |zl <7 (22)

LASSO <— {

1
BPDN = ang min (311~ ol + Al) (29

min;egn ||Z||1

st [Az—blls<e Y

QCBP «— {

It can be shown (see Foucart p. 60-65 and Propo-
sition 3.2. p. 64 for complete proofs) that LASSO,

BPDN and QCBP have same solutions (up to adapt- plt.plot(u.T, xHat.T)
ing constants). plt.show()

Optimization methods are of the form:
If y is small, it gets set equal to zero. When y

mine s.t. % (25) .) ; !
is larger than A instead, its value is decreased by a
In the BP algorithm we do not take into account dquantity equal to A.
the full vector z, but only a linear transformation of 1.7.
some of its components. This is achieved through a Python code :

matrix-vector multiplication. In the next part we will
do this by applying the Fourier transform operator

lamLst = [0.01, 0.05, 0.1, 0.2]
1.6. xHatLst = []
for i in range(len(lamLst)):
xHat = SoftTresh(y, lamLst[i])
xHatLst . append(xHat)
fig, axs = plt.subplots(3, 1, figsize=(13, 9))
axs[0] .stem(xHatLst[2].T, use_line_collection=True)
axs[0] .set_title('\hat{x} obtained
with lambda = 0.1', fontsize=21)
axs[0] .set_ylim(-0.1, 1.1)
other solution axs[1] .stem(x.T, use_line_collection=True)
axs[1] .set_title('Original vector x', fontsize=21)
axs[1] .set_ylim(-0.1, 1.1)
axs[2] .stem(x.T-xHatLst[2].T, use_line_collection=True)
axs[2] .set_title('Difference x - \hat{x}', fontsize=21)
axs[2] .set_ylim(-0.1, 1.1)
plt.subplots_adjust (hspace=0.95)

def SoftThresh(y,lambd):
xhat = np.maximum(np.abs(y)-lambd,0)*np.sign(y)
return(xhat)
ST = SoftThresh(np.linspace(-10,10,100),2)
plt.plot(np.linspace(-10,10,100), ST)

def SoftTresh(y, lam):
n = y.shape[1]
xHat = np.empty([1, n])
for i in range(n):
if (y[0, i] <= -lam):

xHat[0, i] = y[0, i] + lam plt.show()
elif (abs(y[0, i1) < lam):

xHat [0, i] = .0 The solution & is sparse (even if not perfectly).
elif (y[0, i] >= lam): The position of the non zero values is perfectly re-

xHat[0, i] = y[0, i] - lam

constructed. However, as we can see from the last
return(xHat)

panel, the amplitude of the non zero entries of the
original vector is not perfectly obtained. In partic-
ular, the reconstructed values are smaller than the
lambd = 0.1 original ones.

xhat = SoftThresh(y,lambd)

plt.stem(x)
plt.stem(range(len(x)) ,xhat,linefmt = 'red') 2 Part 2 - Random frequency

gi:::gﬁ;)() domain sampling and aliasing

plt.stem(range(len(x)),xhat,linefmt = 'red') 21

ran = np.arange(-10, 10.1, 0.1) o .)

u = np.empty([1, ran.shape[0]]) Code in Python :

ul0, :] = ran

lam = 2. import numpy as np

xHat = SoftTresh(u, lam) import matplotlib.pyplot as plt

generate a Tow vector

128

=5

= np.zeros([1, n])

i in range(0, k):

x[0, il = (i+1)/k

x[0, i] = (i+1)/k * 100.

permute the positions

x = np.random.permutation(x.T).T
plt.stem(x.T, use_line_collection=True)
plt.show()

H OB oW
]

2.2-2.3.
Code in Python

X = np.fft.fft(x)
X = np.fft.fftshift(z)
X.shape
plt.plot(X.T.real)
plt.show()
Xu = np.zeros([1, n], dtype=np.complex_)
for i in range(0, n, 4):
XulO0, i] = X[0, i]
plt.plot(Xu.T)
plt.show()
xu = np.fft.ifft(Xu)*4
get real an imaginary parts
xuReal = xu.real
xuComp = xu.imag
fig, axs = plt.subplots(3, 1, figsize=(20, 10))
#fig.suptitle('Vertically stacked subplots')
axs[0] .stem(x.T, use_line_collection=True)
axs[1] .stem(xuReal.T, use_line_collection=True)
axs[2] .stem(xuComp.T, use_line_collection=True)
axs[0] .title.set_text('x"')
axs[1] .title.set_text('xuReal')
axs[2] .title.set_text('xulmag')
plt.show()

zu is periodic because it has been obtained from
a periodic sampling of the Fourier transform of x.
From this result we will not be able to reconstruct
the original result as we miss information about the
position of the non-zero entries.

2.4.
Code in Python:

indexes = np.arange(0, n, 1)

indexes = np.random.permutation(indexes.T).T
indexes = indexes[0:32]

Xr = np.zeros([1, n], dtype=np.complex_)

for i in (range(len(indexes))):

Xr[0, indexes[i]] = X[0, indexes[i]]
np.fft.ifft(Xr)*4

get real an imaginary parts

xrReal = xr.real

xrComp = Xr.imag

fig, axs = plt.subplots(3, 1, figsize=(20, 10))
#fig.suptitle('Vertically stacked subplots')
axs[0] .stem(x.T, use_line_collection=True)
axs[1] .stem(xrReal.T, use_line_collection=True)
axs[2] .stem(xrComp.T, use_line_collection=True)
axs[0] .title.set_text('x")
axs[1].title.set_text('xrReal')

axs[2] .title.set_text('xrImag')

plt.show()

Xr =

In opposition with the previous case, we are now
able to make an infer on the position of the non-zero
elements of vector x. This is hampered by the fact
that the recovered Z is not sparse and there are some
sizable non-zero entries that do not correspond to
non-zero entries of vector x. We could therefore say
that the vector is affected by noise.

This example shows that a random sampling is de-
sirable.

The frequential undersampling adds noise to the
signal. This noise (called incoherent aliasing) is not
a real one and comes from the signal. We should be
able to suppress it). By random unsampling, we’ve
changed the ill-conditioned problem into a sparse sig-
nal denoising problem.

3 Part 3 - Reconstruction from
randomly sampled frequency
domain data

a.
Code in Python:

import numpy as np
import matplotlib.pyplot as plt
generate a rTow wector
n = 128
k=5
x = np.zeros([1, n])
for i in range(0, k):
x[0, 1] = (i+1)/k
permute the positions
x = np.random.permutation(x.T).T
Compute the Fourier transform X
and undersample
X = np.fft.fft(x)/np.sqrt(n)
indexes = np.arange(0, n, 1)
indexes = np.random.permutation(indexes.T).T
indexes = indexes[0:32]
Y = np.zeros([1, n], dtype=np.complex_)
for i in (range(len(indexes))):
Y[0, indexes[i]] = X[0, indexes[i]]
y = np.fft.ifft(Y*np.sqrt(n)*4)
get real an imaginary parts
yReal = y.real
yComp = y.imag
fig, axs = plt.subplots(3, 1, figsize=(20, 10))
#fig.suptitle('Vertically stacked subplots')
axs[0] .stem(x.T, use_line_collection=True)
axs[1] .stem(yReal.T, use_line_collection=True)
axs[2] .stem(yComp.T, use_line_collection=True)
axs[0] .set_title('x', fontsize=21)
axs[1] .set_title('yReal', fontsize=21)
axs[2] .set_title('yImag', fontsize=21)
plt.subplots_adjust (hspace=0.5)
plt.show()
#
implement the Projection Over Convex Sets
(POCS) # algorithm
def SoftTresh(y, lam):
n = y.shape[1]
xHat = np.empty([1, n], dtype='cfloat')
for i in range(n):
if (np.absolute(y[0, i]) < lam):
xHat [0, i] = .0
elif (np.absolute(y[0, i]) >= lam):
zHat[0, 1] = y[0,] /
(np.absolute(y[0, i]) *
(np.absolute(y[0,
i])-lam)).astype(complez)
real = y[0, i].real / np.absolute(
y[0, i1]) * (np.absolute(

y[0, il)-lam)

imag = y[0, i].imag / np.absolute(

y[0, i]1) * (np.absolute(

y[0, il)-lam)

xHat [0, i] = real + imag*1j
return(xHat)

def POCS(Y, lam, nlIte, x):

XHat = Y # anitialise

#print (np.linalg.norm(Y, ord=2))

xHatLst = []

errorLst = []

for i in range(0, nlte):
xHat = np.fft.ifft(XHat*np.sqrt(n))
#print (np.linalg.norm(zHat, ord=2))
xHat SoftTresh(xHat, lam)
XHat = np.fft.fft(xHat)/np.sqrt(n)
#print (np.linalg.norm(XHat, ord=2))
#print ("")
#indezes = np.where(Y == 0)[1]
indexes2 = np.where(Y != 0)[1]
#XHat [0, indexzes] = XHat[0, indexes]
XHat [0, indexes2] = Y[0O, indexes2]
xHatLst . append (xHat)

errorLst.append (sum((xHat.T.real-x.T)**2))

return(xHatLst, errorLst)

#

nlte = 100

lam = 0.01

xHatLst001, errorLst001 = POCS(Y, lam, nIte, x)
lam = 0.05

xHatLst005, errorLst005 = POCS(Y, lam, nIte, x)
lam = 0.1

xHatLst01, errorLst01 = POCS(Y, lam, nIte, x)
Plot the estimate at each tteration
for i in range(len(xHatLst001)):

plt.stem(xHatLst001[i] .T.real, use_line_collection=True)
plt.title('Evaluation {}, lambda = 0.01'.format(i))

plt.show()

plt.stem(x.T, use_line_collection=True)
plt.title('x")
plt.show()

plt.stem(x.T, use_line_collection=True)
plt.title('x")
plt.show()

for i in range(len(xHatLst005)):

plt.stem(xHatLst005[i].T.real, use_line_colle
plt.title('Evaluation {}, lambda = 0.05'.form

plt.show()

#

for i in range(len(xHatLst01)):
plt.stem(xHatLst01[i].T.real, use_line_collec
plt.title('Evaluation {}, lambda = 0.1'.forma
plt.show()

#

plt.stem(x.T, use_line_collection=True)

plt.title('x")

plt.show

f. Plot The Error At Each Iteration

fig, axs = plt.subplots(3, 1, figsize=(15, 15))

axs[0] .plot(errorLst001, 'bs')

axs[0] .set_title('Error, lambda = 0.01',

fontsize=21)

#axs[0].set_ylim(-0.1, 1.1)

axs[1] .plot(errorLst005, 'bs')

axs[1] .set_title('Error, lambda = 0.05',

fontsize=21)

#axs[1].set_ylim(-0.1, 1.1)

axs[2] .plot(errorLst01, 'bs')

axs[2] .set_title('Error, lambda = 0.1',

fontsize=21)

#axs[2].set_ylim(-0.1, 1.1)
#plt.subplots_adjust (hspace=0.95)

plt.
#g.

show ()

Repeat the iterative reconstruction for the

equispaced undersampled signal

Y =
for

y =
nlte
lam
xHat
lam
xHat
lam
xHat
Pl
for

for

np.zeros([1, n], dtype=np.complex_)
i in range(0, n, 4):
Y[0, il = X[0, i]
np.fft.ifft(Y*np.sqrt(n))*4

= 100

= 0.01

Lst001, errorLst001 =
= 0.05

Lst005, errorLst005
=0.1

LstO1, errorLst01 = POCS(Y, lam, nIte, x)
ot estimate at each iteration

i in range(len(xHatLst001)):

POCS(Y, lam, nIte, x)

POCS(Y, lam, nlIte, x)

H*OR W® R

plt.show()
if (% len(zHatLst005)-1) :
plt.stem(z.T, use_line_collection=True)
plt.title('z'. format (1))
plt.show()

.stem(x.T, use_line_collection=True)
.title('x')
.show ()

i in range(len(xHatLst01)):
plt.stem(xHatLst01[i] .T.real, use_line_collection=True)
plt.title('Evaluation {}, lambda = 0.1'.format(i+1))
plt.show()
if (i == len(zHatLst01)-1):
plt.stem(z.T, use_line_collection=True)
plt.title('z'. format (1))
plt.show()

plt.stem(xHatLst001[i] .T.real, use_line_collection=True)

plt.title('Evaluation {}, lambda =
plt.show()
i in range(len(xHatLst005)):

0.01'.format (i+1))

plt.stem(xHatLst005[i] .T.real, use_line_collection=True)

plt.title('Evaluation {}, lambda =

0.05'.format (i+1))

