

# Compressive Sensing - Exercices - 2022

## 1 Basic properties of the RIP

1°. Prove that a  $(\epsilon, k)$ -RIP matrix  $M$  satisfies

$$\forall x \in \Sigma_k / \{0\}, \left| \frac{\|Mx\|_2^2 - \|x\|_2^2}{\|x\|_2^2} \right| \leq \epsilon \quad (1)$$

2°. Prove that a  $(\epsilon, k)$ -RIP matrix  $M$  satisfies

$$\forall S \subset \llbracket 1, n \rrbracket \text{ s.t. } |S| \leq k, \|M'_S M_S - I_S\| \leq \epsilon \quad (2)$$

$$\|u^t - x^{t+1}\|^2 \leq \|u^t - x\|^2 \quad (10)$$

$$\|u^t - x^{t+1}\|^2 \leq \|u^t - x^t\|^2 \quad (11)$$

3°. Prove that

$$\|u^t - x^{t+1}\|^2 = \|u^t - x\|^2 + \|x^{t+1} - x\|^2 \dots \quad (12)$$

$$\dots - 2 \langle u^t - x, x^{t+1} - x \rangle \quad (13)$$

$$(14)$$

4°. Deduce that

$$\|x^{t+1} - x\|^2 = 2 \langle (I - M'M)(x^t - x), x^{t+1} - x \rangle \quad (15)$$

$$= 2 \langle \bullet \rangle \quad (16)$$

5°. Nous want now to show that

$$\langle \bullet \rangle \leq \epsilon \cdot \|x^t - x\| \cdot \|x^{t+1} - x\| \quad (17)$$

Let

$$u = x^t - x \quad (18)$$

$$v = x^{t+1} - x \quad (19)$$

$$T = \text{supp}(u) \cup \text{supp}(v) \quad (20)$$

Show that  $\text{card}(T) \leq 3k$ . Deduce that

$$\langle (I - M'M)u, v \rangle \leq \|(I - M'_T M_T)\|_2 \|u_T\|_2 \|v_T\|_2 \quad (21)$$

and that

$$\langle (I - M'M)u, v \rangle \leq \epsilon \|u_T\|_2 \|v_T\|_2 \quad (22)$$

6°. Eventually, deduce that

$$\|x^{t+1} - x\|_2 \leq (2\epsilon)^t \|x\|_2 \quad (23)$$

7°. Conclude if  $\epsilon < 1/2$ .

1°. Let

$$u^t = x^t + M'(y - Mx^t) \quad (5)$$

Prove that

$$y - Mx^t = M(x - x^t) \quad (6)$$

$$u^t = x^t + M'M(x - x^t) \quad (7)$$

$$x^{t+1} = H_k(u^t) \quad (8)$$

2°. Explain why

$$x^{t+1} = \arg \min_{x \in \Sigma_k} \|u^t - x\|$$

the deduce that for all  $x \in \mathbb{R}^n$ ,

## 3 Gaussian concentration inequality around the mean

9°. We want to prove the following result: let  $M \in \mathbb{R}^{m \times n}$  a matrix whose coefficients are i.i.d. Gaussian random variables  $\mathcal{N}(0, 1/m)$ . Then,  $\forall x \in \mathbb{R}^n$ ,  $\forall \epsilon \in ]0, 1[$ ,

$$\mathbb{P} [| \|Mx\|_2^2 - \|x\|_2^2 | > \epsilon \|x\|_2^2] \leq 2e^{-Cm(\epsilon^2/4 - \epsilon^3/6)} \quad (24)$$

Let  $\phi_X(t) = \mathbb{E}[e^{tX}]$  the moment generating function of a random variable  $X$ .

1°. Recall the expression of  $\phi_X(t)$  for a centered Gaussian random variable and for a chi square distribution.

2°. Prove that

$$\mathbb{E} [\|Mx\|_2^2] = \|x\|_2^2 \quad (25)$$

Let  $y = Mx$ ,  $\gamma = \|x\|_2^2/m$ , and  $z_i = y_i^2 - \gamma$ .

3°. Prove that

$$\|Mx\|_2^2 - \|x\|_2^2 = \sum_{i=1}^m z_i = S_m \quad (26)$$

4°. Prove that

$$\mathbb{P} [| \|Mx\|_2^2 - \|x\|_2^2 | > \epsilon \|x\|_2^2] = \dots \quad (27)$$

$$\dots = \mathbb{P}[S_m > \epsilon m \gamma] + \mathbb{P}[S_m < -\epsilon m \gamma] \quad (28)$$

5°. Using Markov inequality, prove that

$$\mathbb{P}[S_m > \epsilon m \gamma] \leq \frac{\mathbb{E}[e^{tS_m}]}{e^{t\epsilon m \gamma}} \quad (29)$$

Deduce that

$$\mathbb{P}[S_m > \epsilon m \gamma] \leq \phi_{z_1}(t)^m e^{-mt\epsilon\gamma} = p(t)^m \quad (30)$$

with  $p(t) = \phi_{z_1}(t) \exp(-t\epsilon\gamma)$ .

6°. Prove that

$$p(t) = \frac{e^{-t(1+\epsilon)\gamma}}{\sqrt{1-2\gamma t}} \quad (31)$$

7°. Prove that  $p(t)$  is minimum when

$$t = \frac{1}{2\gamma} \frac{\epsilon}{1+\epsilon} \quad (32)$$

Then deduce that

$$\mathbb{P}[S_m > \epsilon m \gamma] \leq \exp(-m(\epsilon^2/4 - \epsilon^3/6)) \quad (33)$$

and

$$\mathbb{P}[S_m < -\epsilon m \gamma] \leq \exp(-m(\epsilon^2/4 - \epsilon^3/6)) \quad (34)$$

8°. Conclude and make the link with RIP property.