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Bootstrap et ré-échantillonnage



Bootstrap : Efron, 1979

e Créer des échantillons aléatoires permettant de simuler une loi...
... quand on n’a pas beaucoup d’échantillons disponibles.

e Principe : générer des échantillons qui ressemblent a I'échantillon
de départ.

e Rudolph Raspe : les aventures du baron de Minchhausen (1785).

e « to pull oneself up by one’s bootstraps ».
= Se hisser en tirant sur les languettes de ses bottes.
= Se sortir seul d’'un situation difficile.




Rappels sur les estimateurs « plug-in » -1-

e Dy ={Z4,...,Z,} n-échantillon de v.a.i.i.d. Z; = (X, Y)).

e X; observations issues d’'une v.a. X : données, variables
explicatives.

Yi issues d'une v.a. Y, catégories des X; : étiquettes ou labels.
e XeX, YeY.

Py proba sur £ = X x Y : loi inconnue de (X,Y) et (X, Yj).

0 = 6(P) paramétre inconnu dépendant de P.

T=T,=T(Xq, ..., Xy) = T(P) estimateur de 6.

Comme la loi de X est inconnue, on utilise la mesure empirique :

1 n
Pn = H 21:5)(‘
i=

On sait (th. de Glivenko-Cantelli, th. limite centrale fonctionnel et th.
de Kolmogorov-Smirnov) que P, est fortement et uniformément
consistant pour P.



Rappels sur les estimateurs « plug-in » -2-

e Estimateur plug-in : remplacer P par P, dans I'expression de
6 = T(P)

6 = T(Pn) = T(X1, ..., Xn)
e Exemple : 6 = E[X] = [ xP(dx) = 0=X,=1 i Xi = [ XPn(dx)

~n

o [P, est la mesure discréte qui sélectionne de fagon uniforme chaque
observation X; avec probabilité 1/n.

e Les estimateurs plug-in ont de bonnes propriétés :
[|Pn — P||oo = sup; |Fn(t) — F(t)] — 0 p.s.

n =100 n = 1000




Rappels sur les estimateurs « plug-in » -3-
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Figure 1 — Th. de Glivenko-Cantelli : ||Pn — P||oo = SUpycg [Fn(t) — F()] == 0.

n—+oo

lllustration Arthur Charpentier (Freakonometrics).



Principe du Bootstrap -1-

e On remplace PP par P,.... et on ré-échantillonne a partir de P,.
o (X3,..., X}) échantillon bootstrap issu de (x1, ..., Xn).

e Bootstrap naif : les X! sont tirés de fagon uniforme et avec remise
parmi les (x4, ..., Xn) (~ tirages avec remise dans une urne).

e En quelque sorte, on échantillonne I'échantillon initial (X1, ..., Xy).
e Dans le monde réel, on estime 6 par 6 = T(P,) = T(X1, ..., Xn).
o Dans le monde bootstrap, on estime 6 par 6* = T(X7, ..., Xj;).

e Valide si la loi de 6* approche bien celle de 8, c.-3-d. si

~

L(0*| X1, ..., Xn) et L(6) ont méme limite.



Principe du Bootstrap -2-

¢ Conditions de validité dépendent de la régularité des fonctions en
jeu :

e La loi limite de T(P,) doit dépendre continiiment de P.
Convergence uniforme en P dans un voisinage d’'une mesure.
Conditions de régularité (continuité, différentiabilité) dans
I'espace des mesures de probabilités (la variable est une mesure
de probabilité).

Fonctionne bien si lois bien approchées par des gaussiennes.
Fonctionne mal si lois extrémes (min, max, quantiles) et/ou
fonction irréguliere de P.

e Ex : Pour T(X, ..., Xp) = X, si E[X?] < oo, X" CV bien vers E[X].

e Ex : Pour T(Xq, ..., Xj) = max(Xy, ..., Xy) si X ~ & loi exponentielle,
les échantillons bootstrap ne convergent pas.

= Toujours vérifier les moments d’ordre 2, toujours vérifier par des
simulations le comportement bootstrap.



Principe du Bootstrap -3-

e On peut construire plusieurs échantillons bootstrap de fagon a
simuler plusieurs tirages : n" échantillons bootstrap # possibles.
e En pratique nombre B de tirages entre B = 200 et B = 1000.
e Echantillons non indépendants, mais i.i.d. conditionnellement a
Dn.
07 = T(K{4, - Xip)

O = TG, oo X55)

05 = T(Xg, .., X§p)

e Les vecteurs 6 pour b =1, ..., B, sous P, sont des réplications
bootstrap de 0 = T(Xq, ..., Xy).

e Double approximation : on approche P et 6 par P, et b, puis par P
et 0*. Sachant Dy, P}, est la loi du tirage uniforme avec remise dans
une urne contenant {X, ..., Xn}.



Principe du Bootstrap -4-
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Bagging



Principe du Bagging

e Bagging = Bootstrap Aggregating (Breiman, 1996).

o B estimateurs bootstrap agrégés en calculant leur moyenne
empirique.

e Modéle de régression : Y = n(X) + ¢ avec n(x) = E[Y|X = x].

e Pour chaque échantillon bootstrap Dy, on ajuste un régresseur
np(X). Le régresseur bagging est

Figure 2 — Copyright Peter Jackson, from the Lord of the Rings. 10



Algorithme Bagging pour la régression

e Entrées : échantillon D, + régresseur ou classifieur n + valeur du
nombre B.
e Pourb=1,...,,B

e Tirer un échantillon bootstrap Dy, dans D,.
e Ajuster un régresseur ou classifieur 7, (x) sur cet échantillon.

e Sortie : Estimateur bagging :
1 B
B(X) =g > mw(x)
b=1

Attention ! ny(x) v.a. car dépend de Dy, C D, (aléatoirement).

e 75(x) non indépendants. Mais conditionnellement a D, : i.i.d.



Bagging, biais et variance -1-

El78(x)] = E[no(x)]

Mais en général, a cause de la dépendance entre les 7, (x),

V () # & V()

= Malgré tout, le tirage bootstrap atténue la dépendance en
introduisant une nouvelle source d’aléa.

e On passe de Dy a Dy par tirage uniforme avec remise. Un v
aleatoire d’indices lp = (Ip1, ..., lbn) C [1..n]" est généré.

M6(X) = M6(X, Db, Dn) = 1m6(X, lb, Dn)

e Sachant Dy, les np(x) sont i.i.d. (mais dépendant de Ip).

lim_7ig(x) = Ei[n(x, ) D]

. @ Escroquerie ! ou est passé le b dans I, ?



Bagging, biais et variance -2-

Jlim_7ia(x) = Eiy(x, D[ Da]

. @ Escroquerie ! ou est passé le b dans I, ?
e Sachant Dy, seuls les I, sont aléatoires (mais sont i.i.d.). Les
Zy = np(X, lp, D) sont aussi i.i.d.

e D’aprés la LFGN (conditionnellement a Dy) :

B
DN o1
Jim_ 800 = 532 =B D

e Chaque I, est un tirage indépendant de la méme v.a. |1, donc sa loi
ne dépend pas de b : ny(X, Ib, Dn) ~ n1(X, l1, Dn) ~ n(X, I, Dy) qui est
une copie générique de la v.a. np.



Bagging, biais et variance -3-

¥ (00) = PV () + - (4)

avec p(x) = cov(np(X), e (X)). Quand B — +oco, de fagon peu
rigoureuse, on admet que :

lim 'V (5(x)) = p(X)V(1p(X))

B—+00

Plus la corrélation p(x) est faible, plus la variance diminue.

= Les arbres ont ces propriétés.

C’est I'objectif du bootstrap : le hasard fait bien les choses.
= agréger des estimateurs sensibles aux perturbations de D..



Foréts aléatoires (Breiman, 2000)

o Forét aléatoire (random forest) = bagging sur des arbres de
décision.

On sélectionne aléatoirement m variables de I'arbre parmiles d
variables initiales.

On cherche a diminuer la corrélation entre les arbres.

2 nouvelles sources d’aléa : le tirage bootstrap de I'échantillon et
le choix des m variables sur les arbres.

Profondeur typique : 5 en régression, 1 en classification.

Valeur typique de m : d/3 en régression, v/d en classification.
Attention au biais : le biais ne diminue pas en bagging.



Mesures de performance

e Comme pour les autres méthodes d’apprentissage statistique :
erreur de prédiction en régression, probabilité d’erreur en
classification.

o Utilisation par sous-ensemble d’apprentissage/validation ou par
validation croisée.

e Le bootstrap permet une estimation de I'erreur par OOB (Out of
Bag).

e Pour tout (X, Y;) de Dy, soit J; le sous-ensemble des arbres qui ne
contient pas I'observation i. La prévision de Y en X; est

i ‘J|ZTX|sDnb
bel;

o Lerreur de prédiction OOB est : 1 S (Y — Y))2.
* La probabilité d’erreur OOB est : § 371 I g .-



Performances -1-
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Figure 3 — Bagging and random forest for the Heart data. x-axis : the number B of boostraped
training sets. Random forests are applied with m = \/p. The dashed line indicates the test error
from a single tree. From « an introduction to statistical learning », James and al. Springer.



Performances -2-
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Figure 4 — Random forest with 500 predictors. Test error as a function of the number of trees.

From « an introduction to statistical learning », James and al. Springer.



Stacking




Stacking : introduction

e Toujours une agrégation de classifieurs...
e ... mais en petit nombre,
e ... qui ne sont pas des classifieurs faibles...

e ... et sont éventuellement de nature différente.



Stacking : approche naive

S _ S _
e S
SVM

Figure 5 — Classification. Figure 6 — Régression.

Approche naive : une combinaison linéaire (CL) pondérée de
bons classifieurs est meilleure que chaque classifieur.

C’est vrai si les poids minimisent I'erreur théorique (inconnue).
Mais si on minimise I'erreur d’entrainement = sur-apprentissage.
Nécessité d'une structure a deux niveaux.

CL performante si les classifieurs sont individuellement
performants...

... tout en étant tres différents les uns des autres.

20



Stacking : notion de méta-modeéle

e Le premier niveau est formé de plusieurs modeles de base.

e Chagque modéle de base : entrainé séparément sur mémes
données.

e Chaque modéle donne des prédictions différentes a une donnée.

e Le second niveau est appelé méta-modéle.

e Les prédictions du niv.1 servent de données au niv.2.

e Le méta-modéle est entrainé sur ces prédictions...

e ... mais pas sur I'échantillon du niv.1!

e Poids initiaux niv.2 : fonction des perf. de chaque modele du
niv.1.

e Ces poids sont modifiés lors de I'entrainement du méta-modéle.

e Le méta-modele propose une prédiction finale.

Modeles de base : régression logistique, arbre de décision, k-ppv,
SVM, réseaux de neurones, etc.

Rappel important : le gain vient de la diversité des modeéles.



Stacking : données d’entrainement et de test

e Sur quelles données d’apprentissage entrainer les algorithmes ?

e Bagging : versions modifiées du méme échantillon (tirages avec
remise).

e Boosting : méme données mais pondération des individus.

e Stacking niv.1 : méme échantillon a tous les classifieurs de niv.1.

e Stacking niv.2 : autre échantillon pour entrainer le niv.2.

o Utiliser une validation croisée pour éviter le sur-apprentissage inter
niveaux.

e Importance de garder peu de modeles pour ne pas avoir trop de
paramétres ou de complexité.

e Le stacking peut réduire a la fois la variance et le biais.

22



Stacking : figure du principe

*

Modéle 3 | - | h

e Chaque classifieur niv.1 hy, fournit au méta-modele son erreur de
régression / classification ep,.

e Le méta-modéle initialise les poids an, a partir de ep,.

e Il met a jour les poids lors de son entrainement sur Dy.

23



Comparaison des méthodes




Random Forest

3 3 4
Naive Bayes StackingClassifier




10 Classifieurs sur 3 jeux synthétiques
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o |llustration de scikit-learn.org.



https://scikit-learn.org/stable/auto_examples/classification/plot_classifier_comparison.html

3 Classifieurs sur 3 jeux synthétiques

Decision Tree Random Forest AdaBoost
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Decision Tree Random Forest

Decision Tree Random Forest
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Différences Bagging, Boosting, Stacking -1-

Bagging Boosting Stacking

Objectif Réduire la variance Réduire le biais Performances 1
Base classifieur (CB) Homogéne Homogeéne Hétérogene

Entrainement CB Parallgle Séquentiel Méta modele

Vote majoritaire
ou moyenne

Agrégation

Moyenne pondérée Moyenne pondérée

27



Différences Bagging, Boosting, Stacking -2-

Bagging (Bootistrap Aggregation)

ju“ iy @ =

e
Dot

Boosting

@:‘ Triving . .

@—l

aghtad
over
»

Stacking

Aggregate multiple models trained on
different subsets bootstrap data.

[ Bulds, models sequentially and perform ]

error correction based on previous model.

Combines predictions of multiple models
using a meta model.

)

R S

(:[ussnﬁ:atnev\)

AN\

( Weighted sum of predictions based on ]

every model.

[Mm model give final prediction based o
the multiple models prediction

)

Exar

le [Rnndom Forest, Bagged Decision Trees.

(GBM), XGBoost.

4daBoost, Gradient Boosting Machines ]

Bagging

Vs Booshng

[Log?st?c Regression on top of multiple
classifiers

)

Ensemble Classifier

28



Tableau de syntheése -1-

Méthode Inter- | Perf. Calibra | Overfit. | Colt
préta- -tion calc.
tion

Régression linéaire A

Régression logistique
SVM (kernel RBF)

A

X
Réseau de neurones | X
Arbres de décision A
X

X

Boosting

PP x| p| a4
<P P |>]|a|>|>
[ IR HRa N RN NN S
S EE N R NN S

Bagging (forét)

A :bon V¥ :moyen X :faible ou problématique

o Ce tableau est une sorte de moyenne de ce que I'on trouve sur internet, il vaut ce qu'’il vaut et ne
donne qu’une idée générique. Le contenu des cases est finalement assez aléatoire. En fait, ne
vous fiez pas du tout a ce type de tableau et quand vous traitez un probléeme de Machine Learning,
essayez toutes les méthodes !
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