
Chapitre 5. Méthodes d’agrégation

Claude Petit, Insee et université de Rennes - claude.petit@univ-rennes.fr

2025-2026

Overview

Bootstrap et ré-échantillonnage

Bagging

Stacking

Comparaison des méthodes

1

Bootstrap et ré-échantillonnage

Bootstrap : Efron, 1979

• Créer des échantillons aléatoires permettant de simuler une loi...
... quand on n’a pas beaucoup d’échantillons disponibles.

• Principe : générer des échantillons qui ressemblent à l’échantillon
de départ.

• Rudolph Raspe : les aventures du baron de Münchhausen (1785).

• « to pull oneself up by one’s bootstraps ».
⇒ Se hisser en tirant sur les languettes de ses bottes.
⇒ Se sortir seul d’un situation difficile.

2

Rappels sur les estimateurs « plug-in » -1-

• Dn = {Z1, ..., Zn} n-échantillon de v.a.i.i.d. Zi = (Xi, Yi).
• Xi observations issues d’une v.a. X : données, variables

explicatives.
• Yi issues d’une v.a. Y, catégories des Xi : étiquettes ou labels.
• X ∈ X, Y ∈ Y.
• Pθ proba sur E = X × Y : loi inconnue de (X, Y) et (Xi, Yi).
• θ = θ(P) paramètre inconnu dépendant de P.
• T = Tn = T(X1, ..., Xn) = T(P) estimateur de θ.
• Comme la loi de X est inconnue, on utilise la mesure empirique :

Pn =
1
n

n∑
i=1

δXi

On sait (th. de Glivenko-Cantelli, th. limite centrale fonctionnel et th.
de Kolmogorov-Smirnov) que Pn est fortement et uniformément
consistant pour P.

3

Rappels sur les estimateurs « plug-in » -2-

• Estimateur plug-in : remplacer P par Pn dans l’expression de
θ = T(P)

θ̂ = T(Pn) = T(X1, ..., Xn)

• Exemple : θ = E[X] =
∫

xP(dx) ⇒ θ̂ = Xn = 1
n

∑
i Xi =

∫
xPn(dx)

• Pn est la mesure discrète qui sélectionne de façon uniforme chaque
observation Xi avec probabilité 1/n.

• Les estimateurs plug-in ont de bonnes propriétés :
||Pn − P||∞ = supt |Fn(t) − F(t)| −→ 0 p.s.

4

Rappels sur les estimateurs « plug-in » -3-

Figure 1 – Th. de Glivenko-Cantelli : ||Pn − P||∞ = supt∈R |Fn(t) − F(t)| p.s.−→
n→+∞

0.

Illustration Arthur Charpentier (Freakonometrics).

5

Principe du Bootstrap -1-

• On remplace P par Pn.... et on ré-échantillonne à partir de Pn.

• (X⋆
1, ..., X⋆

n) échantillon bootstrap issu de (x1, ..., xn).

• Bootstrap naïf : les X⋆
i sont tirés de façon uniforme et avec remise

parmi les (x1, ..., xn) (∼ tirages avec remise dans une urne).

• En quelque sorte, on échantillonne l’échantillon initial (X1, ..., Xn).

• Dans le monde réel, on estime θ par θ̂ = T(Pn) = T(X1, ..., Xn).

• Dans le monde bootstrap, on estime θ par θ⋆ = T(X⋆
1, ..., X⋆

n).

• Valide si la loi de θ⋆ approche bien celle de θ̂, c.-à-d. si
L(θ⋆|X1, ..., Xn) et L(θ̂) ont même limite.

6

Principe du Bootstrap -2-

• Conditions de validité dépendent de la régularité des fonctions en
jeu :

• La loi limite de T(Pn) doit dépendre continûment de P.
• Convergence uniforme en P dans un voisinage d’une mesure.
• Conditions de régularité (continuité, différentiabilité) dans

l’espace des mesures de probabilités (la variable est une mesure
de probabilité).

• Fonctionne bien si lois bien approchées par des gaussiennes.
• Fonctionne mal si lois extrêmes (min, max, quantiles) et/ou

fonction irrégulière de P.

• Ex : Pour T(X1, ..., Xn) = X, si E[X2] < ∞, X
⋆

CV bien vers E[X].

• Ex : Pour T(X1, ..., Xn) = max(X1, ..., Xn) si X ∼ E loi exponentielle,
les échantillons bootstrap ne convergent pas.

⇒ Toujours vérifier les moments d’ordre 2, toujours vérifier par des
simulations le comportement bootstrap. 7

Principe du Bootstrap -3-

• On peut construire plusieurs échantillons bootstrap de façon à
simuler plusieurs tirages : nn échantillons bootstrap ̸= possibles.

• En pratique nombre B de tirages entre B = 200 et B = 1000.
• Échantillons non indépendants, mais i.i.d. conditionnellement à

Dn. 

θ⋆
1 = T(X⋆

11, ..., X⋆
1n)

...
θ⋆

b = T(X⋆
b1, ..., X⋆

bn)
...
θ⋆

B = T(X⋆
B1, ..., X⋆

Bn)

• Les vecteurs θ⋆
b pour b = 1, ..., B, sous Pn, sont des réplications

bootstrap de θ̂ = T(X1, ..., Xn).

• Double approximation : on approche P et θ par Pn et θ̂, puis par P⋆
n

et θ⋆. Sachant Dn, P⋆
n est la loi du tirage uniforme avec remise dans

une urne contenant {x1, ..., xn}.
8

Principe du Bootstrap -4-

Population initiale

Échantillon

Échantillons bootstrap

Distribution de la statistique (bootstrap)

9

Bagging

Principe du Bagging

• Bagging = Bootstrap Aggregating (Breiman, 1996).

• B estimateurs bootstrap agrégés en calculant leur moyenne
empirique.

• Modèle de régression : Y = η(X) + ϵ avec η(x) = E[Y|X = x].

• Pour chaque échantillon bootstrap Dnb on ajuste un régresseur
ηb(x). Le régresseur bagging est

η̂B(x) =
1
B

B∑
b=1

ηb(x)

Figure 2 – Copyright Peter Jackson, from the Lord of the Rings. 10

Algorithme Bagging pour la régression

• Entrées : échantillon Dn + régresseur ou classifieur η + valeur du
nombre B.

• Pour b = 1, ..., B
• Tirer un échantillon bootstrap Dnb dans Dn.
• Ajuster un régresseur ou classifieur ηb(x) sur cet échantillon.

• Sortie : Estimateur bagging :

η̂B(x) =
1
B

B∑
b=1

ηb(x)

Attention ! ηb(x) v.a. car dépend de Dnb ⊂ Dn (aléatoirement).

• ηb(x) non indépendants. Mais conditionnellement à Dn : i.i.d.

11

Bagging, biais et variance -1-

E[η̂B(x)] = E[ηb(x)]

Mais en général, à cause de la dépendance entre les ηb(x),

V (η̂B(x)) ̸= 1
B
V(ηb(x))

⇒ Malgré tout, le tirage bootstrap atténue la dépendance en
introduisant une nouvelle source d’aléa.

• On passe de Dn à Dnb par tirage uniforme avec remise. Un vecteur
aleatoire d’indices Ib = (Ib1, ..., Ibn) ⊂ J1..nKn est généré.

ηb(x) = ηb(x, Dnb, Dn) = ηb(x, Ib, Dn)

• Sachant Dn, les ηb(x) sont i.i.d. (mais dépendant de Ib).

lim
B→+∞

η̂B(x) = EI[η(x, I)|Dn]

• Escroquerie ! où est passé le b dans Ib ?
12

Bagging, biais et variance -2-

lim
B→+∞

η̂B(x) = EI[η(x, I)|Dn]

• Escroquerie ! où est passé le b dans Ib ?

• Sachant Dn, seuls les Ib sont aléatoires (mais sont i.i.d.). Les
Zb = ηb(x, Ib, Dn) sont aussi i.i.d.

• D’après la LFGN (conditionnellement à Dn) :

lim
B→+∞

η̂B(x) = lim
B→+∞

1
B

B∑
b=1

Zb = EI[Z1|Dn]

• Chaque Ib est un tirage indépendant de la même v.a. I1, donc sa loi
ne dépend pas de b : ηb(x, Ib, Dn) ∼ η1(x, I1, Dn) ∼ η(x, I, Dn) qui est
une copie générique de la v.a. ηb.

13

Bagging, biais et variance -3-

V (η̂B(x)) = ρ(x)V(ηb(x)) +
1 − ρ(x)

B
V(ηb(x))

avec ρ(x) = cov(ηb(x), ηb′ (x)). Quand B → +∞, de façon peu
rigoureuse, on admet que :

lim
B→+∞

V (η̂(x)) = ρ(x)V(ηb(x))

• Plus la corrélation ρ(x) est faible, plus la variance diminue.

• C’est l’objectif du bootstrap : le hasard fait bien les choses.

• ⇒ agréger des estimateurs sensibles aux perturbations de Dn.

• ⇒ Les arbres ont ces propriétés.

14

Forêts aléatoires (Breiman, 2000)

• Forêt aléatoire (random forest) = bagging sur des arbres de
décision.

T̂B(x) =
1
B

B∑
b=1

Tb(x)

• On sélectionne aléatoirement m variables de l’arbre parmi les d
variables initiales.

• On cherche à diminuer la corrélation entre les arbres.

• 2 nouvelles sources d’aléa : le tirage bootstrap de l’échantillon et
le choix des m variables sur les arbres.

• Profondeur typique : 5 en régression, 1 en classification.

• Valeur typique de m : d/3 en régression,
√

d en classification.

• Attention au biais : le biais ne diminue pas en bagging.

15

Mesures de performance

• Comme pour les autres méthodes d’apprentissage statistique :
erreur de prédiction en régression, probabilité d’erreur en
classification.

• Utilisation par sous-ensemble d’apprentissage/validation ou par
validation croisée.

• Le bootstrap permet une estimation de l’erreur par OOB (Out of
Bag).

• Pour tout (Xi, Yi) de Dn, soit Ji le sous-ensemble des arbres qui ne
contient pas l’observation i. La prévision de Y en Xi est

Ŷi =
1

|Ji|
∑
b∈Ji

T(Xi, Dnb).

• L’erreur de prédiction OOB est : 1
n

∑n
i=1(Ŷi − Yi)2.

• La probabilité d’erreur OOB est : 1
n

∑n
i=1 1[̂Yi ̸=Yi]

.
16

Performances -1-

0 50 100 150 200 250 300

0.
10

0.
15

0.
20

0.
25

0.
30

Number of Trees

E
rr

or

Test: Bagging
Test: RandomForest
OOB: Bagging
OOB: RandomForest

Figure 3 – Bagging and random forest for the Heart data. x-axis : the number B of boostraped
training sets. Random forests are applied with m =

√
p. The dashed line indicates the test error

from a single tree. From « an introduction to statistical learning », James and al. Springer. 17

Performances -2-

0 1000 2000 3000 4000 5000

0
.0

5
0
.1

0
0
.1

5
0
.2

0
0
.2

5

Number of Trees

T
e
s
t
C

la
s
s
if
ic

a
ti
o
n
 E

rr
o
r

Boosting: depth=1

Boosting: depth=2

RandomForest: m= p

Figure 4 – Random forest with 500 predictors. Test error as a function of the number of trees.
From « an introduction to statistical learning », James and al. Springer.

18

Stacking

Stacking : introduction

• Toujours une agrégation de classifieurs...

• ... mais en petit nombre,

• ... qui ne sont pas des classifieurs faibles...

• ... et sont éventuellement de nature différente.

19

Stacking : approche naïve

x

NB

k-NN

SVM

Méta ŷ

Figure 5 – Classification.

x

DT

LR

k-NN

Méta ŷ

Figure 6 – Régression.

• Approche naïve : une combinaison linéaire (CL) pondérée de
bons classifieurs est meilleure que chaque classifieur.

• C’est vrai si les poids minimisent l’erreur théorique (inconnue).
• Mais si on minimise l’erreur d’entraînement ⇒ sur-apprentissage.
• Nécessité d’une structure à deux niveaux.
• CL performante si les classifieurs sont individuellement

performants...
• ... tout en étant très différents les uns des autres.

20

Stacking : notion de méta-modèle

• Le premier niveau est formé de plusieurs modèles de base.
• Chaque modèle de base : entraîné séparément sur mêmes

données.
• Chaque modèle donne des prédictions différentes à une donnée.
• Le second niveau est appelé méta-modèle.
• Les prédictions du niv.1 servent de données au niv.2.
• Le méta-modèle est entraîné sur ces prédictions...
• ... mais pas sur l’échantillon du niv.1 !
• Poids initiaux niv.2 : fonction des perf. de chaque modèle du

niv.1.
• Ces poids sont modifiés lors de l’entraînement du méta-modèle.
• Le méta-modèle propose une prédiction finale.

Modèles de base : régression logistique, arbre de décision, k-ppv,
SVM, réseaux de neurones, etc.

Rappel important : le gain vient de la diversité des modèles. 21

Stacking : données d’entraînement et de test

• Sur quelles données d’apprentissage entraîner les algorithmes?

• Bagging : versions modifiées du même échantillon (tirages avec
remise).

• Boosting : même données mais pondération des individus.

• Stacking niv.1 : même échantillon à tous les classifieurs de niv.1.

• Stacking niv.2 : autre échantillon pour entraîner le niv.2.

• Utiliser une validation croisée pour éviter le sur-apprentissage inter
niveaux.

• Importance de garder peu de modèles pour ne pas avoir trop de
paramètres ou de complexité.

• Le stacking peut réduire à la fois la variance et le biais.

22

Stacking : figure du principe

Dn

Modèle 1

Modèle 2

Modèle 3

Modèle 4

h1(x)

h2(x)

hm(x)

hM(x)

Méta

D′
s

ϵ1

ϵ2

ϵm

ϵM

M∑
m=1

αmhm(x)

• Chaque classifieur niv.1 hm fournit au méta-modèle son erreur de
régression / classification ϵm.

• Le méta-modèle initialise les poids αm à partir de ϵm.

• Il met à jour les poids lors de son entraînement sur D′
s.

23

Comparaison des méthodes

Eternelles Iris de Fisher

24

10 Classifieurs sur 3 jeux synthétiques

• Illustration de scikit-learn.org.

25

https://scikit-learn.org/stable/auto_examples/classification/plot_classifier_comparison.html

3 Classifieurs sur 3 jeux synthétiques

26

Différences Bagging, Boosting, Stacking -1-

Bagging Boosting Stacking

Objectif

Base classifieur (CB)

Entraînement CB

Agrégation

Réduire la variance

Homogène

Parallèle

Vote majoritaire
ou moyenne

Réduire le biais

Homogène

Séquentiel

Moyenne pondérée

Performances ↑

Hétérogène

Méta modèle

Moyenne pondérée

27

Différences Bagging, Boosting, Stacking -2-

28

Tableau de synthèse -1-

Méthode Inter-
préta-
tion

Perf. Calibra
-tion

Overfit. Coût
calc.

Régression linéaire ▲ ▼ ✗ ▲ ▲

Régression logistique ▲ ▼ ✗ ▲ ▲

SVM (kernel RBF) ✗ ▲ ▼ ▼ ▼

Réseau de neurones ✗ ▲ ✗ ✗ ✗

Arbres de décision ▲ ✗ ▲ ✗ ▲

Boosting ✗ ▲ ▲ ▼ ▼

Bagging (forêt) ✗ ▲ ▼ ▲ ▼

▲ : bon ▼ : moyen ✗ : faible ou problématique

• Ce tableau est une sorte de moyenne de ce que l’on trouve sur internet, il vaut ce qu’il vaut et ne
donne qu’une idée générique. Le contenu des cases est finalement assez aléatoire. En fait, ne
vous fiez pas du tout à ce type de tableau et quand vous traitez un problème de Machine Learning,
essayez toutes les méthodes ! 29

Blibliographie

• Bagging Predictors. Breiman. Machine Learning. 1996.

• Forêts aléatoires. Genuer. Thèse de doctorat. 2010.

• Stacked Generalization. D. Wolpert. Neural Networks. 1992.

• Super Learner. Van der Laan, Polley, Hubbard. Statistical
Applications in Genetics. 2007.

• + Chapitre 5 (bootstrap p.212) Intro to Statistical Learning with
Python.

• + Chapitre 8 (Bagging et random forests p.343) Intro to Statistical
Learning with Python.

• + Chapitre 7 (Bagging p.88) du polycopié de Frédéric Sur.

30

	Bootstrap et ré-échantillonnage
	Bagging
	Stacking
	Comparaison des méthodes

