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Avant propos

Ce polycopié d’apprentissage statistique couvre un programme d’une trentaine d’heures. Le niveau requis est
celui d’une licence ou d’une première année de master : les outils de base du calcul des probabilités sont supposés
connus (théorie de la mesure, lois usuelles, fonctions caractéristiques, etc.), ainsi que les différentes notions de
convergence des suites de variables aléatoires.

L’objectif du cours est de comprendre les aspects théoriques et pratiques des algorithmes de « Machine Lear-
ning » ; l’accent sera donc clairement mis sur la résolution d’exercices et sur l’implémentation des algorithmes en
langage Python.

Le polycopié est un complément du cours, il ne le remplace absolument pas. Beaucoup d’exemples donnés
durant les séances n’apparaissent pas dans ce document et à l’inverse beaucoup de démonstrations ou de para-
graphes supplémentaires qui s’y trouvent ne seront pas traités en cours ; pour ces raisons, il est donc nécessaire de
bien prendre le cours.

Le contenu du polycopié est très fortement inspiré des deux ouvrages suivants :

• Introduction à l’apprentissage statistique, de Frédéric Sur :
https://members.loria.fr/FSur/enseignement/apprauto/poly_apprauto_FSur.pdf.

• Le polycopié du cours d’apprentissage et Data Mining d’Arnak Dalalyan :
https://adalalyan.github.io/cours.html.

Il s’appuie également sur les ouvrages (classiques) suivants :

• Pattern Recognition, de C Bishop, éditions Springer, 2006 :
https://.

• The Elements of Statistical Learning, de Hastie, Tibshirani, Friedmann éditions Springer, 2008 :
https://adalalyan.github.io/cours.html.

G. Thomas,Mathematics for machine learning, Univ. of California at Berkeley, 2018. https://gwthomas.github.
io/docs/math4ml.pdf

Les parties non traitées ou les démonstrations ne sont pas exigibles en examen, mais elles pourront intéresser
ceux d’entre vous qui veulent aller plus loin.

Le site web du cours de maths contient des documents supplémentaires. La bibliothèque de l’école contient
également un nombre important de livres de cours et d’exercices corrigés.
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Chapitre 1

Une brève histoire de l’intelligence
artificielle

À venir...
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Chapitre 2

Introduction et problématique

2.1 Définition de l’apprentissage statistique

Selon Wikipedia, l’apprentissage statistique (apprentissage automatique, Machine Learning (ML)) est le champ
d’études de l’intelligence artificielle (IA) qui se fonde sur des approches mathématiques et statistiques de l’IA pour
donner aux ordinateurs la capacité d’apprendre à partir des données.

Selon ChatGPT ou Mistral AI, l’apprentissage statistique est une sous-discipline de l’IA qui permet aux ordi-
nateurs d’apprendre à partir de données et de prendre des décisions sans être explicitement programmés pour
accomplir ces tâches.

On peut considérer l’apprentissage comme une modification d’un comportement sur la base d’une expérience.
Il s’agit d’imiter (un peu) le fonctionnement inductif du cerveau dans le but de prendre des décisions de façon
autonome, en fonction des données disponibles. Arthur Samuel, pionnier de l’intelligence artificielle et grand in-
formaticien, caractérise le ML par le fait que l’algorithme doit avoir la capacité d’apprendre sans que sa réponse ne
soit explicitement programmée. Généralement, les décisions sont prises à partir de résultats de tests statistiques
et d’intervalles de confiance.

En bref, l’apprentissage statistique, ce sont les mathématiques de l’IA.

Le ML est un domaine à l’intersection des mathématiques et de l’informatique, sollicitant fortement les sta-
tistiques. En quoi se distingue-t-il des statistiques traditionnelles ? Le développement des moyens informatiques
amène à gérer des données plus nombreuses et plus complexes, pour lesquelles les méthodes traditionnelles des
statistiques se révèlent peu efficaces. L’outil de base en statistique est le modèle tandis qu’en ML, ce sera l’algo-
rithme. Un algorithme en ML apprend un modèle à partir d’exemples, par le biais d’un problème d’optimisation.
Il prédit et calibre ses paramètres à partir de l’erreur de prévision.

Le Machine Learning n’est qu’une branche de l’intelligence artificielle. Nous avons évoqué d’autres facettes de
l’IA dans le chapitre précédent. Historiquement l’IA était souvent découpée en apprentissage automatique, trai-
tement du langage naturel, vision par ordinateur et robotique. Aujourd’hui, un découpage plus pertinent semble
être donné par la typologie suivante :

• Apprentissage statistique : c’est l’approche connexionniste qui comprend le ML, les réseaux de neurones,
l’apprentissage par renforcement, le traitement du langage naturel.

• Les systèmes formels : c’est l’approche cognitiviste qui comprend la programmation logique, les machines
de Turing, la théorie de la calculabilité et celle des langages formels (Chomsky). Cette approche se concentre
sur la modélisation des processus humains mentaux tels que la pensée, le raisonnement, la mémoire, les
langages.

• Les méthodes faibles : ce sont des approches pragmatiques comprenant les méthodes heuristiques, les pro-
blèmes de satisfaction de contraintes, les systèmes experts ou les méthodes de représentations de connais-
sances. Cette approche se concentre sur la résolution pratique de problèmes concrets liés à l’intelligence,
par des algorithmes, mais sans chercher à imiter le cerveau humain.

En statistique et en économie, un problème majeur est celui de la causalité. En ML, se pose de même le pro-
blème de l’interprétabilité : peut-on juste bien prédire sans avoir à comprendre comment le modèle effectue ses
prédictions? La réponse est clairement non et les deux aspects (prédiction et interprétabilité) sont indissociables :
bien prédire implique bien expliquer.
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FIGURE 2.2 – Les différents sous domaines de l’IA.

Plusieurs approches sont possibles en ML : supervisée, non supervisée, semi-supervisée, en ligne, apprentis-
sage par renforcement. L’apprentissage par renforcement fait l’objet d’un cours à part. Étant donné le volume
horaire de 30 heures, nous aborderons uniquement les deux premières approches et ne donnerons que quelques
exemples d’apprentissage non supervisé. L’essentiel du cours concerne donc l’apprentissage supervisé.

En apprentissage supervisé, les observations sont étiquetées et forment des couples (xi , yi ) où les xi sont les
predicteurs ou « features » et les yi les étiquettes ou labels. L’objectif est de prédire l’étiquette y pour un x donné.
Ceci nécessite une phase d’apprentissage ou d’entrainement, puis une phase de test.

En apprentissage non supervisé, les données ne sont pas étiquetées. Lorsque la dimension d est assez grande,
on peut chercher à caractériser la loi de probabilités ayant engendré ces observations en utilisant par exemple des
méthodes de clustering ou d’estimation de densités de probabilités. Il existe aussi des méthodes de réduction de
la dimension comme l’analyse en composantes principales (ACP), les méthodes de classifications hiérarchiques,
les algorithmes de k-moyennes, l’estimation de densité non paramétrique, les mélanges de gaussiennes, etc.

En apprentissage semi-supervisé, seule une faible proportion des observations est étiquetée. Le but est le
même qu’en apprentissage supervisé, mais les méthodes sont spécifiques.

2.2 Le problème de la dimension

2.2.1 Le fléau de la dimension

Ce terme (curse of dimensionality) recouvre différents problèmes relatifs aux propriérés des espaces de grande
dimension, qui vont à l’encontre de l’intuition que l’on s’en fait en dimension 2 et 3. Il a été énoncé par Richard

© 2025-2026 ENSAI 10



Bellman dans les années 50-60 de la façon suivante : pour un choix de d décisions binaires, il existe 2d configura-
tions différentes, qui augmente de façon exponentielle avec d .

Voici une autre façon de le voir [Sur, 2024] : si le cube unité est discrétisé en petits cubes de côté 1/n, il en
faut nd pour recouvrir le cube tout entier. Si l’on veut estimer une distribution de probabilités sur ce cube, en
dimension d = 1, avec un échantillon de taille n = 10, on obtient une finesse de 1/10 (en moyenne, un élément de
l’échantillon se trouve dans chaque cube). En dimension d = 10, il faut un échantillon de taille 1010 pour couvrir
en moyenne avec la même finesse, chaque partie.

0 1

d = 1, n = 10 points

d = 2, n = 100 points d = 3, n = 100 points

FIGURE 2.3 – Partition du cube unité et échantillonnage en dimension d = 1,2,3. Taille de grille = 1/10. Le nombre de points

nécessaires explose avec la dimension.

Le volume de la boule unité en dimension d est

Vd = πd/2

Γ(d/2+1)
∼ 1p

πd

(
2πe

d

)d/2

(1)

qui tend vers 0 exponentiellement vite avec d . Γ est la fonction Gamma d’Euler définie pour x > 0 par :

Γ(x) =
∫ +∞

0
t x−1e−t d t (2)

et l’on a utilisé la formule de Stirling pour obtenir un équivalent en l’infini :

Γ(x) ∼p
2πxx−1/2e−x . (3)

−1 1

Dim 1 : segment [−1,1]

Dim 2 : cercle Dim 3 : sphère unité

FIGURE 2.4 – Volume de la boule unité en dimension d = 1,2,3.

Considérons maintenant le cube de côté 2 circonscrit à la boule unité de Rd . Son volume est 2d . Le rapport
du volume de la boule au cube est Vd /2d qui tend vers 0 encore plus vite que l’expression du volume. Des points
répartis aléatoirement de manière uniforme sur le cube se retrouverons donc concentrés dans le volume extérieur
à la boule unité (on parle de concentration dans les coins) ; surtout, si 0 < ϵ< 1, et Vd ,1−ϵ est le volume de la boule
de rayon 1−ϵ en dimension d , alors on a

© 2025-2026 ENSAI 11



Vd ,1−ϵ = (1−ϵ)d Vd (4)

et
Vd −Vd ,1−ϵ

Vd
= 1− (1−ϵ)d (5)

de sorte que la proportion de la boule unité concentrée dans une couche d’épaisseur ϵ située à la surface de la
boule, tend vers 1 quand d tend vers l’infini : le volume de la boule est concentré à sa surface.

0 20 40 60 80 10010−70

10−60

10−50

10−40

10−30

10−20

10−10

100

Dimension d

V
d

/2
d

FIGURE 2.5 – Volume de la boule unité en dimension d rapporté au volume du cube de côté 2.

FIGURE 2.6 – Points aléatoires générés de façon uniforme dans l’espace, se concentrant à la surface de la sphère.

Ce phénomène peut également s’illustrer avec des distributions gaussiennes en grande dimension. En dimen-
sion d = 1, un échantillon de variables aléatoires gaussiennes standard se concentre autour de l’origine. C’est en-
core vrai pour les coordonnées d’un échantillon de vecteurs gaussiens standard pour une dimension d petite. Mais
si d est grande, les points d’un échantillon gaussien standard vont se concentrer sur la surface de la sphère de rayonp

d . En d’autres termes, la distribution normale standard en grande dimension est très proche de la distribution
uniforme sur la sphère centrée en O et de rayon

p
d . C’est ce qu’illustre la figure 2.7.

Le phénomène de Hughes

Ce phénomène (heuristique) découvert et publié par Hugues en 1968 [Hughes, 1968], indique qu’il existe un
nombre de variables caractéristiques (les « features ») optimal à ne pas dépasser. Il peut s’énoncer de la façon

© 2025-2026 ENSAI 12
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FIGURE 2.7 – Gauche : échantillon gaussien standard en dimension d = 2. Droit : Échantillon gaussien standard en dimension

d = 100, projeté dans un sous-espace de dimension 2.

suivante : à base d’apprentissage de taille fixée, les performances d’un classifieur augmentent avec la dimension
des observations, atteignent un maximum, puis diminuent. Autrement dit, le taux d’erreur d’un classifieur diminue
avec la dimension des observations jusqu’à un minimum, puis augmente pour tendre vers 1/2 quand d tend vers
l’infini : en très grande dimension, les classifieurs ne font donc pas mieux qu’un tirage à pile ou face.

Ce phénomène a intrigué les chercheurs pendant des années jusqu’à ce qu’en 1978, Van Campenhout ne
montre que l’article contenait des défauts importants [Van Campenhout, 1978] : si l’on s’intéresse à l’erreur de
classification en fonction de la complexité du problème, alors il faut considérer des ensembles de problèmes et
donc définir une distribution de probabilités a priori sur cet ensemble. Hughes a choisi une distribution uniforme
mais a utilisé des estimateurs non consistants sur son modèle. Avec un a priori uniforme, il aurait dû utiliser un es-
timateur de Bayes plutôt que l’estimateur du maximum de vraisemblance. Par ailleurs, l’hypothèse uniforme faite
sur l’ensemble des problèmes n’est pas valable lorsque la dimension augmente. Ce phénomène, régulièrement
observé dans les données réelles, demeure donc un paradoxe non expliqué.

On pourra se reporter au contenu du blog suivant pour plus de détails :
https://37steps.com/2322/hughes-phenomenon/.
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FIGURE 2.8 – Illustration du paradoxe de Hughes
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2.2.2 La réduction de dimension

Comment faire pour contrer le fléau de la dimension?

La réduction de dimension vise à transformer des données d’un espace de grande dimension en un espace de
dimension inférieure tout en préservant des propriétés jugées essentielles des données d’origine. L’objectif est de
rendre possible ou plus rapide le traitement de ces données, de réduire la complexité des processus les impliquant,
d’économiser de l’espace de stockage, de l’énergie et de se prémunir contre le fléau de la dimension. Réduire la
dimension peut également améliorer l’interprétabilité ou permettre la visualisation des données. On peut enfin
considérer la réduction de dimension comme une forme de compression avec perte.

Les méthodes de réduction de dimension sont traditionnellement divisées en approches linéaires et non li-
néaires, mais d’autres axes de classification existent. On peut par exemple classer les méthodes selon qu’elles sont
aléatoires ou déterministes, ou selon qu’elles s’appliquent à des modèles de taille finie ou asymptotiques, lorsque
les valeurs des paramètres tendent vers l’infini sous des régimes spécifiques.

La classification qui nous intéresse ici découle du paradigme du Big Data (on dira données massives ou méga-
données), où deux paramètres fondamentaux décrivent les dimensions des données : n, la taille de la population
(nombre d’éléments de la base de données) et d , la dimension des variables statistiques attachées à ces éléments.

Trois situations sont possibles :

• n grand, d petit : c’est le domaine des statistiques multivariées traditionnelles (l’analyse de données « à la
française »). Dans ce scénario, les outils d’inférence statistique classiques fonctionnent bien, en particulier
les théorèmes limites classiques, lorsque n tend vers l’infini avec d fixé.

• n petit, d grand : c’est le domaine des statistiques en grande dimension, où les outils d’inférence statistique
usuels ne fonctionnent plus, ni dans un cadre non asymptotique ni dans un cadre asymptotique. La ma-
trice de covariance empirique est singulière, les estimateurs des moindres carrés ne sont pas consistants et
peuvent donner de mauvais résultats, etc. Des hypothèses supplémentaires sont alors nécessaires pour trai-
ter les données, comme une hypothèse de parcimonie, de structure sous-jacente cachée ayant une petite
dimension, etc.

• n et d grands : c’est un autre aspect des statistiques en grande dimension, et typiquement le domaine de la
théorie des matrices aléatoires. Dans un cadre asymptotique, aucun théorème limite classique ne s’applique,
et des hypothèses sur la limite de n/d doivent être faites lorsque n et d tendent vers l’infini, pour appliquer
des théorèmes spécifiques, comme la convergence vers la loi de Marchenko-Pastur.

À côté des deux paramètres fondamentaux, il peut exister d’autres paramètres pour décrire les données, par
exemple si l’espace dans lequel elles vivent n’est pas euclidien. De la taille ou de la complexité de la structure hé-
bergeant les données peuvent alors émerger un ou plusieurs paramètres décrivant cette structure. C’est le cas, par
exemple, si les données se trouvent sur un graphe. Le nombre d’arêtes m est alors un troisième paramètre à prendre
en compte. m peut être de l’ordre de n2 si le graphe est dense, ou de l’ordre de n si le graphe est parcimonieux.

En résumé, pour réduire la dimension, on peut donc compresser les données, trouver un sous-espace de di-
mension plus petite qui contient (presque) toute l’information ou simplifier l’espace sous-jacent aux données.
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Chapitre 3

Généralités sur l’apprentissage supervisé

Introduction

Comme nous l’avons dit dans l’avant-propos, l’apprentissage supervisé considère des données étiquetées et
l’objectif est de prédire l’étiquette associée à une nouvelle observation à partir des observations étiquetées du jeu
de données initial.

Toutes les méthodes considèrent une fonction de prédiction gθ appartenant à une famille paramétrée par θ ∈Θ,
où Θ représente l’ensemble des paramètres possibles. La prédiction consiste alors à choisir au mieux la valeur du
paramètre. Lorsqu’on se place dans un contexte probabiliste, l’apprentissage supervisé a donc le même objectif
que la statistique mathématique : estimer au mieux la valeur du paramètre.

Dans une première phase d’apprentissage (ou d’entraînement), les paramètres sont estimés de manière à opti-
miser les performances de prédiction sur le jeu de données initial, appelé base d’apprentissage ou d’entraînement.
L’estimation est basée sur la minimisation de l’écart entre les vraies étiquettes et les étiquettes prédites. Mais il ne
suffit pas de choisir θ minimisant cet écart pour obtenir des performances de prédiction optimales.

Il y a donc deux composantes fondamentales dans toute méthode d’apprentissage supervisé :

• Les données d’apprentissage (qui comprennent les observations et leurs étiquettes) à partir duquel l’algo-
rithme va « apprendre ».

• L’algorithme d’apprentissage qui va utiliser les données pour calibrer le modèle d’apprentissage statistique
sous-jacent à la méthode.

Pourquoi un formalisme probabiliste? Les données du monde réel sont souvent bruitées, incertaines et com-
portent des erreurs. Dans ce contexte, un formalisme probabiliste fournit un cadre naturel pour modéliser et quan-
tifier les différents types d’incertitude qu’ils soient dus au bruit, aux erreurs ou aux facteurs non observables. Ce
formalisme permet par ailleurs l’utilisation de modèles bayésiens qui rendent compte de l’information a priori et
que l’on peut actualiser en fonction des connaissances acquises en cours de traitement.

Les phénomènes que l’on modélise sont influencés par de multiples facteurs, qui peuvent être corrélés ; un
modèle probabiliste intégre ces dépendances entre variables. Il permet de prendre des décisions optimales en
présence d’incertitude, sait gérer l’imputation de données manquantes ou aberrantes et fournit un cadre théorique
unifié pour les différentes techniques d’apprentissage.

Mais la meilleure justification du formalisme probabiliste en IA est sans doute la suivante : les neuroscienti-
fiques ont montré que le cerveau agissait de façon probabiliste en matière de perception du monde réel, de prise
de décision ou d’apprentissage. Lorsque nous apprenons par l’exemple, dès la naissance, notre cerveau réagit en
effectuant des inférences bayésiennes basées sur les informations sensorielles qu’il reçoit et sur les connaissances
qu’il possède déjà [Rolls and Deco, 2010]. Il a été démontré que les neurones encodent des distributions de proba-
bilités [Girardon et al., 2020].

Dans ce chapitre, nous définissons la notion de risque moyen et risque empirique. La minimisation du risque
empirique est l’une des règles d’apprentissage les plus classiques. Dans ce cours, nous en étudierons essentielle-
ment deux : minimisation du risque empirique et moyennage.
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3.1 Théorie de la décision statistique

3.1.1 Classification et régression

On considère un n-échantillon Dn = {Z1, ...,Zn} de v.a.i.i.d. Zi = (Xi ,Yi ). Les Xi sont des observations issues
d’une v.a. X, ce sont les données que l’on souhaite classer et qui formeront les variables explicatives. Les Yi sont
issues d’une v.a. Y et sont les catégories auxquelles appartiennent les Xi (on dit également étiquettes ou labels).
L’objectif de l’apprentissage supervisé est de déterminer au mieux la catégorie Y à laquelle appartient la donnée X
correspondante, à partir des seules observations de l’échantillon Z1, ...Zn .

On suppose que les v.a. X sont issues d’un espace X, que les v.a. Y sont issues d’un espace Y et l’on se donne
une loi de probabilité (inconnue) P sur l’espace E =X×Y. P est la loi de (X,Y) et également la loi jointe commune
des (Xi ,Yi ).

Les étiquettes peuvent provenir d’un ensemble discret ou continu. LorsqueY= {0,1}, on parle de classification
binaire. Dans le cadre de la régression, Y=R ou Rd .

Une fonction de prédiction est un élément g ∈ F = F(X,Y) qui associe une étiquette à une observation. g
s’appelle aussi prédicteur ou règle de prédiction. Pour mesurer la qualité de g , on définit différentes fonctions de
perte l : Y2 −→ R+ telles que l (Y, g (X)) mesure l’écart entre la vraie valeur Y correspondant à X et la valeur g (X)
prédite à partir de la fonction g . La notation l vient de « loss ».

Lorsque la fonction perte utilisée est

l (Y,Y′) =1[Y ̸=Y′], (1)

on parle de problème de classification et lorsque

l (Y,Y′) = ||Y−Y′||p , (2)

on parle de problème de régression. Si p = 2, il s’agit de régression au sens des moindres carrés.

Le risque théorique R(g ) de g est la valeur moyenne des réalisations de toutes les pertes possibles. Autrement
dit,

R(g ) = RP(g ) = E[
l (Y, g (X))

]= ∫
X×Y

l (y, f (x))P(d x,d y) (3)

Étant donné que la loi de (X,Y) est inconnue (l’espérance est donnée sous cette loi), on ne peut pas calculer
directement R(g ) et on ne peut que l’estimer à partir des observations de l’échantillon. R(g ) mesure la qualité de la
prédiction de la fonction g . R(g ) s’appelle également erreur de prévision ou erreur de généralisation. Si g est une
fonction déterministe, R(g ) est un nombre, mais si g est estimée à partir d’un échantillon de données, alors g est
aléatoire et R(g ) est une variable aléatoire dépendant de l’échantillon.

3.1.2 Prédicteur de Bayes en classification binaire

Le prédicteur de Bayes est l’élément g⋆ de F qui minimise la perte R(g ) (on parle aussi de prédicteur oracle).
C’est donc la fonction de prédiction optimale sachant les observations.

Dans ce paragraphe, nous nous limitons au problème de classification binaire, c’est à dire que Y ne peut
prendre que deux valeurs : 0 ou 1. La fonction de perte naturelle associée est alors la fonction

l (Y,Y′) =1[Y ̸=Y′] (4)

On note

η(x) =P[Y = 1|X = x] = E[Y|X = x] (5)

et

g⋆(x) =1[η(x)>1/2] (6)

Alors g⋆ minimise l’erreur de classification binaire.

Théorème 1
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Démonstration.

P[Y = 1|X = x] =P[Y = g (X)|X = x]1[g (x)=1] +P[Y = 0|X = x]1[g (x)=0]

= η(x)1[g (x)=1] + (1−η(x))1[g (x)=0],

donc

P[Y = g (X)|X = x] = η(x)1[g (x)=1] + (1−η(x))1[g (x)=0].

L’erreur de prédiction est :

P[g (X) ̸= Y|X = x] = 1−P[g (X) = Y|X = x]

= 1−P[Y = 1, g (X) = 1|X = x]−P[Y = 0, g (X) = 0|X = x]

= 1−1[g (x)=1]P[Y = 1|X = x]−1[g (x)=0]P[Y = 0|X = x]

= 1−1[g (x)=1]η(x)−1[g (x)=0](1−η(x)).

Ainsi,

P[g (X) ̸= Y|X = x]−P[g⋆(X) ̸= Y|X = x] = η(x)
(
1[g⋆(x)=1] −1[g (x)=1]

)+ (1−η(x))
(
1[g⋆(x)=0] −1[g (x)=0]

)
= (2η(x)−1)

(
1[g⋆(x)=1] −1[g (x)=1]

)
≥ 0,

par définition de g⋆(x) et parce que 2η(x)−1 > 0 ⇐⇒ g⋆(x) = 1. On en déduit l’inégalité :

P[Y ̸= g⋆(X)|X = x] ≤P[Y ̸= g (X)|X = x], (7)

licite pour toute fonction g . Le risque optimal est :

R⋆ = R(g⋆) = E[1[g⋆(x)=1]] =P[g⋆(X) ̸= Y] = E
[(

g⋆(X)−Y
)2

]
.

En effet, comme Y et g (X) valent 0 ou 1,

1[g (x)̸=Y] =
(
g (X)−Y

)2 = Y2 + g (X)2 −2Yg (X) = Y+ g (X)(1−2Y).

Ainsi,

R(g ) = E[Y]+E[g (X)(1−2Y)] = E[E[Y|X]]+E[g (X)(1−2E[Y|X])]

= E[η(X)]+E[g (X)(1−2η(X))]

Maintenant, si g = g⋆,

R⋆ = E[η(X)]+E[1[η(X)>1/2](1−2η(X))]

Si η(X) > 1/2 l’expression devient

R⋆ = E[
η(X)(1−21[η(X)>1/2])+1[η(X)>1/2]

]= E[1−η(X)]

et de même, si η(X) < 1/2,

R⋆ = E[
η(X)

]
et donc

R⋆ = E[η(X)∧ (1−η(X))].

on rappelle que

a ∧b = (a +b −|a −b|)/2,

de sorte que

R⋆ = E
[

1

2

(
1−|2η(X)−1|)]= 1

2

(
1−E[|2η(X)−1|]) ,
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avec x ∧ y = inf(x, y). Ainsi, le risque de Bayes R⋆ = R(g⋆) vérifie

R⋆ = E[η(X)∧ (1−η(X))] = 1

2

(
1−E[|2η(X)−1|]) , (8)

De manière plus générale,

E
[
( f (X)−Y)2|X = x

]= E[
( f (x)−η(x)+η(x)−Y)2|X = x

]
= ( f (x)−η(x))2 +2( f (x)−η(x))E[η(x)−Y|X = x]+E[(η(X)−Y)2|X = x]

= ( f (x)−η(x))2 +E[(η(X)−Y)2|X = x]

en passant à l’espérance. Cette expression est positive et l’on en déduit que

E
[
(η(X)−Y)2]≤ E[

( f (X)−Y)2] .

Quelque soit la fonction f deX dansR, η(X) minimise donc bien l’erreur quadratique lorsque f (X) prédit Y.

3.1.3 Fonction oracle

De façon plus générale, que ce soit en classification ou régression, toute fonction g⋆, si elle existe, minimisant
le risque de prédiction est appelée fonction oracle. Le terme oracle provient du fait que la loi étant inconnue, g⋆

est également inconnue. Cette fonction se calcule à l’aide de l’espérance conditionnelle sachant les observsations.

Si pour tout x ∈X la borne inférieure sur y ∈Yde E[l (Y, y)|X = x] est atteinte, alors toute fonction g⋆ :X−→Y

(avec y = g⋆(x)) minimisant cette espérance conditionnelle est une fonction oracle :

∀x ∈X, g⋆(x) ∈ argmin
y∈Y

E[l (Y, y)|X = x] ⇒ g⋆ ∈ argmin
g∈F

R(g ). (9)

Théorème 2

Démonstration. Par définition,

g⋆ ∈ argmin
g∈F

R(g ) (10)

Soit gm ∈ argminy∈YE[l (Y, y)|X = x]. Pour toute fonction g ∈F,

E[l (Y, g (x))|X = x] ≥ E[l (Y, gm(x))|X = x]. (11)

On a alors

R(g ) = E[l (Y, g (X)] = E[E[l (Y, g (x))|X = x]] (12)

≥ E[E[l (Y, gm(x))|X = x]] = E[l (Y, gm(X)] = R(gm). (13)

Ainsi, gm ∈ argming R(g ) et l’on peut poser g⋆ = gm .

En régression au sens des moindres carrées, la fonction oracle est donnée par

η⋆(x) = E[Y|X = x] (14)

et vérifie

∀η :X−→R, R(η) = R(η⋆)+E[
(η(X)−η⋆(X))2] (15)

Théorème 3
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Démonstration. SoitY=R et l (y, y ′) = (y − y ′)2 (cas de la régression au sens des moindres carrés). D’après le théo-
rème précédent,

g⋆(x) ∈ argmin
y∈R

E[(Y− y)2|X = x]. (16)

Mais

E[(Y− y)2|X = x] = E[Y2|X = x]−2yE[Y|X = x]+ y2. (17)

Il s’agit d’un polynôme du second degré en y dont le minimum est atteint en y0 = E[Y|X = x] = η⋆(x).

Le prédicteur de Bayes n’existe pas toujours et lorsqu’il existe, il n’est pas forcément unique (c’est la raison pour
laquelle nous avons utilisé la notation ∈ au lieu de = dans l’avant dernier théorème).

On notera l’excès de risque la quantité (positive) R(g )−R(g⋆) qui mesure également la qualité du prédicteur et
s’annule lorsque g est égal au prédicteur optimal.

3.1.4 Consistance d’un algorithme d’apprentissage

Un algorithme d’apprentissage est une fonction

g :
+∞⋃
n=1

(X×Y)n −→F(X,Y) (18)

qui a tout ensemble d’apprentissage Dn associe une fonction de prédiction gn (n n’est pas fixé et peut varier).
C’est en quelque sorte un estimateur de la meilleure fonction de prédiction. On écrira par abus de notation gn(x) =
gn(x,Dn) sans toujours indiquer la dépendance à l’échantillon.

gn = gn(.,Dn) ∈F(X,Y) (19)

Comme Dn est fonction des (Xi ,Yi ), il est aléatoire et par conséquent gn(x) = gn(x,Dn) est également aléatoire
et il en est de même de

RP
(
gn

)= ∫
X×Y

l (y, gn(x))P(d x,d y) (20)

En fait, l’expression gn(X,Dn) est doublement aléatoire. Elle l’est au travers de la loi de (X,Y) à cause de la
variable X, mais également au travers de l’échantillon Dn qui intervient dans la construction de gn . Pour Calculer
RP

(
gn

)
on intègre X et le résultat est donc une variable aléatoire fonction de Dn .

Notons alors EP[RP
(
gn

)
] (ou E[R

(
gn

)
] pour simplifier) l’espérance de cette variable aléatoire. C’est le risque de

prédiction ou risque moyen, l’espérance étant prise par rapport à la loi de l’échantillon.

On dit qu’un algorithme est consistant par rapport à une loi P si l’estimateur du risque tend, lorsque n tend
vers l’infini, vers le risque de Bayes associé :

lim
n→+∞E

[
R

(
gn

)]= R(g⋆) (21)

On dit qu’un algorithme est universellement consistant s’il est consistant par rapport à toute loi de probabilité
P de l’ensemble P des mesures de probabilités sur l’espace sous-jacent :

sup
P∈P

lim
n→+∞

(
E
[
R

(
gn

)]−R(g⋆)
)= 0 (22)

Il est universellement et uniformément consistant s’il est uniformément consistant par rapport à toute loi P,
c’est à dire si, et seulement si,

lim
n→+∞ sup

P∈P

(
E
[
R

(
gn

)]−R(g⋆)
)= 0 (23)

Un théorème important en apprentissage supervisé, appelé « no free lunch » [Wolpert and Macready, 1997], dé-
montre que dès que card(X) =+∞, il n’existe pas d’algorithme d’apprentissage uniformément et universellement
consistant. L’objectif de l’apprentissage est alors de construire un algorithme permettant d’avoir une consistance
universelle sur une classe de probabilités pertinente pour le problème posé et pour une famille de fonctions de
prédiction G⊂F suffisamment grande.
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Le sous-ensemble G de fonctions auquel on se restreint s’appelle le modèle ou le dictionnaire associé à l’esti-
mateur (prédicteur ou régresseur).

P étant maintenant un sous-ensemble de mesures de probabilités inclus dans l’espace de toutes les mesures
de probabilités, et l’échantillon d’apprentissage étant donné, nous cherchons un algorithme d’apprentissage (sous
la forme d’une fonction de prédiction gn) de telle sorte que

sup
P∈P

lim
n→+∞

(
E
[
R

(
gn

)]−R(g⋆)
)= 0 (24)

et cette quantité doit décroître suffisamment vite vers 0 pour que peu de données soient nécessaires à l’algo-
rithme pour prédire efficacement. L’ensemble P modélise alors notre a priori (comme dans un cadre bayésien) et
entraîne un a priori sur la fonction cible.

Rappelons que la fonction de perte associée à une fonction de prédiction est RP[l (Y, g (X)] et que, comme
P = P(X,Y) est inconnue, la fonction de perte l’est également. L’algorithme d’apprentissage va tenter de trouver la
fonction de prédiction dont le risque est aussi petit que possible (aussi proche que possible du risque des fonctions
oracles).

Puisque la loi P de (X,Y) est inconnue, le risque R(g ) d’un prédicteur est inconnu également. Mais on peut
l’estimer à partir de l’estimateur plug-in de la moyenne empirique :

Rn(g ) = 1

n

n∑
i=1

l (Yi , g (Xi )) (25)

Il est important de noter que le risque empirique est défini sur un dictionnaire (une famille donnée de fonctions
de prédiction, sous-ensembleG deF). Sous réserve que E[l (Y, g (X))2] <∞, la loi des grands nombres et le théorème
de la limite centrale assurent que

lim
n→+∞Rn(g ) = R(g ) p.s. (26)

et

p
n

(
Rn(g )−R(g )

)
⇝N (0,σ2) (27)

avec σ2 =V(
l (Y, g (X))

)
D’après la loi forte des grands nombres, le risque empirique Rn(g ) est une bonne approximation du risque

de prédiction R(g ) lorsque n est suffisamment grand. On peut donc choisir comme fonction de prédiction un
minimiseur ĝn du risque empirique défini par :

ĝn = ĝn,G = ĝn(Dn ,G) = argmin
g∈G

Rn(g ) (28)

où G⊂F est le dictionnaire associé au prédicteur.
Prendre G = F n’est pas une bonne idée car il existe souvent une infinité de fonctions de prédiction minimi-

sant le risque empirique. Enfin, si l’on prend l’algorithme du plus proche voisin comme minimiseur du risque
empirique, on peut montrer qu’il est loin d’être universellement consistant.

G=F entraîne souvent un phénomène de surapprentissage. En pratique, il faut prendre G suffisamment grand
pour pouvoir approcher toute fonction, mais pas trop grand pour éviter le surapprentissage. La taille de G mesure
une quantité appelée capacité ou complexité du modèle. On peut également ajouter à Rn(g ) une pénalisation pour
éviter une fonction de prédiction trop trop irrégulière.

Lorsque la complexité du modèle augmente (c’est à dire lorsque M augmente), le risque empirique diminue,
tandis que le risque théorique diminue, puis augmente à nouveau ; nous allons voir pourquoi dans le paragraphe
suivant.

Mais le prédicteur de risque empirique minimal pour chaque n n’a aucune raison de converger vers le prédic-
teur de risque moyen de prédiction minimale (le risque optimal de Bayes). Intuitivement, à n fixé, sur le modèle G

est suffisamment riche, on pourra toujours trouver un prédicteur de risque empirique très faible, même pour une
grande base d’apprentisage, mais dont le risque moyen de prédiction est grand. Le cas extrême est le prédicteur g
défini par g (xn) = yn et qui prend une valeur quelconque ailleurs. (il apprend par coeur la base d’apprentissage).
Son risque empirique est nul, mais son risque de prédiction très grand. On dit que sa capacité de généralisation
est faible.
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3.2 Minimisation du risque empirique

Soit g⋆ le prédicteur minimisant le risque de Bayes sur F. R(g⋆) mesure le coût moyen (idéal) minimum des
erreurs de prédiction sur toutes les observations étiquetées possibles et sur l’ensemble de toutes les fonctions
possibles. C’est la quantité que nous avons déjà appelé risque de Bayes optimal, risque théorique ou encore risque
de prédiction. Mais g⋆ est inconnu (c’est une fonction oracle). On se contente donc de ĝn,G qui minimise le risque
empirique à partir de l’échantillon, en se limitant à des fonctions g appartenant au dictionnaire G.

ĝn,G minimise Rn , mais pas R. On cherche donc à quantifier à quel point le risque de prédiction R(ĝn) (qui
mesure la capacité à généraliser) est éloigné du risque de prédiction minimal R(g⋆). Pour cela, on va décomposer
le l’excès de risque R(ĝn,G)−R(g⋆) en deux termes positifs : l’erreur d’approximation (déterministe) et l’erreur
d’estimation (stochastique). L’erreur d’approximation, qui s’appelle aussi erreur systématique et qui est homogène
à un biais, est la quantité

R(g⋆G)−R(g⋆). (29)

C’est l’écart, calculé sur le risque moyen, entre le prédicteur optimal de Bayes sélectionné dans le dictionnaire
G (oracle associé à G) et le prédicteur de Bayes sélectionné parmi toutes les fonctions possibles.

L’erreur d’estimation (ou risque stochastique), qui est homogène à une variance (et qui est aléatoire), est égale
à

R(ĝn,G)−R(g⋆G). (30)

C’est l’écart, en terme de risque moyen, entre le minimiseur du risque empirique calculé à partir de l’échan-
tillon sur le dictionnaire G et le minimiseur idéal de Bayes sur le dictionnaire G.

R(ĝn,G)−R(g⋆) =
[

R(ĝn,G)−R(g⋆G)
]
+

[
R(g⋆G)−R(g⋆)

]
= εstochastique −εsystématique. (31)

Quand la taille du dictionnaire G augmente, l’erreur d’approximation diminue, mais l’erreur stochastique de-
vient en moyenne plus grande. Il y a donc un compromis de type biais/variance à trouver (c.f. fig. 3.1).

On peut borner l’erreur stochastique grâce au théorème suivant.

Soient ĝn = ĝn,G et g⋆ = g⋆
G

respectivement le minimiseur du risque empirique et le prédicteur de Bayes sur
le dictionnaire G.

0 ≤ R(ĝn)−R(g⋆) ≤ 2max
g∈G

|R(g )−Rn(g )| (32)

Propriété

Démonstration. Pour alléger les notations, dans cette démonstration, nous omettons d’indicer parG g⋆ et ĝn , mais
il est essentiel de se souvenir que les fonctions en jeu ici sont sélectionnées dans le dictionnaire G.

Par définition de g⋆, R(g⋆) ≤ R(ĝn,G) et par définition de ĝn , Rn(g⋆) ≥ Rn(ĝn). Par ailleurs,

R(ĝn)−R(g⋆) = R(ĝn)−Rn(ĝn)+Rn(ĝn)−Rn(g⋆)+Rn(g⋆)−R(g⋆). (33)

En utilisant l’inégalité triangulaire, il vient

R(ĝn)−Rn(ĝn)+R(g⋆)−Rn(g⋆) ≤ ∣∣R(ĝn)−Rn(ĝn)
∣∣+ ∣∣R(g⋆)−Rn(g⋆)

∣∣ . (34)

et par suite

R(ĝn)−Rn(ĝn)+R(g⋆)−Rn(g⋆) ≤ 2max
g∈G

|R(g )−Rn(g )|. (35)

d’où l’inégalité recherchée, puisque Rn(ĝn) ≤ Rn(g⋆).

Le risque empirique est un estimateur sans biais et consistant de R(g ) on a donc dans tous les cas intérêt à
utiliser une grande base d’apprentissage (n grand) pour diminuer la fluctuation sur G.
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Pour une fonction de perte l à valeurs dans [0,1] et un dictionnaire fini G contenant M fonctions, alors pour
tout δ ∈]0,1[, avec probabilité supérieure à 1−δ,

R(ĝn)−R(g⋆) ≤
√

2

n
ln

(
2M

δ

)
(36)

Théorème 5 Inégalité oracle pour un dictionnaire fini

Démonstration. Nous utilisons l’inégalité de Hoeffding : si (Vi )i est une suite de v.a.i.i.d. à valeurs presque sûre-
ment dans [a,b], alors ∀t > 0,

P
[∣∣∣Vn −E[Vn]

∣∣∣≥ t
]
≤ 2exp

(
− 2nt 2

(b −a)2

)
.

De

R(ĝn)−R(g⋆) ≤ 2sup
g∈G

|R(g )−Rn(g )|

on tire

P
[
R(ĝn)−R(g⋆) ≥ 2t

]≤P[
2sup

g∈G
|R(g )−Rn(g )| ≥ 2t

]

=P
[

2
M

max
m=1

|R(gm)−Rn(gm)| ≥ 2t

]
=P

(
M⋃

m=1

[|R(gm)−Rn(gm)| ≥ t
])

≤
M∑

m=1
P

[|R(gm)−Rn(gm)| ≥ t
]= •

Mais

Rn(gm) = 1

n

n∑
i=1

l (Yi , gm(Xi ))

Posons alors Vi = hm(Xi ,Yi ) = l (Yi , gm(Yi )) ∈ [0,1]. Ces va sont i.i.d. car les (Xi ,Yi ) sont i.i.d. (et gm est une
fonction quelconque deG qui ne dépend pas de l’échantillon). Par ailleurs, l’espérance de Rn(gm) est égale à R(gm).
On peut alors poser a = 0 et b = 1 et appliquer l’inégalité de Hoeffding :

• ≤
M∑

m=1
2exp

(
− 2nt 2

(1−0)2

)
= 2Me−2nt 2

Pour avoir un majorant égal à ϵ, il suffit alors de poser

ϵ= 2Me−2nt 2

⇐⇒ t = 1

2

√
2

n
ln

(
2M

ϵ

)
.

Finalement, pour obtenir l’inégalité demandée, il suffit de passer à l’évènement complémentaire.

Quand n tend vers l’infini, la différence tend vers 0 : le risque du minimiseur empirique converge donc vers
le risque théorique. Ainsi, augmenter la taille de l’échantillon et donc la quantité de données, améliore la qualité
du prédicteur empirique. Mais dans le même temps, quand la taille du dictionnaire augmente, le terme de droite
augmente... Plus M est petit, plus le risque théorique est grand.

Cette situation est à rapprocher du dilemne biais variance : quand la taille de G augmente, le biais diminue
(c’est à dire l’erreur de modélisation, erreur due au modèle) mais la variance augmente également (erreur statis-
tique due à l’aléa des données). Augmenter M augmente le risque de surapprentissage.

Rn(ĝn(Dn ,GM)) ≤ Rn(ĝn(Dn ,GM′ )) si M < M.′ (37)
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FIGURE 3.1 – Un exemple de dilemne biais / variance. En bleu, l’erreur d’approximation pour un dictionnaire de taille M. En

rouge, l’erreur d’estimation, en noir le risque théorique ou excès de risque. La zone de sous-apprentissage caractérise un biais

fort et une variance faible, tandis que la zone de surapprentissage caractérise un biais faible et une variance forte. La courbe

bleue est typiquement obtenue avec l’ensemble d’apprentissage et la courbe noir avec l’ensemble de test.

La complexité des modèles et la présentation du dilemme biais-variance est exposée par Stéphane Mallat dans
son cours du Collège de France de 2018, dont les vidéos sont disponibles en ligne en suivant ce lien :
https://www.college-de-france.fr/site/stephane-mallat/course-2017-2018.htm

3.3 Sélection de modèles et validation croisée

Nous profitons de ce paragraphe pour revoir les définitions introduites dans les paragraphes précédents.

R(g⋆) est le risque de Bayes, que nous avons aussi appelé risque optimal, risque théorique ou encore risque de
prédiction. Rn = Rn(g ) est le risque empirique calculé uniquement à partir de l’échantillon et défini par l’estima-
teur plug-in du risque de Bayes. ĝn minimise le risque empirique Rn , mais pas le risque théorique R; c’est pourtant
le seul prédicteur que l’on puisse calculer et utiliser en pratique. Mais cela explique pourquoi le risque empirique
n’est pas forcément une bonne approximation du risque théorique.

Sélectionner un modèle signifie sélectionner le dictionnaire G dans lequel les prédicteurs seront choisis. Un
modèle est donc simplement un sous-ensemble de F, ensemble de toutes les fonctions (prédicteurs) possibles.

L’estimateur minimisant le risque empirique sur G est ĝn (comme dans le paragraphe précédent, on omet G
pour alléger la notation mais ĝn dépend évidemment de G). Nous avons vu que R(ĝn) est possiblement éloigné de
Rn(ĝn). Ces deux quantités dépendent de l’échantillon Dn au travers de ĝn , ce sont donc des variables aléatoires
fonctions de (Xi ,Yi ) : Rn est calculé à partir de l’échantillon Dn . Lorsqu’on applique Rn à son minimiseur ĝn on
obtient une moyenne empirique de termes de la forme l (Yi , ĝn(Xi )) qui ne sont pas indépendants les uns des
autres, car ĝn dépend déjà de Dn . On ne peut donc pas utiliser Rn pour évaluer un estimateur qui a été construit à
partir du même échantillon.

Pour contourner ce problème, trois méthodes sont possibles : le découpage simple des données en un jeu
d’entraînement et un jeu de test, la validation « Hold-out » ou la méthode de validation croisée.

Le principe du découpage basique de Dn en un jeu d’entraînement et de test est le suivant : on entraîne le
modèle sur le sous-échantillon d’entraînement et on évalue ses performances sur l’échantillon de test, qui est
alors indépendant de l’estimateur.

La méthode de validation « Hold-out » est utile lorsqu’on effectue de la sélection de modèles, c’est à dire qu’on
souhaite tester plusieurs jeux d’hyperparamètres afin de déterminer ceux qui maximisent les performances. Le
découpage en deux ne suffit plus, car les deux sous-échantillons deviennent alors dépendants et il est nécessaire
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fonction exécutée
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FIGURE 3.2 – Illustration de la validation croisée k-Fold pour k = 5. La base initiale est Dn , partitionnée en trois
sous-échantillon : DT

n (en vert, fixe durant tout le processus), Dn,i (en rose) et D•i qui varient à chaque itération.
Souvent, k = 5 ou k = 10. k = n est la méthode « leave-one-out ».

de conserver une troisième partie des données indépendante pour valider l’ensemble des modèles (correspondant
chacun à un jeu d’hyperparamètres). En notant DE

n , DT
n , DV

n respectivement le sous-échantillon d’entraînement,
de test et de validation, on procède comme suit :

1 • Pour chaque jeu d’hyperparamètres, on entraîne un estimateur g1, ..., gm sur DE
n avec gi = gi (.,DE

n ).

2 • Pour chaque estimateur, on évalue le risque empirique Rn,DV
n

(g1), ...,Rn,DV
n

(gm) sur le sous-échantillon DV
n .

3 • On sélectionne celui qui minimise le risque empirique :

ĝn = argmin
i=1,...,m

Rn,DV
n

(
gi (DE

n , .)
)

(38)

4 • On évalue les performances finales du modèle avec le risque calculé à l’aide du sous-échantillon de test :

R̂n = Rn,DT
n

(
ĝn

)
. (39)

Il y a deux inconvénients à cette méthode : ce découpage réduit les données disponibles pour l’entraînement
et les performances dépendent fortement du choix du sous-échantillon (une partition mal choisie pourrait donner
de mauvais résultats et).

La méthode de validation croisée corrige ce problème et peut être utilisée dans tous les cas de figure, que ce
soit pour une estimation unique ou pour une sélection de modèles. C’est donc la méthode à privilégier.

On découpe en trois l’échantillon initial Dn en construisant un sous-échantillon de test, un autre de validation
et un troisième d’entraînement. Le sous-échantillon de test sera noté DT

n et représentera traditionnellement 20%
des données, même si en pratique on ne respectera pas ce pourcentage. Il restera constant tout au long du traite-
ment des données. Les deux autres sous-échantillons forment une partition du reste de l’échantillon initial et vont
varier durant le processus de validation croisée.

Le principe de la validation croisée (c.f. Fig. 3.2) est de diviser les données (hors échantillon de test) en plu-
sieurs sous-ensembles (les plis, ou « folds ») et de permuter leurs rôles entre données d’entraînement et données
de validation. Voici les différentes étapes d’une validation k-Fold :

1 • Après avoir sélectionné le sous-échantillon de test, on divise les données restantes en k sous-échantillons
disjoints de taille égale : Dn,1, ...,Dn,k .

2 • Pour chaque itération i = 1, ...,k, on utilise Dn,i comme ensemble de validation pour évaluer les perfor-
mances avec un jeu d’hyperparamètres donné, et les k −1 autres sous-échantillons D•i = ∪ j ̸=i Dn, j comme base
d’entraînement. Après k itérations, chaque sous-échantillon a servi une seule fois de données de validation.
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3 • On sélectionne l’estimateur qui minimise le risque empirique (calculé à chaque fois sur son échantillon de
validation) :

ĝn = argmin
i=1,...,k

Rn,D•i

(
gi (Dn,i , .)

)
(40)

• On évalue la performance globale en calculant la moyenne des scores obtenus à chaque itération. Ces scores
sont les risques empiriques de chaque estimateurs, calculés avec le sous-échantillon de test.

R̂n = 1

k

k∑
i=1

Rn,DT
n

(
gi (Dn,i , .)

)
(41)

En pratique, on effectue souvent une re-calibration en ré-entraînant le modèle correspondant au meilleur jeu
d’hyperparamètres sur la totalité des données (hors données de test).
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Chapitre 4

Méthodes à base de partition

4.1 Généralités sur les méthodes à partition

Nous avons vu au chapitre précédent que le choix de la méthode d’apprentissage supervisé se résume à choi-
sir un sous ensemble de fonctions de X dans Y pour former le dictionnaire G et le modèle d’apprentissage. Un
choix populaire est de considérer les fonctions constantes par morceaux sur une partition de X. Cela conduit à
l’algorithme des plus proches voisins k-ppv ou k-NN (pour k Nearest Neighbors) et aux arbres de décision et de
régression avec l’algorithme CART (classification and regression tree)

Soit F = F(X,Y) l’ensemble des fonctions de X dans Y. Considérons une partition A = (A1, ..., AM) de l’espace
X (la réunion des Ai est égale à X et ils sont 2 à 2 disjoints)

X=
M⋃

m=1
Am (1)

et soit G = G(A ) ⊂ F le dictionnaire formé de l’ensemble des fonctions de X dans Y qui sont constantes sur
chaque élément Am de la partition A . La partition peut être aléatoire, déterminée en fonction de l’échantillon Dn .

G= {
g :X−→Y : ∀m = 1, ...,M, g constante sur Am

}
(2)

Le minimiseur du risque empirique associé à cette partition est la fonction

ĝn = ĝn, A = argmin
g∈G

1

n

n∑
i=1

l (Yi , g (Xi )) (3)

Notons Nm le nombre d’observations Xi de l’échantillon qui se trouvent dans l’élément Am de la partition :

Nm =
n∑

i=1
1Am (Xi ) (4)

et notons Ym la moyenne des étiquettes observées dans l’élément Am :

Ym =
n∑

i=1
Ym1Am (Xi ) (5)

On se place dans un cadre de classification binaire, avec Y= {0,1}

∀m = 1, ...,M, ∀x ∈ Am , ĝn(x) =


1 si YAm > 1/2
am si YAm = 1/2
0 si YAm < 1/2

(6)

Théorème 6 Classifieur binaire optimal

ce que l’on peut également écrire sous la forme

∀x ∈X, ĝn(x) =
M∑

m=1
1[YAm >1/2]1Am (x). (7)
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On se place dans un cadre de régression au sens des moindres carrés.

ĝn(x) =
M∑

m=1
YAm1Am (x) =

M∑
m=1

(
1

Nm

n∑
i=1

Yi1Am (Xi )

)
1Am (x) (8)

Théorème 7 Minimiseur du risque empirique pour la régression MC

Démonstration. Nous commençons par la preuve du minimiseur pour la régression au sens des moindres carrés.
1

n

n∑
i=1

l (Yi , g (Xi )) = 1

n

n∑
i=1

(Yi − g (Xi ))2. (9)

Soit g ∈G telle que g (x) = am , ∀x ∈ Am . g est identifiée de façon unique comme vecteur (ai , ..., aM)T ∈RM.

Rn(g ) = 1

n

n∑
i=1

M∑
m=1

(Yi − g (Xi ))21Am (Xi ) (10)

= 1

n

M∑
m=1

n∑
i=1

(Yi −am)21Am (Xi ) (11)

min
g∈G

Rn(g ) = min
a∈RM

(
1

n

n∑
i=1

M∑
m=1

(Yi − g (Xi ))21Am (Xi )

)
(12)

= 1

n

M∑
m=1

min
a∈RM

(
n∑

i=1
(Yi −am)21Am (Xi )

)
(13)

n∑
i=1

(Yi −am)21Am (Xi ) =
n∑

i=1
Y21Am (Xi )−2am

n∑
i=1

Yi1Am (Xi )+a2
mNm . (14)

Il s’agit d’une fonction quadratique en a2
m dont le minimum est atteint en

am = 1

Nm

n∑
i=1

Yi1Am (Xi ). (15)

Les mêmes arguments sont valables pour le minimiseur de la classification binaire :

min
g∈G

Rn(g ) = 1

n

M∑
m=1

min
am=0,1

(
n∑

i=1
1[Yi ̸=am ]1Am (Xi )

)
(16)

âm ∈ argmin
a=0,1

n∑
i=1

1[Yi ̸=a]1Am (Xi ) (17)

et cette expression vaut 0 ou 1 selon que
n∑

i=1
1[Yi ̸=0]1Am (Xi ) <

n∑
i=1

1[Yi ̸=1]1Am (Xi ) (18)

ou pas. Si Y ∈ {0,1}, 1[Y ̸=0] = Y et 1[Y ̸=1] = 1−Y et par suite,
n∑

i=1

(
1[Yi ̸=0] −1[Yi ̸=0]

)
1Am (Xi ) =

n∑
i=1

(2Yi −1)1Am (Xi ) = 2Nm(YAm −1/2). (19)

On a donc âm = 0 si, et seulement si, Ym < 1/2.

On peut résumer le résultat des deux théorèmes de la façon suivante : pour estimer E[Y|X = x] on effectue un
moyennage local des Yi par les Xi les plus proches de x.

Il est facile de généraliser la formule du classifieur binaire à une situation multi-classes dans laquelle Y peut
prendre K valeurs différentes. Si Y= {1, ...,K},

∀x ∈X, ĝn(x) = argmax
k=1,...,K

M∑
m=1

(
1

Nm

n∑
i=1

1[Yi=k]1Am (Xi )

)
1Am (x) (20)

= argmax
k=1,...,K

M∑
m=1

wm,k1Am (x). (21)

où wm,k = Nm(k)/Nm est la proportion des observations dans Am pour lesquelles Y = k.

La démonstration qui précède et les résultats des deux théorèmes sont valables pour toutes les fonctions
constantes sur chaque élément d’une partition. Elles ne dépendent pas de la façon dont sont construites les par-
titions. Nous examinons maintenant deux méthodes différentes de constructions de partitions qui mènent d’une
part à la méthode des k plus proches voisins et d’autre part aux arbres de décision.
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4.2 La méthode des k plus proches voisins

4.2.1 Principe des k-ppv

Soit k ≤ n. Pour chaque x ∈ Rd et chaque i = 1, ...,n, on note di (x) = ||Xi − x|| la distance entre x et chacune
des observations Xi . On définit également les statistiques de rang ri (x) comme étant l’indice du i ème plus proche
voisin de x parmi les X1, ...,Xn . Mathématiquement, les rangs sont définis comme suit :

r1(x) = j ⇐⇒
 d j (x) = min

i=1,...,n
di (x)

d j (x) < min
1≤i< j

di (x)
(22)

(23)

et par récurrence sur k ≥ 1,

rk (x) = j ⇐⇒
 d j (x) = min

i=1..n;i ̸=r1,..,rk−1

di (x)

d j (x) < min
1≤i< j ;i ̸=r1,..,rk−1

di (x)
(24)

(25)

Les inégalités sont nécessaires pour prouver l’existence du rang de façon unique. Pour un entier k ∈ [[1..n]], les
statistiques de rang permettent de définir une partition de l’espace Ak dont les éléments Am sont donnés, pour

tout m = 1, ...,

(
n
k

)
, par :

Am = {x ∈X=Rd : Cm = (r1(x), ...,rk (x))} (26)

Cm étant une combinaison donnée de k éléments choisis parmi n. Les ensembles Am sont donc les parties de
X pour lesquelles l’application x 7→ (r1(x), ...,rk (x)) est constante. En d’autres termes, la partition est constituée de
zones caractérisées par un choix de k observations parmi n de telle sorte que les points de cette zone soient les
plus près des k observations caractérisant la zone. Pour deux points x, x ′ ∈ Am , les k plus proches voisins de x et x ′
parmi les X1, ...,Xn sont les mêmes. Si x ∈ Am et x ′ ∈ Am′ avec m ̸= m′,les k plus proches voisins de x sont différents
des k plus proches voisins de x ′.

De telles partitions s’appellent des diagrammes de Voronoi et chaque zone forme une cellule de Voronoi. Les
deux figures suivantes (Fig. 4.1 et Fig. 4.2) illustrent des partitions au sens du plus proche voisin pour k = 1. Voir
également l’animation suivante en ligne : https://strongriley.github.io/d3/ex/voronoi.html.

Xk

A2

A3

A4

XL

B2

B3

B4
B5

A5A5

A1

K

L

FIGURE 4.1 – k-ppv et cellule de Voronoï.

On peut démontrer que si k dépend de n (k = kn) et tend vers l’infini moins vite que n, c’est à dire si k/n −→ 0
quand n tend vers l’infini, alors le prédicteur k-NN est consistant.
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FIGURE 4.2 – Cellules de Voronoi pour k = 1.

FIGURE 4.3 – Les trois espèces d’Iris (de gauche à droite versicolor, setosa, virginica), pour le plaisir de mettre
des photos de fleurs dans un polycopié aussi aride. Crédit photo : Frank Mayfield et Kosaciec Szczecinkowaty,
Wikipédia, page des iris.

4.2.2 Exemples en classification et régression

Un exemple incontournable en apprentissage statistique est la classification des iris de Fisher (nous le traite-
rons en TP). Le jeu de données initial a été utilisé par Ronald Fisher en 1936 à partir de données collectées par Edgar
Anderson, pour illustrer la méthode d’analyse discriminante linéaire. Il comprend 50 échantillons de chacune des
3 espèces d’iris (setosa, virginica et versicolor). 4 variables statistiques ont été mesurées pour chaque échantillon :
la longueur et la largeur des sépales et des pétales, en centimètres. Les iris forment donc un échantillon avec n = 50
et d = 4. La classification n’est pas binaire (ici k = 3), mais on regroupe souvent 2 des 3 espèces pour illustrer cette
méthode.

La figure Fig. 4.4 illustre ce jeu de données et le résultat d’une classification des 3 espèces.

La figure Fig. 4.5 illustre une tâche de régression avec la méthode des k-ppv. Un nuage de points est créé à partir
d’une sinusoïde perturbée par un bruit aléatoire et il s’agit, avec le régresseur k-ppv, de reconstituer au mieux la
courbe initiale à partir du nuage.

4.3 Les arbres de décision et de régression

4.3.1 La méthode CART : Classification And Regression Tree

Le principe des arbres de décision est le même que l’algorithme des k-ppv : diviser pour régner. La différence
entre les deux algorithmes vient de la façon de construire la partition; la partition engendrée par un arbre de
décision est basée non seulement sur les variables explicatives Xi mais également sur les étiquettes observées Yi .
Il existe plusieurs façons de construire un arbre à partir d’un échantillon, les plus connues sont les algorithmes
[Breiman et al., 1984] CART et C4.5 (proposé par Quinlan en 1993).
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FIGURE 4.4 – Haut : à gauche, nuage de points représentant les iris de Fisher (une espèce par couleur) en fonction
de la longueur et de la largeur de leur sépale. À droite, une courbe indiquant les performances de k-ppv sur la tâche
de classification des iris, en fonction du nombre k. Bas : illustration d’un classifieur k-ppv pour k = 11, avec deux
types de poids différents. Les zones de couleur représentent l’espèce qui sera affectée à une nouvelle observation
selon la longueur et la largeur de son sépale. Simulations effectuées sous Python.

FIGURE 4.5 – Régression à l’aide de la méthode k-ppv. Un nuage de points (rouges) bruité est généré en perturbant
aléatoirement les points d’une sinusoïde. La courbe bleue, issue de la méthode des k-ppv, doit reconstituer au
mieux cette sinusoïde. Les deux courbes à gauche correspondent à k = 5 pour deux types de poids différents. Les
4 courbes de droite représentent la régression pour des valeurs différentes de k = 1,3,5,7. Simulations effectuées
sous Python.
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Un graphe est un ensemble de nœuds reliés par des arêtes. Un arbre est un graphe sans cycle.

La méthode CART produit des arbres qui peuvent être utilisés en classification comme en régression, l’objectif
étant d’expliquer une réponse (variable qualitative ou quantitative) à l’aide d’autres variables. On construit un
arbre à l’aide de divisions successives des individus de la base d’apprentissage en deux sous-ensembles homogènes
(les nœuds) par rapport à une variable à expliquer. On peut voir la segmentation par arbre comme une approche
non-paramétrique et non linéaire de l’analyse discriminante.

Dans un arbre de décision, chaque nœud correspond à un sous-ensemble A ⊂ X et un test statistique T qui
donne le critère de segmentation (ou d’impureté) et est appliqué sur les variables explicatives x ∈X. Si le test peut
donner K résultats 1, ...,K, alors le nœud (A,T) donne naissance à k nœuds fils, tel que l’ensemble Ak associé au ke

fils est Ak = {x ∈ A : T(x) = k}. Très souvent, on se limite à des tests binaires (k = 2) et donc à des arbres binaires
(Fig. 4.6).

L’algorithme est initialisé à la racine correspondant à A =X, puis on itère le procédé de segmentation jusqu’à
ce qu’un critère d’arrêt se produise. Les feuilles de l’arbre (nœuds terminaux) forment alors une partition de X en
classes homogènes et distinctes, relativement à la variable Y à expliquer. Finalement, des branches sont élaguées
si elles ne dégradent pas trop le taux d’erreur de l’arbre.

(A,T)

N j

N j ,1

[T j = 1] = [Xi ≥ s]

N j ,0

[T j = 0] = [Xi ≤ s]

FIGURE 4.6 – Exemple d’arbre avec 5 nœuds et 4 arêtes. La racine A correspond à l’ensemble X. À un nœud donné
N j de profondeur j est affecté un sous-ensemble de X. Le test courant T j est effectué sur les observations conte-
nues dans N j , qui sont réparties dans les deux nœuds fils N j ,0 et N j ,0 en fonction du résultat de T j .

L’algorithme CART de Breiman [Breiman et al., 1984] fournit des solutions sous forme graphique, faciles à construire,
à interpréter et qui traitent les variables quantitatives ou qualitatives. Le déroulement de l’algorithme est le sui-
vant :

Algorithm 1: CART algorithm

Input: Arbre = nœud racine
// Expansion
for chaque nœud n de Arbre do

if n ̸= condition d’arrêt then
Choisir critère de segmentation T
Créer les nœuds fils
Maj : Arbre = Arbre ∪ nœuds fils

end
end
// Élagage
for chaque nœud n de Arbre do

if n = condition d’élagage then
Maj : Arbre = Arbre − nœuds fils et descendants

end
end

Différentes implémentations sont possibles selon les critères de segmentation choisis, le critère d’arrêt ou le
critère d’élagage.
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FIGURE 4.7 – Algorithme CART appliqué à la base de données des iris de Fisher. À gauche, l’arbre de décision
construit sur les variables longueur et largeur de la sépale. À droite, la partition de l’ensemble X = R2 en fonction
des critères. Les frontières des classes sont nécessairement parallèles aux axes du repère.

Une fois l’arbre construit, la règle de classification consiste simplement à parcourir l’arbre depuis la racine :

• Pour un x ∈X, on détermine la feuille (nœud terminal) qui le contient en parcourant l’arbre de haut en bas.

• En classification, on affecte à x l’étiquette y correspondant à la classe majoritairement représentée par les
exemples xi de cette feuille.

• En régression, on affecte à x la moyenne des étiquettes yi correspondant aux exemples xi de la feuille.

Les figures ci-après (Fig. 4.8 et Fig. 4.9) illustrent des arbres CART pour différents jeux de données traditionnels.

4.3.2 Les différents critères de segmentation

La segmentation a pour objectif de partager les individus en classes homogènes relativement à la variable à
expliquer. On quantifie l’homogénéïté par l’indice de Gini ou l’entropie pour les tâches de classification, la variance
pour les tâches de régression. Ces grandeurs doivent être nulles si le segment (le découpage en deux sous-classes)
est homogène et maximales lorsque les valeurs de Y sont très dispersées. On arrête de segmenter quand toutes les
classes sont homogènes ou bien quand elles contiennent moins d’observations qu’un seuil fixé.

Pour la classification

L’indice de Gini d’un sous-ensemble A de X est défini par :

∀A ⊂X, G(A) = 1−Y
2
A − (1−YA)2 (27)

Définition 8 Indice de Gini

Remarques.

• G(A) = 0 ⇐⇒ YA = 0 ou 1.

•Un nœud sera de bonne qualité (on dit homogène, pur) si une très grande majorité des étiquettes des exemples
associés à ce nœud sont identiques. Il est alors très discriminant et G(A) est presque nul.

• Pour évaluer la qualité d’un critère de segmentation, on calcule le gain d’homogénéité lorsque A est segmenté
en A1 et A2 :

IG(A1, A2) = G(A)−qG(A1)− (1−q)G(A2) (28)
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FIGURE 4.8 – Arbre de décision issu de la base des Iris de Fisher avec des critères de segmentation portant sur les 4
variables.

FIGURE 4.9 – Arbre de décision issu d’une base de données de défauts de paiement contenant 336 observations.
Les variables utiliseées pour la segmentation sont : « Credit History », « Self Employed », « Married », « Education »,
« Gender ».
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avec q = NA1 /AA2 proportion des xi ∈ A qui se dirigent vers A1. CART choisit la partition qui maximise IG à
chaque étape.

• La quantité d’information de Shannon apportée par la réalisation d’un évènement A est

I(A) =−P(A) log2P(A). (29)

Elle mesure la vraisemblance de cet évènement.

• L’entropie d’une variable aléatoire mesure l’information moyenne sur l’ensemble des réalisations pos-
sibles. C’est le nombre moyen de questions binaires que l’on doit poser pour déterminer la valeur exacte de
la variable aléatoire :

H(X) =−E[log2P(X)] =−
n∑

i=1
pi log2 pi (30)

Définition 9 Entropie au sens de Shannon

On utilise l’entropie comme critère de segmentation en calculant l’entropie de la mesure de probabilité empi-
rique uniforme créée par la partition des données (pi proportion de 1 (ou 0) dans chaque classe).

L’impureté d’un nœud N (contenant N observations) se calcule, en classification, finalement par une même
formule

I(N ) =
N∑

i=1
f (pi (N )), (31)

où pi (N ) représente la proportion d’observations de la classe i dans le nœud et f est une fonction concave de
[0,1] dans R+ telle que f (0) = f (1) = 0.

— Pour l’indice de Gini : f (p) = p(1−p).

— Pour l’entropie : f (p) =−pn ln p.

Pour la régression

On rappelle que dans une tâche de régression, la valeur affectée à un nœud est la moyenne des observations
appartenant à ce nœud.

L’hétérogénéïté est mesurée par la variance du nœud. Si l’on note N le nœud et y la moyenne des valeurs yi

des observations se trouvant dans le nœud correspondant,

V(N ) = 1

|N |
∑

i :xi∈N

(yi − y)2. (32)

La segmentation privilégie le découpage en deux nœuds homogènes dont la variance sera la plus faible pos-
sible.

Une opération de segmentation est dite admissible si les deux nœuds fils contiennent au moins une observa-
tion.

La segmentation s’arrête lorsqu’un critère d’arrêt est vérifié pour tous les nœuds. Ce critère peut-être défini par
une ou plusieurs des conditions suivantes sur un seuil donné :

• Chaque nœud satisfait un seuil d’homogénéïté.

• La profondeur de l’arbre dépasse un seuil.

• Le nombre de feuilles dépasse un seuil.

• L’effectif des nœuds est inférieur un seuil ou bien il n’existe plus de segmentation admissible possible.

La segmentation peut produire de bonnes performances sur l’ensemble des données d’entrainement, mais est
susceptible de provoquer du surapprentissage si l’arbre est trop complexe. Un arbre avec moins de branches aura
une variance plus faible en contrepartie d’un biais un peu plus fort.

Un stratégie pour simplifier l’arbre est d’élaguer des branches qui ne contribuent pas trop à augmenter le risque
estimé, c’est le processus d’élagage (« pruning ») que nous allons détailler maintenant.
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4.3.3 Les différents critères d’élagage de CART.

On élague un arbre pour éviter le surapprentissage et garder un modèle simple. La complexité d’un arbre est
donnée par sa dimension de Vapnik (hors programme, mais une courte présentation est donnée en annexe), son
nombre de coupures ou sa profondeur. Le résultat de la procédure d’élagage est un sous-arbre optimal au sens
d’un critère pénalisé, c’est à dire qu’il s’agit de rechercher le meilleur compromis entre un arbre très complet,
détaillé, fortement dépendant des observations et un arbre grossier, trop robuste aux observations. On élague
lorsque l’augmentation de complexité n’est plus compensée par la diminution de la variance (déviance).

Tester tous les sous-arbres est trop coûteux en temps de calcul. Breiman propose de se limiter à une suite de
sous-arbres emboités, de taille raisonnable, construit par élagage successif. On Choisit alors un arbre de la suite
par minimisation d’un risque d’ajustement.

Soit T un arbre dont les noeuds terminaux sont les Nm . Deux risques d’ajustement classiques sont proposés,
respectivement en régression et classification :

Rm(r ) = 1

Nm

∑
i :xi∈Nm

(yi − ym)2 (33)

Rm(c) = 1

Nm

∑
i :xi∈Nm

1[yi ̸=ym ] (34)

On définit ensuite un critère côut/complexité par

Cα(T) =
M∑

m=1
NmRm(T)+mα, (35)

où M = |T| est le nombre de feuilles de l’arbre et α ≥ 0 un paramètre d’ajustement pénalisant le nombre de
feuilles. Lorsque α augmente, des feuilles sont regroupées (élaguées) dans le nœud père qui se transforme alors en
feuille. C’est ainsi que les sous-arbres sont emboités les uns dans les autres.

On cherche T qui minimise Cα(T) pour un α bien choisi (α= 0 arbre entier, α=∞ racine uniquement). Lorsque
l’on a une suite de sous-arbres, ils sont classés dans l’ordre croissant des α.

Il existe une suite finie 0 = α0 < ... < αM avec M ≤ |T| et une suite imbriquées de sous-arbres (Tαm )m avec

T = Tα0 ⊆ Tα1 ⊆ ... ⊆ TαM = racine (36)

telle que ∀α ∈ [αm ,αm+1[ ,

Tm ∈ argmin
Ti⊂T

Cα(Ti ). (37)

Théorème 10 de Breiman, 1984

Choisir un arbre revient à choisir une valeur deα (en choisissant un risque, en l’estimant par ré-échantillonnage,
puis en sélection la valeur qui minimise le risque). On peut utiliser la méthode de validation croisée pour estimer
le coût de chaque arbre de la suite, ce coût étant donné par le risque quadratique en régression et l’erreur de
classification en classification.

4.3.4 Exemples en classification et régression.

Les figures Fig. 4.10 et Fig. 4.11 illustrent la méthode CART respectivement sur une tâche de classification (à
nouveau les iris de Fisher) et une tâche de régression.

4.3.5 Remarques finales.

Les arbres CART forment une méthode de classification et de régression non linéaire (c.f. Fig. 4.12). En fonction
des données, les arbres peuvent obtenir de meilleures performances (ou pas) que les méthodes linéaires.

• Les arbres sont des modèles hiérarchiques, non linéaires, itératifs.

• Ils sont adaptés aux problèmes continus, discrets, multiclasses, multimodes.

• Ils prédisent par l’intermédiaire d’une stratification (partition) de l’espace des données.
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FIGURE 4.10 – Classification des trois espèces d’iris de Fisher par un arbre CART de profondeur 4 (à gauche) et par
la méthode des k-ppv pour k = 7 (à droite). Noter le nombre et la position des iris mal classées dans les deux cas.

FIGURE 4.11 – Régression par arbre de décision. Un nuage de points (oranges) est généré à partir d’une sinusoïde
perturbée par un bruit aléatoire. Il s’agit de reconstruire la courbe initiale à l’aide d’un arbre de décision de pro-
fondeur 2 (en bleu) ou de profondeur 5 (en vert)

• Les arbres proposent une méthode graphique intuitive et facile à comprendre.

• Ils ne sont pas très performants.

• Ils d’une grande instabilité et peu robustes au bruit dans les données.

• Variantes diverses : CID3, C4.5, C5, CHAID, MARS, QUEST, etc.

Les inconvénients cités ci-dessus peuvent se résoudre en utilisant plusieurs arbres en même temps (une fo-
rêt...). C’est le principe de méthodes beaucoup plus robustes et efficaces, ayant de meilleures performances : les
forêts aléatoires et le bagging, par exemple, dont nous parlerons dans un autre chapitre.
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FIGURE 4.12 – Illustration de la non-linéarité des méthodes à base d’arbres. En haut : une tâche de classification
binaire associée à deux régions linéairement séparables (une zone verte et une jaune) ; la méthode CART (colonne
de droite) ne peut séparer que des régions à frontière horizontale et verticale. En bas : un classifieur linéaire ne
pourra pas séparer une zone rectangulaire correctement, alors qu’un arbre y parvient. Crédit : Introduction to
Machine Learning with Python. James, Witten, Hastie, Tibshirani. Figures du chapitre 8.
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Chapitre 5

Méthodes à base de convexification

5.1 Introduction et problématique

La minimisation du risque empirique est difficile à mettre en œuvre à cause de la non-convexité de l’ensemble
G et de la non-convexité de la fonction Rn(g ). Minimiser une fonction convexe dans un ensemble convexe est un
problème de programmation classique que l’on sait résoudre de façon efficace grâce à des algorithmes de pro-
grammation convexe. Pour résoudre plus efficacement la minimisation du risque empirique, on procède donc à la
convexification du problème : il faut changer l’espace des classifieurs G pour qu’il devienne convexe et changer la
forme du risque également.

Rappelons la définition d’un ensemble et d’une fonction convexe. Soit E un espace vectoriel et C ⊂ E. C est
convexe si

∀x, y ∈ C, et λ ∈ [0,1],λx + (1−λ)y ∈ C.

Soit C ⊂ E un ensemble convexe. Une fonction f : C −→R est convexe si ∀x, y ∈ C, ∀λ ∈ [0,1]

f (λx + (1−λ)y) ≤ λ f (x)+ (1−λ) f (y)

Une fonction convexe définie sur un ensemble convexe fermé atteint son minimum.

5.1.1 Convexification du dictionnaire

Les fonctions de prédictions binaires étaient à valeurs dans Y = {0,1}. Pour simplifier les formules, on va sup-
poser, sans perte de généralité que Y = {−1,1}. On définit les nouvelles fonctions h : X −→ R à valeurs réelles. On
affecte à x l’étiquette −1 si h(x) ≤ 0 et 1 si h(x) > 0 : g (x) = sgn(h(x)) où sgn est la fonction signe :

sgn(u) =
{

1 si u > 0
−1 si u ≤ 0

(1)

Toute fonction réelle h peut alors être considérée comme prédicteur. F(X,R) est convexe alors que F(X, {−1,1})
ne l’est pas. La perte de prédiction est donnée par

l (y,h(x)) =1[y ̸=sgn(h(x))] =1[y=1]1[1 ̸=sgn(h(x))] +1[y=−1]1[−1̸=sgn(h(x))]

=1[y=1]1[h(x)≤0] +1[y=−1]1[h(x)>0]

=1[y=1]1[yh(x)≤0] +1[y=−1]1[yh(x)<0]

L’ensemble {(y, x) : yh(x) < 0} est inclut dans {(y, x) : yh(x) ≤ 0} et par conséquent l’indicatrice du premier est
majorée par celle du second :

[yh(x) < 0] ⊂ [yh(x) ≤ 0] ⇒ l (y,h(x)) ≤1[y=1]1[yh(x)≤0] +1[y=−1]1[yh(x)≤0] ≤1[yh(x)≤0]

De la même manière, l (y,h(x)) ≥1[yh(x)<0] et il est clair que si H ⊂F(X,R) est tel que P[h(X) = 0] = 0 pour tout
h ∈H , alors le risque de la fonction de prédiction sgn(h) est donné par

l (y,h(x)) =1[yh(x)≤0] =1[0,+∞[(−yh(x)).

Ainsi,

R(g ) = R(sgn(h)) = E[
1[0,+∞[(−Yh(X))

]
Pour résumer, on remplace g ∈ G par h ∈ H ⊂ F(X,R), c’est à dire que les fonctions g :X = Rd −→ {−1,1} sont

remplacées par les fonctions h :X−→R car F(X,R) est convexe.
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FIGURE 5.1 – Fonctions de perte convexe φ : courbes de φ(yh(x)).

5.1.2 Convexification de la fonction perte

On définit le minimiseur du risque empirique convexifié par

ĥn ∈ argmin
h∈H

1

n

n∑
i=1

1[0,+∞[(−Yi h(Xi )) (2)

ĥn appartient à H . La fonction de coût n’est pas convexe. On remplace donc l’indicatrice 1[0,+∞[ par une
fonction convexe φ et l’on appelle φ-risque du classifieur h la quantité :

A(h) = E[φ(−Yh(x))] (3)

Le φ-classifieur de Bayes est le prédicteur minimisant le φ-risque :

h⋆ ∈ argmin
h∈F

A(h) (4)

On appelle minimseur sur H ⊂F du φ-risque empirique, le prédicteur

ĥn ∈ argmin
h∈H

1

n

n∑
i=1

φ(−Yi h(Xi )) (5)

L’objectif est de choisir pour φ un majorant convexe de 1[0,+∞[ de sorte qu’un classifieur ayant un φ-risque
faible ait également un faible risque de classification. Les fonctions traditionnellement utilisées sont les suivantes :

Perte charnière φ(x) = (1+x)+

Perte de Boosting φ(x) = ex

Perte logistique φ(x) = log2(1+ex )

Perte quadratique φ(x) = (1+x)2
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5.1.3 Consistance du minimiseur duφ-risque

Soit φ :R−→R une fonction convexe telle que ∀x ∈R,

x(φ(x)−φ(−x)) ≥ 0. (6)

Soit ψ : [0,1] −→R la fonction définie par ψ(x) =
Le minimiseur ĝn = ĝn(.,A ) du risque empirique sur le dictionnaire G(A ) est

Théorème 11

Soit ψ : [0,1] −→R la fonction définie par

ψ(p) = inf
u∈R

(
pφ(−u)+ (1−p)φ(u)

)
(7)

S’il existe γ ∈ [0,1] et c > 0 tels que ∀p ∈ [0,1],

|1−2p| ≤ c
(
φ(0)−ψ(p)

)γ , (8)

alors pour toute fonction de prédiction h,

R[sgn(h)]−R[g⋆] ≤ c
(
A(h)−A(h⋆)

)γ
(9)

5.2 Espaces de Hilbert et méthodes à noyaux

Dans cette section, nous résumons les résultats essentiels relatifs aux espaces de Hilbert utiles à l’introduction
des machines à vecteurs de support (SVM). Même si l’exposé reste assez abstrait et qu’il ne s’agit pas de la méthode
traditionnelle pour introduire les SVM, il est important de comprendre ces notions pour bien comprendre d’où
viennent les SVM.

Un espace de Hilbert H est un espace vectoriel normé muni d’un produit scalaire qui en fait un espace
métrique complet :

• H est un espace vectoriel normé.

• Il existe un produit scalaire 〈., .〉 vérifiant ∀x ∈H , 〈x, x〉 = ||x||2.

• Toute suite de Cauchy (xn)n de H converge pour la norme ||.||.

Définition 12

Une suite de Cauchy est une suite (xn)n vérifiant

lim
n→+∞ sup

m>n
||xn −xm || = 0. (10)

Dans les espaces vectoriels normés de dimension finie, une suite vérifiant la condition de Cauchy est toujours
convergente. La réciproque n’est pas toujours vraie et constitue la propriété de complétude. Dans notre cadre
d’étude, cette notion n’est pas importante car nous travaillerons (presque) toujours en dimension finie. On peut
donc oublier la condition de complétude.

Exemples :

• L’espace euclidien Rn muni de 〈x, y〉 = xT y .

• L’ensemble des suites de carré sommable l 2(N) muni de 〈x, y〉 =∑+∞
k=1 xk yk .

• L’ensemble des fonctions de carré intégrable L2(R). muni de 〈 f , g 〉 = ∫ +∞
−∞ f (x)g (x)d x.

• Idem sur C en ajoutant un conjugué sur le second terme.

Les espaces de Hilbert généralisent en dimension infinie la notion d’espace euclidien; on peut travailler de
façon géométrique dans l’espace, avec des normes, des angles, des projections orthogonales.
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FIGURE 5.2 – H représente les données (features) issues de X.

Lorsque les données de X ne sont pas facilement manipulables, on les transforme en les envoyant dans un
espace de Hilbert H appelé espace de représentation (de redescription, ou « features space »), via une fonction de
représentation φ (« features map »). Plutôt qu’une représentation individuelle, il est souhaitable de représenter les
données par couples en respectant les similarités entre objets de X, via une fonction noyau K définie par

K :X×X−→R

(x, y) −→ K(x, y)

Un noyau K est une fonction symétrique et semi-définie positive :

• Symétrique : K(x, y) = K(y, x).

• Semi-défini positif : ∀xi , x j ∈X,∀ai , a j ∈R,∑
i

∑
j

ai a j K(xi , x j ) ≥ 0.

• Qui définit une matrice carrée réelle :
(
K(xi , x j )

)
i , j ∈Rn×n pour i , j = 1, ...,n.

On peut mélanger les deux points de vue en utilisant une fonction φ :X→H et K :X×X→R :

K(x, y) = 〈φ(x),φ(y)〉 (11)

C’est cette dernière formule qui va maintenant nous servir de définition du noyau. Si X possède beaucoup de
paramètres (de features), H peut être de grande dimension, c’est même l’objectif de la fonction de représentation :
travailler dans un espace où il y a beaucoup de « place », où l’on a beaucoup de degrés de liberté dans le choix de
la représentation des données. En choisissantφ de façon adéquate, il est possible de ne pas avoir à effectuer expli-
citement les produits scalaires en grande dimension grâce à l’astuce du noyau (le « kernel trick »). Il est important
de se souvenir que K mesure la similarité entre les données x et y ; il s’agit en quelque sorte de la généralisation
d’une fonction de covariance. La matrice extraite à partir de n données est une matrice de Gram et une matrice de
covariance au sens statistique du terme.

Espace initial X

φ

Feature Space H

FIGURE 5.3 – On envoie les données initiales dans un espace (abstrait) de dimension plus grande, afin de pouvoir
séparer plus facilement les classes.

Les fonctions noyaux jouent le même rôle que les fonctions périodiques dans la transformation de Fourier. On
peut les décomposer en sommes de fonctions propres correspondant à des fréquences données et il existe toute
une théorie similaire à l’analyse harmonique qui permet la décomposition spectrale des fonctions noyaux.
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FIGURE 5.4 – La fonction de représentationφ transforme en fait un point deX en une fonction Kx =φ(x) deX dans
R (considérée comme un élément de l’espace de Hilbert H ).

Nous admettons le résultat suivant : une fonction K :X×X−→R est une fonction noyau si, et seulement si elle
est symétrique et semi-définie positive.

Exemples de noyaux usuels :

• Vanille : K(x, y) = 〈x, y〉.
• Sigmoïde : K(x, y) = tanh(〈x, y〉).

• Gaussien (RBF) : K(x, y) = exp
(
− 1

2σ2 ||x − y ||2
)
.

• ReLU : K(x, y) = min(x, y) = x −ReLU(x − y) = y −ReLU(y −x).

• Polynomial : K(x, y) = (c +〈x, y〉)p .

• Exponentiel : K(x, y) = exp
(−γ||x − y ||).

L’espace de représentation associé au noyau gaussien est un espace de Hilbert de dimension infinie. Nous
reviendrons (un peu) là dessus par la suite.

On remarque que φ n’apparaît pas dans les formules. C’est cette propriété qui permet de ne pas avoir à effec-
tuer de calculs de produits scalaires explicitement.

Si K est un noyau défini positif sur un ensemble X, alors il existe un unique espace de Hilbert H et une
application de représentation φ :X→H tel que tels que ∀x, y ∈X,

K(x, y) = 〈φ(x),φ(y)〉

Théorème 13 Théorème de Mercer-Kolmogorov-Aronszajn

Ce théorème est dû à Mercer (1909) pour X compact de Rd et K continu par rapport à la tribu borélienne,
Kolmogorov (1941) pour X dénombrable et K quelconque et Aronszajn (1944) pour le cas général. Il indique que
tout noyau défini positif peut toujours s’écrire sous la forme du produit scalaire de deux vecteurs d’un espace de
Hilbert représentant respectivement x et y .

Remarques :

• H est unique, mais pas φ.

• On espère que si H est de grande dimension (éventuellement infinie) les données vont devenir plus facile à
classifier (c’est à dire à séparer).

• Le théorème de Mercer explicite l’espace de redescription et permet d’écrire le noyau comme somme dans
une base de fonctions propres.

• Astuce du noyau (kernel trick) : on n’a pas besoin de spécifierφ et d’évaluerφ(x) etφ(y), seul compte K(x, y).

On souhaite choisir pour H un espace de fonctions h : X −→ R. Cela signifie qu’une donnée x ∈ X va être
représentée par une fonction de X dans R. Une telle fonction reste un élément d’un espace vectoriel, donc un
vecteur (en dimension infinie), mais l’idée de remplacer x par une fonction a tout de même de quoi surprendre.
En fait, cette fonction (qui représente les features de x) intègre les informations de similarité entre x et l’ensemble
de toutes les autres données x ′ ∈X. Pour la définir, on va passer par la notion de forme linéaire sur un espace.
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Une forme linéaire continue (FLC) sur un espace de Hilbert est une fonction linéaire continue de H dans R.
Leur ensemble est un e.v. H ′ appelé dual de H . Le théorème de représentation de Riesz nous dit en fait que
H ≃H ′.

• ∀L ∈H ′, il existe un unique f ∈H tel que L(h) = 〈 f ,h〉, ∀h ∈H .

• Réciproquement, ∀ f ∈H , L(h) = 〈 f ,h〉 définit un élément de H ′.

Théorème 14 Théorème de représentation de Riesz

Dire que L est une application linéaire continue est équivalent à dire que |L(h)| ≤ δ||h||, ∀h ∈ H , ce qui est
encore équivalent à ||L|| < δ, ou encore, que L est bornée.

∀x ∈X, soit

Lx : H −→R (12)

h −→ Lx (h) = h(x) (13)

Lx reproduit l’action de h sur x ; c’est la fonction d’évaluation en x. ∀x ∈X, Lx ∈H ′.

H est un espace de Hilbert à noyau reproduisant (RKHS pour Reproducing Kernel Hilbert Space) si, et
seulement si, ∀x ∈X, Lx est continue.

Définition 15

Le théorème de Riesz implique alors que

∀x ∈X,∃ ! Kx ∈H tel que Lx (h) = 〈Kx ,h〉 = h(x), ∀h ∈H . (14)

Autrement dit, dans un RKHS, toute forme linéaire provient d’un produit scalaire par un élément de H . On
peut alors poser

K(x, y) = 〈Kx ,Ky 〉 = 〈φ(x),φ(y)〉 . (15)

Autrement dit,

Kx =φ(x) (16)

Ces deux formules sont très importantes. La première explicite l’astuce du noyau et explique pourquoi le pro-
duit scalaire peut être effectué implicitement sans avoir à connaîtreφ(x). La seconde explique pourquoi le vecteur
de features φ(x) contient à lui tout seul l’ensemble des informations de similarités entre x et tous les autres points
de X. Cette information est disponible via les valeurs Kx (x ′) que prend Kx lorsque x ′ parcourt X.

La correspondance entre noyau et RKHS est précisée par les deux théorèmes suivants, qui forment en quelque
sorte les réciproques du théorème de Mercer-Aronszajn.

H est un espace de Hilbert à noyau reproduisant (RKHS) si, et seulement s’il existe un noyau reproduisant
(unique) K vérifiant

K(x, y) = 〈Kx ,Ky 〉 ,∀x, y ∈X. (17)

Tout élément de H s’écrit alors de façon unique h =∑n
i=1αi Kxi :

h(x) =
n∑

i=1
αi K(x, xi ), ∀x ∈X= 〈h,Kx〉 . (18)

Théorème 16

L’espace de Hilbert associé au noyau reproduisant K est un espace de fonctions régulières. C’est en quelque
sorte l’espace de fonctions minimal (dans le sens le plus économique) associé au noyau et qui joue le rôle d’espace
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de redescription canonique. Dans cet espace, la régularité des fonctions sera liée à la régularité du noyau. Les
fonctions Kx ne sont pas issues d’un dictionnaire donné a priori et ne dépendent que des données x ∈ X. Les
fonctions analysantes Kx (les features de x) dépendent directement des (et s’adaptent aux) données xi ∈ X. La
propriété « reproduisante » (18) indique que la valeur h(x) est reproduite en effectuant le produit scalaire de h par
la fonction analysante Kx .

X

H ∼H ′

φ

•x
•y

•
•

• φ(x) = Kx

• φ(y) = Ky

•
•

•h

K

•K(x, y) = 〈φ(x),φ(y)〉

R

FIGURE 5.5 – Les espaces X, H , H ′ et R, ainsi que les fonctions φ et K.

• Soit K :X×X−→R un noyau symétrique, défini positif.

• Soit H son RKHS.

• Soit Dn = {(xi , yi )} ∈ (X×R)n un échantillon.

• Soit l une fonction de perte.

• Soient λ> 0 et J une fonction réelle strictement croissante.

Alors toute solution ĥn du problème de minimisation

argmin
h∈H

(
1

n

n∑
i=1

l (yi ,h(xi ))+λJ (||h||)
)

. (19)

s’écrit de façon unique sous la forme : ∀x ∈X,

ĥn(x) =
n∑

i=1
αi K(x, xi ). (20)

Théorème 17 du représentant

λ est un paramètre de régularisation et J une fonction pénalisant h pour conserver la norme proche de zéro.

Ce théorème (admis) a été démontré par Kimeldorf et Wahba en 1970. La solution h aura une norme ||h|| aussi
petite que possible et appartiendra à un sous-espace vectoriel de dimension n connue et finie, même si H est de
très grande dimension.

Nous avons ainsi deux interprétations différentes concernant les espaces en jeu : une interprétation géomé-
trique dans H , via l’astuce du noyau et une interprétation fonctionnelle via le théorème du représentant. Celui-ci
établit un lien fondamental entres inductifs régularisés, réglant le compromis biais-variance, et les espaces de Hil-
bert RKHS.

5.3 Machines à vecteurs de support (SVM)

5.3.1 Machine à vecteurs de support : point de vue hilbertien

Revenons maintenant au minimiseur du risque empirique convexifié que nous avons défini dans l’avant-
dernière section :
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ĥn ∈ argmin
h∈H

1

n

n∑
i=1

φ(−Yi h(Xi )). (21)

H a une structure d’espace de Hilbert. Pour un t > 0, on pose

ĥSVM(t ) ∈ argmin
h∈H :||h||≤t

1

n

n∑
i=1

φ(−Yi h(Xi )). (22)

En classification, on choisit souventφ(x) = (1+x)+, appelée perte « hing ». En régression, on utiliseφ(x) = x2 et
l’expression φ(−Yh(X)) est remplacée par φ(Y−h(X)). Si H est un espace de Hilbert à noyau reproduisant (RKHS)
alors on dit que ĥ est un prédicteur à base de noyau, ou une machine à vecteurs supports (SVM). L’hyperparamètre
t (ou λ) est calculé par validation croisée.

On présente souvent l’expression de ĥ sous la forme d’un multiplicateur de Lagrange : pour un t > 0, on pose

ĥSVM(t ) ∈ argmin
h∈H :||h||≤t

1

n

n∑
i=1

φ(−Yi h(Xi )) ⇐⇒ ĥSVM(λ) ∈ argmin
h∈H

(
1

n

n∑
i=1

φ(−Yi h(Xi ))+λ||h||2
)

. (23)

Comme H est un RKHS, la solution de

argmin
h∈H :||h||≤t

1

n

n∑
i=1

φ(−Yi h(Xi )). (24)

est, par application du théorème du représentant, de la forme :

ĥSVM(.) = ĥn(.) =
n∑

i=1
αi K(., xi ) (25)

où K est le noyau RKHS de l’espace H , α1, ...αn ∈R et x1, .., xn les données observées de l’échantillon.

Les αi sont facilement et rapidement déterminés par une méthode d’optimisation convexe.

5.3.2 Machine à vecteurs de supports : point de vue traditionnel

Les SVM ont été inventées par Vapnik à la fin des années 1970, mais n’ont été connues qu’à partir des années 90
(Vapnik 1995) durant lesquelles elles ont été beaucoup utilisées pour la reconnaissance de caractères manuscrits
ou de façon plus générale dans des problèmes de reconnaissance de formes.

L’exposé qui suit est la présentation traditionnelle des SVM, dont nous allons voir qu’elle est équivalente à la
présentation précédente. On dispose d’un échantillon Dn de n observations (xk , yk ), avec xk ∈ Rd et y = ±1, que
l’on peut séparer linéairement par un hyperplan :{

wT xk +b > 0 si yk = 1
wT xk +b < 0 si yk =−1

L’hyperplan séparateur est caractérisé par son vecteur normal w ∈Rd et un seuil b. Son équation est

wT x +b = 0

La distance euclidienne d’un point x ∈Rd à l’hyperplan H est donnée par :

d(x,H) =
∣∣wT x +b

∣∣
||w || .

C’est la formule que nous connaissance depuis le collège et qui nous donne la distance d’un point à une droite.
On peut la redémontrer en quelques lignes ; le point de l’hyperplan le plus proche de x est de la forme x +λw car
w est orthogonal à l’hyperplan. Cette projection appartient à l’hyperplan, elle vérifie donc son équation : wT(x +
λw)+b = 0. Ainsi, λ=−(b+wT x)/||w ||2 et la distance est égale à ||x+λw−x|| = |λ|.||w || = |w T x+b|/||w ||. La norme
||.|| est la norme euclidienne et w et x sont des vecteurs de Rd .

La plus petite distance entre les observations et un hyperplan séparateur (w,b) est

1

||w ||
n

min
i=1

yi (wT xi +b).
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Cette distance est la plus petite possible lorsqu’on se trouve sur l’un des deux hyperplans frontières, c’est à dire
lorsque w T xi +b = ±1 et donc lorsque yi (wT xi +b) = 1. Ainsi, le minimum vaut 1 et la distance minimale vaut
1/||w ||.

Le double de ce minimum s’appelle la marge. La marge est donc la largeur du tube séparant les deux hyperplans
frontières et dans lequel ne se trouve aucun point des deux classes (c.f. fig. 5.6). L’hyperplan (séparateur) de plus
grande marge a pour paramètres (w,b) les solutions de

argmax
w,b

(
1

||w ||
n

min
i=1

yi (wT xi +b)

)
Les observations qui réalisent le minimum sont appelées les vecteurs de support. Les séparateurs à vaste marge

(SVM) sont des machines à vecteurs de support au sens défini précédemment.

w ·x +b = 0

w ·x +b = 1

w ·x +b =−1

w

Marge : 2
||w ||

x1

x2

FIGURE 5.6 – Deux classes d’observations (en bleu et vert) linéairement séparables. En rouge, l’hyperplan sépara-
teur de plus grande marge, en vert et bleu les hyperplans frontières de chaque classe avec les vecteurs supports
(dont le centre est de couleur jaune). La largeur du tube coloriée en jaune représente la marge.

La marge vaut γ= 2/||w ||. Maximiser γ est équivalent à minimiser ||w ||. La condition de séparation des classes
est, ∀i = 1, ...,n :

sgn(h(xi )) = yi ⇐⇒ yi h(xi ) ≥ 1 ⇐⇒ yi (wT xi +b) ≥ 1

Ceci conduit au problème d’optimisation (primal) suivant :{
minw,b ||w ||2/2
s.c. yi (wT xi +b) ≥ 1 ∀i = 1, ...,n.

(26)

Le facteur 1/2 sert uniquement à simplifier les calculs et ne change pas le résultat. Il s’agit d’un problème d’op-
timisation convexe que l’on peut résoudre en définition le lagrangien, puis en vérifiant les conditions de Karush-
Kuhn-Tucker (KKT). On en déduit alors un problème dual, plus facile à résoudre.

On forme le lagrangien du problème :

L(w,b,λ) = 1

2
||w ||2 −

n∑
i=1

αi
[

yi (wT xi +b)−1
]

. (27)

Les αi sont les multiplicateurs de Lagrange et les contraintes sont données par les n équations −yi (xT xi +b)−1.
Les conditions KKT sont nécessaires et suffisantes pour avoir une solution au problème car la fonction objectif et
les contraintes sont des fonctions convexes et différentiables. Le couple optimal (w⋆,b⋆) est solution du primal si,
et seulement s’il existe α⋆ ∈Rn tel que :

∀i = 1, ...,n, α⋆i
[

yi (w⋆T xi +b⋆)−1
]= 0 (28)

et α⋆ doit maximiser L(w⋆,b⋆,α) sous les contraintes
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FIGURE 5.7 – Deux classes d’observations (bleu et rouge) mesurées par l’intermédiaire de deux variables x1 et x2. À
gauche, trois exemples de plans séparateurs. À droite, le plan séparateur optimal, le plus éloigné des deux nuages.
Crédit : Introduction to Machine Learning with Python. James, Witten, Hastie, Tibshirani. Figures du chapitre 9.
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FIGURE 5.8 – Deux classes d’observations (bleu et rouge) mesurées par l’intermédiaire de deux variables x1 et x2. À
gauche, le plan séparateur de plus grande marge avec les points les vecteurs de support à la frontière. À droite, un
exemple de nuages non linéairement séparable à cause d’un point rouge ajouté par rapport au nuage précédent
(trouver où...). Crédit : Introduction to Machine Learning with Python. James, Witten, Hastie, Tibshirani. Figures
du chapitre 9.
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∂L

∂w
= 0 et

∂L

∂b
= 0. (29)

Ceci implique

w⋆ =
n∑

i=1
α⋆i yi xi et

n∑
i=1

αi yi = 0. (30)

En injectant ces équations dans l’expression du lagrangien, il vient

L(w⋆,b⋆,α) = 1

2

∣∣∣∣∣
∣∣∣∣∣ n∑
i=1

αi yi xi

∣∣∣∣∣
∣∣∣∣∣
2

−
n∑

i=1
αi

[
yi

(
(

n∑
j=1

α j y j x j )T xi +b⋆
)
−1

]
(31)

Nous avons ∣∣∣∣∣
∣∣∣∣∣ n∑
i=1

αi yi xi

∣∣∣∣∣
∣∣∣∣∣
2

=
n∑

i , j=1
αiα j yi y j xT

i x j (32)

et

n∑
i=1

αi

[
yi

(
(

n∑
j=1

α j y j x j )T xi +b⋆
)
−1

]
=∑

i , j
αiα j yi y j xT

i x j +b
n∑

i=1
αi yi −

n∑
i=1

αi . (33)

Mais
∑

i αi yi = 0, on a donc :

L(w⋆,b⋆,α) =
n∑

i=1
αi − 1

2

n∑
i=1

n∑
j=1

αiα j yi y j xT
i x j . (34)

On en déduit le problème d’optimisation (dual) sous la forme suivante :
argmax
α∈Rn+

(
n∑

i=1
αi −

n∑
i=1

n∑
j=1

αiα j yi y j 〈xi , x j 〉/2

)
s.c. αi ≥ 0 ∀i = 1, ...,n, ;

n∑
i=1

αi yi = 0.

(35)

On obtient d’abord les α⋆i , on en déduit w⋆ et b⋆ qui donnent l’hyperplan optimal :

w⋆ =
n∑

i=1
α⋆i yi xi

ĥn(x) = h⋆(x) =
n∑

i=1
α⋆i yi 〈xi , x〉+b⋆

Les données de l’échantillon correspondant à α⋆i > 0 sont les vecteurs support et sont les seuls à contribuer

à la solution. En effet, à l’optimum, soit w⋆T xi +b = yi et en ce cas l’observation xi est un vecteur support, soit
α⋆i = 0 et ce terme n’apparaît pas dans la somme. L’hyperplan séparateur optimal ne dépend donc que des vecteurs
supports. Ceci explique que les SVM ne souffrent pas du problème du fléau de la dimension.

Si les données ne sont pas linéairement séparables (c’est la grande majorité des cas), on généralise par une
perte convexe φ et on re-écrit le problème d’optimisation :

min
w,b

(
||w ||2 + c

n

n∑
i=1

φ(−yi h(xi ))

)
⇐⇒ min

w,b

(
1

n

n∑
i=1

φ(−yi h(xi ))+λ||w ||2
)

avec λ= 1/2c qui est un paramètre de régularisation.

Dans le problème dual, 〈x, y〉 se transforme en K(x, y) = 〈φ(x),φ(y)〉 et... on retrouve le premier point de vue
relatif aux espaces de Hilbert.
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FIGURE 5.9 – Deux classes d’observations (bleu et rouge) mesurées par l’intermédiaire de deux variables x1 et x2.
En haut, les données ne sont clairement plus linéairement séparables. En bas, après un changement de variables de
x enφ(x) par une fonction non linéaire, il est à nouveau possible de séparer les deux nuages. En bas à gauche,φ est
une fonction polynomiale de degré 3. En bas à droite, φ est une fonction gaussienne radiale. Crédit : Introduction
to Machine Learning with Pyton. James, Witten, Hastie, Tibshirani. Figures du chapitre 9.

5.3.3 Notion de marge souple de variables d’écart

Un cas particulier presque linéaire est donné par le problème à marge souple : on autorise quelques écarts à
l’hyperplan séparateur en introduisant une variable d’ajustement (« slack variable ») ou variable ressort, d’écart,
souple, molle, etc.) :

ξi =
(
1− yi (w xi +b)

)
+ , i = 1, ...,n.

argmin
w,b,ξ

(
1

2
||w ||2 +c

n∑
i=1

ξi

)

s.c. ξi ≥
(
1− yi (w xi +b)

)
+ , i = 1, ...,n.
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FIGURE 5.10 – Données non linéairement séparables en dimension 2, mais dont on se doute qu’elles sont à symé-
trie circulaire. En dimension 3, elles correspondent à deux nuages de hauteurs différentes qui sont linéairement
séparables. φ(x, y) = (x, y, x2 + y2) et K(x, y) = 〈φ(x),φ(y)〉 = xT y +||x||2||y ||2.

ξi représente la distance du mauvais côté du plan frontière qu’on s’autorise dépasser (mais que l’on souhaite
la plus petite possible) pour une donnée xi (c.f. fig. 5.11). On ajoute alors un terme de régularisation à la fonction
à minimiser, avec une constante de pénalisation c qui va réaliser un compromis entre la largeur de la marge et les
écarts que l’on s’autorise. Lorsque c est grand, on pénalise fortement les ξi (peu de souplesse). Lorsque c est petit :
on peut s’écarter sensiblement de l’hyperplan.

w ·x +b = 0

w ·x +b = 1

w ·x +b =−1

w

Marge : 2
||w ||

ξ⋆1

ξ⋆2

x1

x2

FIGURE 5.11 – Marge souple avec deux classes d’observations (en bleu et vert) non linéairement séparables. Deux
points (l’un vert, l’autre bleu) sont de part et d’autre de la marge. La distance ξ⋆1 et ξ⋆2 à la frontière de leur région
les caractérisent.

Dans le probème dual, les ξi disparaissent et la seule différence par rapport au problème précédent est la
condition αi ≤ c. L’introduction des variables d’écart a donc juste ajouter au problème une borne supérieure aux
multiplicateurs de Lagrange. w ne dépend toujours que des vecteurs supports, pour lesquels la contrainte est
saturée :

yi (wT xi +b) = 1−ξi .

Les vecteurs supports sont les observations xi pour lesquelles ξi = 0 ou bien ξi > 0 mais xi est dans la marge
(bien classé si 0 < ξi < 1 et mal classé si ξi > 1). Le classifieur tolère ainsi quelques données mal classées mais
permet d’être appliqué à des données non linéairement séparables.
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5.3.4 SVR : régression à vecteurs de support

Les sous-sections précédentes présentaient les SVM pour une tâche de classification, mais elles peuvent éga-
lement être utilisées pour des régressions ; on parle alors de régression à vecteurs de support (SVR) [Burges, 1998,
Schölkopf and Smola, 2002]. Ce qui suit provient essentiellement du polycopié de Frédéric Sur [Sur, 2024].

Dans une tâche de regression, on cherche une fonction h approchant au mieux le nuage de points (xi , yi )i .
h(x, w) dépend d’un paramètre à optimiser w , et pour tout i = 1, ...,n, h(xi ) doit s’écarter le moins possible de
yi ∈R. On souhaite par ailleurs que h soit la plus plate (régulière) possible, afin d’éviter le surapprentissage.

Il s’agit encore de minimiser une fonction coût, mais dans un sens autre que les moindres carrés. On utilise ici
une méthode d’estimation robuste au sens de Huber, qui évalue les écarts en valeur absolue. La perte utilisée en
SVR est la perte insensible (« insensitive ») définie pour un paramètre ϵ par

|x|ϵ =
{

0 si |x| < ϵ,
|x|−ϵ sinon.

(36)

On a ainsi : ∣∣y −h(x)
∣∣
ϵ = max

(
0, |y −h(x)|−ϵ) . (37)

Pour la perte ϵ-insensible, un écart inférieur à ϵ entre h(xi ) et yi n’est pas pris en compte (c.f. fig 5.12). Cela
définit un tube de largeur ϵ de la part et d’autre de la courbe de la fonction h à l’intérieur duquel doivent se trouver
tous les points de l’échantillon.

Commençons par une fonction linéaire h(x) = wT x+b. Nous cherchons à résoudre le problème d’optimisation
suivant : {

argmin
w,b

(||w ||2/2
)

s.c. |yi − (w t xi +b)| ≤ ϵ, ∀i = 1, ...,n.
(38)

Il peut ne pas y avoir de solution si ϵ est trop petit. On introduit alors des écarts possibles ξi vérifiant :

ξi =
{ |yi − (w t xi +b)|−ϵ si |yi − (w t xi +b)| > ϵ,

0 sinon.
(39)

et le problème se ramène à minimiser (sous contraintes des égalités précédentes)

E(w,λ) = 1

n

n∑
i=1

∣∣yi −h(xi , w)
∣∣
ϵ+λ||w ||2 (40)

où λ est un paramètre de régularisation. Cela conduit au problème d’optimisation primal SVR argmin
w,b,ξ,ξ′

(
||w ||2/2+C

n∑
i=1

(ξi +ξ′i )

)
s.c. yi −w t xi +b ≤ ϵ+ξi , w t xi +b − yi ≤ ϵ+ξ′i , ∀i = 1, ..,n.

La présence de deux types de variables ξi et ξ′i est due à la présence de valeurs absolues dans les contraintes
initiales. Cette fonction n’est pas linéaire, mais on peut la faire disparaître en évaluant son signe et en introduisant
deux familles de variables d’écart au lieu d’une. Après transformation, on admet que le problème d’optimisation
dual SVR est le suivant : argmin

α,α′
−1

2

∑
i , j

(αi −α′i )(α j −α′j )xT
i x j −ϵ

∑
i

(αi +α′i )+∑
i

yi (αi −α′i )

s.c. 0 ≤ αi ,α′i ≤ C, ∀i = 1, ..,n ;
∑

i (αi −α′i ) = 0.

Après résolution, le régresseur s’écrit sous la forme :

h(x, w) =
n∑

i=1
(αi −α′i )xT

i x +b (41)

et si des noyaux non linéaires sont utilisés, il s’exprime sous la forme :

h(x) =
n∑

i=1
(αi −α′i )K(xi , x)+b (42)

Les figures Fig. 5.13 et Fig. 5.14 illustrent la régression à base de machines à vecteurs de support.
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x

ξ

ε-insensible

x2 (moindres carrés)

+ε−ε

h(x, w)

ε

ξ′i > 0,ξi = 0

ξi > 0,ξ′i = 0

ξi = 0,ξ′i = 0

FIGURE 5.12 – À gauche : la fonction de perte ϵ-insensible comparée à la perte au sens des moindres carrées.
À droite : dans la SVR, la fonction perte définie un ϵ-tube de part et d’autre de la fonction de régression h dans
laquelle doivent se trouver tous les points de l’échantillon. Il est possible de définir des variables d’écarts ξ comme
pour une marge souple. En noir, les observations se trouvant dans le ϵ-tube, en rouge, les données à l’extérieur
(pour lesquelles l’une des variables d’écart est non nulle) et en vert les données qui correspondent aux vecteurs de
support.

FIGURE 5.13 – Un nuage de points (en rouge) générés autour d’une sinusoïde perturbée par un bruit aléatoire et la
courbe de régression SVR (en bleu).

5.3.5 Conclusion et bibliographie sommaire

Les SVM et SVR nécessitent une recherche délicate de la bonne valeur des hyperparamètres en utilisant, par
exemple, la validation croisée; les modèles sont très sensibles aux valeurs de ces hyperparamètres. Ceci implique
qu’il faut toujours d’une part normaliser les features et d’autre part ne considérer qu’un seul hyperparamètre par
feature (ce qui n’est pas possible avec scikit-learn).

On peut généraliser les SVM à des problèmes de classification non binaire grâce à des méthodes OVR (one-
versus-rest) ou bien OVA (one-versus-all) ou encore OVO (one-versus-one). On pose

h(x) = sgn

(
argmax
m=1,...,M

hm(x)

)

où m est le nombre de classes et hm la fonction de décision en classification binaire de la classe m par rapport
à toutes les autres. La figure 5.15 illustre le résultat classification des iris de Fisher avec quatre noyaux différents.

Les méthodes à noyau permettent d’utiliser les SVM ou les SVR pour des problèmes de classification ou régres-
sion sur des arbres, des graphes, des chaînes de caractères, des documents constitués de textes. Nous verrons en
exercices des noyaux adaptés aux grands modèles de langages (LLM).

En résumé :

• Les SVM permettent de faire de la classification et de la régression.

• Les SVM sont considérées comme l’une des meilleures méthodes de classification ou de régression (la plus
utilisée dans les années 1990 avec le Boosting), avec parfois de meilleurs résultats que les réseaux de neu-
rones.
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FIGURE 5.14 – Un nuage de points (en bleu) générés autour d’une sinusoïde perturbée par un bruit aléatoire et
les courbes de régressions SVR (en rouge, avec les ϵ-tubes en rose, pour ϵ = 0.5) pour 4 types de noyaux : linéaire,
polynomial, gaussien et logistique. Noter les performances des noyaux gaussiens.

• C’est une bonne alternative aux réseaux de neurones car elles sont plus faciles à entraîner.

• Les estimateurs ont de bonnes propriétés de parcimoine et ne souffrent pas du fléau de la dimension.

• En grande dimension (d >> n), les SVM sont efficaces....

• ... mais elles n’estiment pas de probabilité (contrairement à la régression logistique, par exemple).

• Les SVM ne sont pas interprétables et pas toujours très rapides.

• Le paramétrage des hyperparamètres est délicat : choix du noyau, valeur de la constante C de régularisation,
choix de l’algorithme d’optimisation.

• Elles sont parfois moins performantes que les forêts aléatoires ou le Boosting.

Bibliographie :

• Learning With Kernels : Support Vector Machines, Regularization, Optimization and Beyond, 2002.

• Hofmann, Schölkopf, Smola, Kernel methods in machine learning, Annals of Statistics, 2008.

• Burges, A tutorial on support vector machines for pattern recognition, Data Mining, 1998.

• Smola, Schölkopf, A tutorial on support vector regression, Statistics and Computing, 2004.

• + Chapitre SVM (p.367) Intro to Statistical Learning with Python.

• + Chapitre 8 du polycopié de Frédéric Sur.
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FIGURE 5.15 – Utilisation des SVM pour classer les 3 espèces d’iris de Fisher. 4 noyaux différents sont proposés. Les
régions dédiées à chaque espèce sont représentées dans le plan caractérisé par la longueur et la largeur du sépale.
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5.4 Boosting

5.4.1 Introduction et motivation

Le Boosting est une méthode d’apprentissage supervisé consistant à construire un prédicteur fiable en agré-
geant des prédicteurs faibles de façon itérative, sur le principe de la sagesse des foules (« Wisdom of the Many »).

Il existe de nombreux algorithmes de Boosting : Adaboost [Freund and Schapire, 1996], historiquement le pre-
mier, Gradient Boosting [Friedman, 2001] et les plus récents XGBoost [Chen and Guestrin, 2016] et Light GBM. Le
Gradient Boosting est une interprétation du Boosting comme descente de gradient dans un espace fonctionnel.

À l’instar des SVM, nous allons voir la technique de Boosting selon deux points de vue différents. Le point de
vue qui suit est celui d’une méthode de convexification et celui que nous verrons dans la section suivante sera une
méthode d’agrégation; le Boosting appartient à ces deux catégories à la fois.

Une façon de convexifier l’ensemble des prédicteurs H ⊂ F (X, {−1,1}), différente de celle exposée pour les
machines à vecteurs de support, est de considérer des combinaisons linéaires convexes de prédicteurs :

Hλ = {
M∑

m=1
λmhm ; λm ≥ 0, hm ∈H ,

∑
m
λm ≤ λ}. (43)

L’ensemble Hλ est convexe et en posant

ĥn,λ ∈ argmin
h∈Hλ

An(h) (44)

on définit un prédicteur Boosting de façon générique.

On montre que si λ= λn →+∞, si λnφ
′(λn)

p
lnn/n →+∞ et si H a une dimension de Vapnik finie, alors ĥn,λn

est universellement consistant. Il s’agit néanmoins d’un problème difficile à résoudre car de dimension infinie.
L’algorithme Adaboost propose une méthode permettant de le résoudre de façon efficace.

5.4.2 Adaboost : Adaptive Boosting

La méthode a été inventée par Freund et Shapire dans les années 90 [Freund and Schapire, 1996]. À chaque
itération, l’algorithme met à jour l’estimateur en favorisant son apprentissage sur les données erronées de l’itéra-
tion précédente, qui sont pondérées de façon plus importante : on « booste » les données mal classées à chaque
itération. Il produit un classifieur performant à partir de classifieurs faibles (et réduit le biais), en donnant plus de
poids aux observations difficiles à prédire. C’est un algorithme simple, rapide et facile à implémenter car il pos-
sède très peu de paramètres. Il est flexible et s’adapte à tout type de classifieur faible sans a priori, même s’il est
très souvent utilisé avec des arbres de décisions de pronfondeur 1 ou 2 comme classifieurs faibles. Il permet éga-
lement d’effectuer de la régression. C’est au final un algorithme versatile avec beaucoup d’applications possibles
(reconnaissance d’images, de textes, moteurs de recherche).

Son comportement vis à vis du surapprentissage est par contre ambigu et l’entrainement séquentiel est coûteux
en temps de calcul. Il est par ailleurs sensible aux valeurs aberrantes et au bruit. Le nombre M d’itérations ne doit
pas être trop grand pour éviter le surapprentissage. La figure 5.16 illustre de façon traditionnelle cette méthode.

Le principe de l’algorithme est le suivant : à chaque itération m, on met à jour l’estimateur hm(x) = hm−1(x)+
αh, où α et h doivent rendre hm minimal pour le risque empirique Rn associé à la fonction de perte exponentielle
(qui est convexe). Les différentes étapes sont

0 • Initialisation : wi (0) = 1/n.

Puis à chaque itération m = 1, ...,M,

1 • Entraîner hm(x) sur l’échantillon pondéré par w = (wi (m))i :

hm ∈ argmin
h∈H

n∑
i=1

wi (m)1[yi ̸=h(xi )]. (45)

2 • Calculer l’erreur normalisée :

ϵm =
n∑

i=1

wi (m)

||w ||1
1[yi ̸=hm (xi )]. (46)

3 • Calculer le poids de l’itération m : αm = ln
p

(1−ϵm)/ϵm .

4 • Mettre à jour les poids des observations :
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Données initiales Données repondérées Données repondérées

FIGURE 5.16 – Schéma traditionnel présentant la technique de Boosting : un premier classifieur faible est entraîné
sur l’ensemble des données initiales. Il pondère de façon différentes les données bien (rectangle vert) et mal clas-
sées (rectangle rouge) en favorisant ces dernières afin que le classifieur se focalise dessus. Un second classifieur est
entraîné sur les données pondérées (les données bien classées, moins prises en compte, sont représentées par des
cercles) et remet à jour les pondérations, etc. Le classifieur final est une moyenne pondérée des classifieurs faibles
utilisés à chaque itéralion.

Échantillon initial

Échantillon pondéré

Échantillon pondéré

Échantillon pondéré

h1(x)

h2(x)

hm(x)

hM(x)

ĥM(x) = sgn

(
M∑

m=1
αmhm(x)

)

FIGURE 5.17 – Forme du classifieur Boosting.

wi (m +1) = wi (m)exp
(
αm1[yi ̸=hm (xi )]

)
, ∀i = 1, ...,n. (47)

⇒ ĥM(x) = sgn

(
M∑

m=1
αmhm(x)

)
(48)

∀m, hm = hm−1 + α̂ĥ, où hm est le minimiseur du φ-risque empirique par rapport à la perte Boosting :

(ĥ, α̂) ∈ argmin
h∈H ,α∈R

1

n

n∑
i=1

φ
(−yi [hm−1(xi )+αh(xi )]

)
(49)

= argmin
h,α

1

n

n∑
i=1

wi (m)exp
(−yiαh(xi )

)
(50)

= argmin
h,α

(
e−α

n

∑
yi=h(xi )

wi (m)+ eα

n

∑
yi ̸=h(xi )

wi (m)

)
(51)

φ(x) = ex , wi (m) = exp(−yi hm−1(xi )).

On trouve ĥ et l’on en déduit α̂= αm . Pourquoi est-ce que cela fonctionne?
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Démonstration. Soit h0 ∈ F(X,R), φ(x) = ex la perte boosting et An le φ-risque. On cherche le couple (α̂, ĥ) qui
minimise ce φ-risque :

(α̂, ĥ) =∈ argmin
α≥0,h∈H

An(h0 +αh) (52)

L’expression à minimiser s’écrit

An(h0 +αh) = 1

n

n∑
i=1

exp(−Yi h0(Xi )−αYi h(Xi )) (53)

= 1

n

n∑
i=1

wi e−αYi h(Xi ) (54)

= 1

n

n∑
i=1

wi e−αYi h(Xi ) [1[Yi=h(Xi )] −1[Yi ̸=h(Xi )]
]

(55)

en posant (pour alléger les formules et sans perte de généralité) :

wi =φ(−Yi h0(Xi ))/
n∑

i=1
φ(−Yi h0(Xi )) (56)

qui ne dépend que de l’échantillon de données et de h0 (autrement dit on normalise les poids wi ).

Puisque Yi et h(Xi ) sont à valeurs binaires (±1), Yi = h(Xi ) ⇐⇒ Yi h(Xi ) = 1 et de même, Yi ̸= h(Xi ) ⇐⇒
Yi h(Xi ) =−1. Ainsi,

(α̂, ĥ) = argmin
α≥0,h∈H

(
e−α

1

n

n∑
i=1

wi1[Yi=h(Xi )] +eα
1

n

n∑
i=1

wi1[Yi ̸=h(Xi )]

)

= argmin
α>0

(
(eα−e−α)

1

n

n∑
i=1

wi1[Yi ̸=h(Xi )] +
1

n
e−α

)
.

∀α≥ 0, le minimum est atteint quand

ĥ ∈ argmin
h

∑
i

wi1[Yi ̸=h(Xi )]. (57)

La forme de l’expression permet de maximiser séparemment h et α. ĥ étant choisi pour maximiser h, alors

α̂ ∈ argmin
α>0

(
(eα+e−α)ϵ+e−α

)= argmin
α

G(α), (58)

avec ϵ=∑
i wi1[Yi ̸=h(Xi )].

G′(α) = (eα−e−α)ϵ−e−α et G′′(α) = eαϵ+e−α(1−ϵ). Ainsi, G est convexe et sa dérivée s’annule en

α= 1

2
ln

(
1−ϵ
ϵ

)
(59)

que l’on choisit dans l’étape 3 de l’algorithme.

Il est important de noter que la perte Boosting lb(x) = ex est convexe et que lb(x) ≥ l0−1(x). Adaboost minimise
cette perte en minimisant l’expression

∑
i wi1[•].

Quelques remarques :

• La magnitude de yh(x) est la marge, qui peut être interprêtée comme la confiance qu’a le classifieur h en sa
prédiction.

• L’expression (57) peut se réécrire sous la forme

ĥ = argmin
h

Ex∼P
[
1[Yi ̸=h(Xi )]

]
(60)

où P est la distribution de probabilités empirique des xi pondérés par les poids P(i ) = wi . Cette expression va
nous permettre de voir le Boosting comme un algorithme de descente de gradient stochasique.

• Les classifieurs faibles utilisés ne doivent pas être trop faibles : ϵm = 1/2−γn avec γn > 0.
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• Majoration de l’erreur empirique : on peut montrer que

Rn(ĥm) = 1

n

n∑
i=1

1[yi ̸=ĥm (xi )] ≤ exp

(
−2

M∑
m=1

γ2
m

)
≤ e−2Mγ2

(61)

avec γ ≤ γm . Ainsi, l’erreur empirique tend exponentiellement vite vers 0 quand le nombre d’itérations tend
vers l’infini.

• Majoration de l’erreur de généralisation : Freund et Shapire on également montré que :

R(ĥm) =P[ĥm(X) ̸= Y] ≤ Rn(ĥm)+O

(√
MV

n

)
(62)

où V est la dimension de Vapnik de l’espace des prédicteurs (c.f. annexes). Ainsi, lorsque M est grand (et V
aussi), on a un risque de surapprentissage, car le second terme domine. Il est donc important de bien choisir M.
Les grandes valeurs de V correspondent à des classifieurs faibles complexes.

• Enfin, Bartlett et Traskin ont montré que si M = Mn = n1−ϵ, ϵ ∈]0,1[, alors Adaboost est fortement et univer-
sellement consistant en classification :

lim
n→+∞L(ĥMn ) = L⋆, p.s. (63)

Adaboost peut être étendu à des étiquettes non binaires. L’une des méthodes correspondantes s’appelle SAMME
pour Stagewise Additive Modeling Multi-class Exponentiel et effectue une classification dans le cas oùY= {1, ...,K}.
Le principe est le suivant : partant de classifieurs faibles de la forme

P[h(X) = Y] ≥ 1

K
+γ, (64)

les étapes sont les mêmes à l’exception de l’étape 3 où le poids est donné par

αm = ln
1−ϵm

ϵm
+ ln(K−1) (65)

et de la sortie qui est donnée par

ĥm(x) = argmax
k=1...K

M∑
m=1

αm1[hm (x)=k]. (66)

5.4.3 Gradient Boosting

Nous reprenons les hypothèses du problème de classification binaire : Dn = {(x1, y1, ..., (xn , yn)} avec xi ∈ Rd et
yi =±1. Le risque empirique est

Rn(h, x, y) = 1

n

n∑
i=1

l (h(xi ), yi ) (67)

L’algorithme de Gradient Boosting utilise une méthode semblable à la méthode de Newton-Raphson pour mi-
nimiser le risque empirique (lorsque celui-ci est strictement convexe). On fixe un paramètre λ et l’on construit une
suite récurrente de la forme

xm = xm−1 −λl ′(xm−1). (68)

Se pose le problème de la notation du vecteur gradient. Que signifie ∇x Rn ? Ce que l’on trouve partout est la
formule suivante :

∇x Rn(hm) =
(
∂l (yi ,h(xi ))

∂h(xi )

∣∣
h(xi )=hm (xi )

)T

i=1,..,n
(69)

Cette notation est ambiguë et peu claire à cause de la dérivation par rapport à h(xi ), qui n’est pas une variable.
En fait, Rn est une fonction de deux variables vectorielles x et y et on ne peut donc la dériver que par rapport aux
composantes de ces deux variables. Voici la notation que nous adopterons : partant de ∂l

∂x (x, y) on pose

∇x Rn(hm) =
(

1

n

∂l

∂xi
(hm(xi ), yi )

)T

i=1,..,n
(70)
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Il s’agit du gradient de la perte empirique Rn (qui est différentiable) en tant que fonction de sa variable x, évalué
aux points d’abscisses hm(xi ). Le gradient est le vecteur des dérivées partielles en xi que l’on évalue ensuite aux
points de coordonnées (hm(xi ), yi ). Cette mise au point étant effectuée, nous présentons le principe de Gradient
Boosting.

Comme on l’a dit, Adaboost est un cas particulier d’algorithme de descente de gradient, dans lequel on cherche∑M
m=1αmhm minimisant Rn(h) = ∑n

i=1 l (h(xi ), yi )/n. Puisqu’il n’existe pas de solution explicite, on cherche donc
une solution approchée et l’idée est d’utiliser un algorithme de descente de gradient de type Newton-Raphson. On
parle parfois de gradient fonctionnel car on cherche une fonction minimisante et non un point ou un vecteur.

À une itération donnée, on a un classifieur hm−1 à améliorer. On lui ajoute g de telle sorte que Rn(hm−1 +
αg ) diminue au maximum. D’après la méthode de Newton-Raphson, il faut prendre l’opposé du gradient : g =
−∇x Rn(hm−1). On pose donc :

hm(x) = hm−1(x)−α∇x Rn(hm−1) =
(
hm−1(xi )− λ

n

∂l

∂xi
(hm−1(xi ), yi )

)
i

Il y a deux problèmes :

• La récurrence donne hm uniquement aux points xi .

• Le gradient g n’a aucune raison d’appartenir à H , donc hm non plus.

Pour obtenir hm(x) ∀x ∈Rd et s’assurer que hm ∈H , on effectue une régression sur Dn,m = (xi ,ui )i=1,..,n avec

ui = ui (m) =− ∂l

∂xi
(hm−1(xi ), yi )

On cherche la fonction h ∈H la plus proche de g : la solution hm s’obtient en ajustant le classifieur sur (xi ,ui )i .
On détermine ensuite la valeur optimale αm de α.

Principe de l’algorithme de Friedman [Friedman, 2001] qui implémente cette méthode :

• Initialisation : h0(.) = 1
n argminc

∑n
i=1 l (c, yi )

• Pour m = 1, ...,M, étant donné hm−1 calculé à l’itération précédente,

— ∀i = 1, ..,n, calculer les pseudos-résidus ui .

— ajuster un classifieur de H sur l’échantillon (xi ,ui )i :

hm = argmin
h,α

∑
i

[ui −αh(xi )]2

— déterminer α optimal :

αm = argmin
α

∑
i

l
(
hm−1(xi )+αhm(xi )

)
— mettre à jour : hm(x) = hm−1(x)+αmhm(x).

En sortie, on obtient bien une combinaison linéaire (convexe) d’estimateurs de H que l’on transforme en
classifieur binaire :

ĥM(x) = sgn

(
M∑

m=1
αmhm(x)

)
. (71)

Contrairement à Adaboost, on ne modifie pas directement les poids de certaines données entre les itérations,
mais on agrandit l’ensemble possible des classifieurs faibles à ajouter au classifieur courant. Plusieurs paramètres
sont à calibrer :

• La fonction de perte (dérivable et convexe). En classification binaire, on utilise l (y,h(x)) = exp(−yh(x)) pour
Adaboost et l (y,h(x)) = ln(1+exp(−2yh(x))) pour Logiboost (variante de Adaboost).

• Le nombre M d’itérations, qui est à déterminer avec soin pour éviter le surapprentissage.

• Le paramètre de régularisation α, lorsqu’il est fixe (c’est le « learning rate » : souvent ∼ 0.1). Si α = 1, avec
la perte exponentielle, on obtient à peu près l’algorithme Adaboost. α contrôle la vitesse de minimisation :
lorsque α augmente, M diminue et vice-versa. Dans la version des deux algorithmes précédents, α n’est pas
fixe et ses différentes valeurs αm sont optimisées dans l’algorithme à chaque itération.

• Les paramètres de chaque classifieur constituant la combinaison linéaire.
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Le Boosting réduit le biais mais augmente la variance. Il est par conséquent préférable de choisir un classifieur
faible possédant un biais élevé, afin d’avoir une variance faible. Le biais sera réduit par l’algorithme, mais pas la
variance. Ceci explique l’utilisation courante d’arbre peu profonds comme classifieurs faibles.

Pour déterminer le nombre optimal M d’itérations, on peut l’estimer à partir du risque empirique en évaluant

M̂ = argmin
M

1

n

n∑
i=1

l (Yi , ĥM(Xi )), (72)

mais la somme est constituée de variables aléatoires qui ne sont pas indépendantes. Il faut donc utiliser une
validation croisée.

Adaboost correspond (presque) au Gradient Boosting pour la perte l (y,h(x)) = exp(−yh(x)). La sortie est un
estimateur de

h⋆(x) = 1

2
ln

(
P[Y = 1|X = x]

P[Y =−1|X = x]

)
. (73)

Si Y est à valeurs dans {0,1}, nous avons vu dans de cours de statistique mathématique, en étudiant la régression
logistique, que la loi conditionnelle de Y sachant [X = x] est une loi de Bernoulli de paramètre p(x) =P[Y = 1|X = x]
et que

p(x) = exTβ

1+exTβ
(74)

où β est le vecteur des coefficients d’une régression linéaire. Si, à la place de cette définition, on pose

p(x) = eh(x)

1+eh(x)
(75)

pour une fonction vectorielle h, alors l’expression de la log-vraisemblance permet de définir la fonction de
perte à minimiser :

l (x, y) = ln
(
1+exp(−2yh(x))

)
. (76)

C’est la perte logistique, qui définit une fonction convexe. L’algorithme correspondant s’appelle Logisboost et
minimise le même estimateur logistique qu’Adaboost. Il est moins sensible aux observations mal classées.

Comme précédemment, il est possible de généraliser l’algorithme au cas multi-classes, en définissant la pro-
babilité d’appartenir à la classe k ∈ {1, ...,K} par

pk (x) = ehk (x)∑K
i=1 ehi (x)

, (77)

avec
∑

i hi (x) = 0. On calcule simultanément le vecteur de fonctions ĥm = (ĥm1 , ..., ĥmK ) avec

L(y,h(x)) =−
K∑

k=1
1[y=k] ln pk (x) (78)

∂L

∂x
L(y, x)|x=hk

=1[y=k] −pk (x) (79)

Il existe également des versions stochastiques de Gradient Boosting utilisant un algorithme de descente de
gradient stochastique, qui est à la fois plus rapide et de meilleure précision.

5.4.4 Extreme Gradient Boosting : XGBoost

XGBoost [Chen and Guestrin, 2016] est une version sophistiquée de Gradient Boosting qui optimise la plupart
des étapes de l’algorithme initial :

• Ajoute de la régularisation dans les entrainements des classifieurs faibles.

• Utilise Newton-Raphson à la place du gradient.

• Utilise un développement limité d’ordre 2 de la fonction de perte.

• Parallélise certaines étapes lorsque c’est possible.

• Exploite la parcimonie lorsque c’est possible.

Toutes ces optimisations font de GXBoost un algorithme très efficace avec une grande scalabilité.

© 2025-2026 ENSAI 61



5.4.5 Boosting pour la régression : L2-Boosting

En régression, on utilise simplement l’algorithme de Gradient Boosting avec la fonction de perte donnée par

l (y,h(x)) = 1

2
(y −h(x))2. (80)

dans un cadre où Y=R.

À l’issue des M itérations, l’estimateur ĥM est un estimateur du minimiseur du risque empirique :

h⋆ = E[Y|X = x] = argmin
h

E
[
(Y−h(X))2] (81)

Dans ce cas particulier, les variables ui sont simplement de la forme ui = yi −hm−1(xi ) et correspondent aux
résidus de la régression à l’itération m −1.

Les figures Fig. 5.18 et Fig. 5.19 illustrent les méthodes de Boosting pour la régression.

FIGURE 5.18 – Performances d’Ababoost dans une tâche de régression. Chaque classifieur faible est ici un arbre de
profondeur 2.

5.4.6 Conclusion et bibliographie sommaire

• On utilise souvent Adaboost et Gradient Boost avec des arbres CART peu profonds (classifieurs faibles) : H

est un ensemble de combinaisons linéaires d’arbres de décision.

• Gradient Boosting stochastique : à chaque itération, on entraîne le classifieur sur un sous échantillon aléa-
toire de Dn (sans remise).

• Gradient Boosting avec α= 1 et perte Boosting ∼ Adaboost.

Bibliographie :

— Freund, Schapire. Experiments with a new boosting algorithm. roceedings of the 13th Inter. Conf. on Ma-
chine Learning. 1996.
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FIGURE 5.19 – Performances de Gradient Boosting dans une tâche de régression. À gauche, des arbres de décision,
seuls, en régression (profondeur 1, 3, 20). À droite, une exécution de Gradient Boosting avec des arbres de profon-
deur 1.

— Freund, Shapire. Boosting. MIT Press. 2012.

— Friedman. Greedy function approximation : A gradient boosting machine. Annals of Statistics. 2001.

— Friedman, Hastie, Tibshirani. Additive logistic regression : A statistical view of boosting. Annals of statistics.
2000.

— Chen, Guestrin. XGBoost : A Scalable Tree Boosting System. 2016.

— + Chapitre 8 : Tree-Based Methods (p.331-363) Intro to Statistical Learning with Python.

— + Chapitre 7 du polycopié de Frédéric Sur.
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Chapitre 6

Méthodes à base d’agrégation

6.1 introduction et motivation

Les méthodes d’agrégation (« ensemble learning ») sont des techniques d’apprentissage statistique qui com-
binent plusieurs modèles de base afin d’améliorer les performances globales. Les principales méthodes sont : Bag-
ging, Boosting et Stacking. Elles permettent d’améliorer la robustesse et les performances des modèles d’appren-
tissage statistique en combinant les forces de plusieurs modèles de base.

L’idée sous jacente derrière les techniques d’agrégation est d’essayer de réduire la variance des modèles, sans
augmenter le biais. Il est acquis que la moyenne d’estimateurs réduit la variance dès lors que les modèles sont
indépendants. Mais des modèles entraînés à partir de même données ne sont pas indépendants. Le Boosting uti-
lise par exemple des techniques de rééchantillonnage, dont nous rappelons quelques résultats dans la section
suivante, pour pallier ce problème de dépendance des données.

6.2 Boostrap et rééchantillonnage

Le Bootstrap a été introduit par Efron en 1979. Il s’agit de créer des échantillons aléatoires permettant de simu-
ler une loi lorsque l’on n’a pas beaucoup d’échantillons disponibles. Le principe est de générer des échantillons
qui ressemblent à l’échantillon de départ.

FIGURE 6.1 – L’expression Bootstrap vient des aventures du baron de Münchhausen, de Rudolph Raspe (1785) :
« to pull oneself up by one’s bootstraps » (se hisser en tirant sur les languettes de ses bottes ∼ se sortir seul d’un
situation difficile).

Rappels sur les estimateurs « plug-in » :

• Dn = {Z1, ...,Zn} n-échantillon de v.a.i.i.d. Zi = (Xi ,Yi ).

• Xi observations issues d’une v.a. X : données, variables explicatives.

• Yi issues d’une v.a. Y, catégories des Xi : étiquettes ou labels.

• X ∈X, Y ∈Y.

• Pθ proba sur E =X×Y : loi inconnue de (X,Y) et (Xi ,Yi ).

• θ= θ(P) paramètre inconnu dépendant de P.

• T = Tn = T(X1, ...,Xn) = T(P) estimateur de θ.

• Comme la loi de X est inconnue, on utilise la mesure empirique :
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Pn = 1

n

n∑
i=1

δXi (1)

On sait (théorèmes de Glivenko-Cantelli, de la limite centrale fonctionnelle et de Kolmogorov-Smirnov) quePn

est fortement et uniformément consistant pour P.

Dans un estimateur plug-in, on remplace P par Pn dans l’expression de θ= T(P) :

θ̂= T(Pn) = T(X1, ...,Xn) (2)

Exemple : θ= E[X] = ∫
xP(d x) ⇒ θ̂= Xn = 1

n

∑
i Xi =

∫
xPn(d x)

Pn est la mesure discrète qui sélectionne de façon uniforme chaque observation Xi avec probabilité 1/n.

Les estimateurs plug-in ont de bonnes propriétés : ||Pn −P||∞ = supt |Fn(t )−F(t )| −→ 0 p.s.

FIGURE 6.2 – Convergence uniforme des fonctions de distributions empiriques (en noir) d’échantillons de taille n
vers la fonction de répartition théorique (en rouge) de la loi initiale à densité. Crédit : Arthur Charpentier.

Principe du Bootstrap.

On remplace P par Pn et on ré-échantillonne à partir de Pn .

Soit (X⋆1 , ...,X⋆n ) l’échantillon bootstrap issu de (x1, ..., xn).

Dans le Bootstrap naïf, les X⋆i sont tirés de façon uniforme et avec remise parmi les (x1, ..., xn) (∼ tirages avec
remise dans une urne). En quelque sorte, on échantillonne l’échantillon initial (X1, ...,Xn).

• Dans le « monde réel », on estime θ par θ̂= T(Pn) = T(X1, ...,Xn).

• Dans le monde bootstrap, on estime θ par θ⋆ = T(X⋆1 , ...,X⋆n ).

Ceci n’est valide que si la loi de θ⋆ approche bien celle de θ̂, c’est à dire si L (θ⋆|X1, ...,Xn) et L (θ̂) ont même
limite. Les conditions de validité dépendent également de la régularité des fonctions en jeu :

• La loi limite de T(Pn) doit dépendre continûment de P.

• On doit avoir convergence uniforme en P dans un voisinage d’une mesure.

• Il y a des conditions de régularité (continuité, différentiabilité) dans l’espace des mesures de probabilités (la
variable est une mesure de probabilité).

Cette technique fonctionne bien si les lois sont bien approchées par des gaussiennes, mais fonctionne mal
typiquement pour les lois extrêmes (min, max, quantiles) et/ou pour des fonctions irrégulières de P.

Exemple : pour T(X1, ...,Xn) = X, si E[X2] <∞, X
⋆

covnerge bien vers E[X].

Exemple : Pour T(X1, ...,Xn) = max(X1, ...,Xn) si X ∼ E loi exponentielle, les échantillons bootstrap ne converge
pas.

Il est enfin nécessaire de vérifier les moments d’ordre 2, et de toujours vérifier par des simulations le compor-
tement bootstrap.

© 2025-2026 ENSAI 66



• On peut construire plusieurs échantillons bootstrap de façon à simuler plusieurs tirages : nn échantillons
bootstrap différents sont possibles avec une taille initiale de n.

• En pratique le nombre B de tirages est choisi entre B = 200 et B = 1000.

• Les échantillons sont non indépendants, mais sont i.i.d. conditionnellement à Dn .

θ⋆1 = T(X⋆11, ...,X⋆1n)
...
θ⋆b = T(X⋆b1, ...,X⋆bn)
...
θ⋆B = T(X⋆B1, ...,X⋆Bn)

Les vecteurs θ⋆b pour b = 1, ...,B, sous Pn , sont des réplications bootstrap de θ̂= T(X1, ...,Xn).

Il y a une double approximation : on approche P et θ par Pn et θ̂, puis par P⋆n et θ⋆. Sachant Dn , P⋆n est la loi du
tirage uniforme avec remise dans une urne contenant {x1, ..., xn}.

Les quelques résultats ci-dessus ne constituent absolument pas un cours sur le bootstrap (qui nécessiterait une
trentaine d’heures à lui tout seul) mais juste quelques rappels (mathématiquement non rigoureux) pour pouvoir
présenter le Bagging.

À compléter...

6.3 Bagging : Bootstrap Agregating

6.3.1 Principe du Bagging

Le principe des méthodes de Bagging (pour Bootstrap Aggregating), découvertes par Leo Breiman [Breiman, 1996],
est d’agréger plusieurs classifieurs faibles pour obtenir un classifieur possédant de bonnes propriétés. Contraire-
ment au Boosting, l’agrégation n’est pas obtenue de façon itérative mais en effectuant une moyenne pondérée
(pour la régression) ou un vote (pour la classification) parmi les estimateurs de base.

Chaque estimateur de base est entraîné sur des échantillons bootstrap Dnb issus de l’échantillon initial, avec
b = 1, ...,B, donc par tirage aléatoire avec remise.

Nous allons présenter le Bagging à la fois pour une tâche de régression et pour une tâche de classification.

Considérons B estimateurs g1, ..., gB. Pour une tâche de régression posons comme modèle : Y = g (X)+ ϵ avec
g (x) = E[Y|X = x].

Pour chaque échantillon bootstrap Dnb issu de l’échantillon initial, on ajuste un régresseur gb(x). Le régresseur
bagging est

ĝB(x) = 1

B

B∑
b=1

gb(x) (3)

En régression, l’algorithme est le suivant :

0 • En entrée : l’échantillon Dn , un régresseur ou classifieur g et le nombre B.

Puis pour b = 1, ...,B :

1 • Tirer un échantillon bootstrap Dnb dans Dn .

2 • Ajuster un régresseur ou classifieur gb(x) sur cet échantillon.

3 • En sortie, on obtient l’estimateur Bagging suivant

ĝB(x) = 1

B

B∑
b=1

gb(x) (4)

gb(x) est une v.a. qui dépend de Dnb ⊂Dn (tiré aléatoirement). Attention! Les gb(x) ne sont pas indépendants,
mais conditionnellement à Dn ils sont i.i.d.

E[ĝB(x)] = E[gb(x)] (5)

En général, à cause de la dépendance entre les gb(x),
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V
(
ĝB(x)

) ̸= 1

B
V(gb(x)) (6)

Malgré tout, le tirage bootstrap atténue la dépendance en introduisant une nouvelle source d’aléa.

On passe de Dn à Dnb par un tirage uniforme avec remise. Un vecteur aléatoire d’indices Ib ⊂ [[1..n]]n est généré
pour chaque échantillon.

gb(x) = gb(x,Dnb ,Dn) = gb(x, Ib ,Dn) (7)

Conditionnellement à Dn , les gb(x) sont des v.a.i.i.d. (dépendant de Ib).

lim
B→+∞

ĝB(x) = EI[g (x, I)|Dn] (8)

Escroquerie : où est passé le b dans Ib ?

V
(
ĝB(x)

)= ρ(x)V(gb(x))+ 1−ρ(x)

B
V(gb(x)) (9)

Avec ρ(x) = cov(gb(x), gb′ (x)). Quand B →+∞, de façon peu rigoureuse, on a :

ĝ (x) = lim
B→+∞

V
(
ĝ (x)

)= ρ(x)V(gb(x)) (10)

Plus la corrélation ρ(x) est faible, plus la variance diminue. L’objectif du bootstrap est d’ajouter de l’aléatoire
pour (presque) créer de l’indépendance : le hasard fait bien les choses. Il faut donc agréger des estimateurs sen-
sibles aux perturbations de Dn , de telle sorte de varier les sous-échantillons revienne à varier les performances de
chaque estimateur de base. Les arbres de décision sont de bons candidats pour constituer les modèles de base, car
ils sont typiquement instables.

Si chaque échantillon tiré est de taille bn avec bn →+∞ et bn/n → 0, on peut montrer que ĝ (x) est universelle-
ment consistant.

6.3.2 Forêts aléatoires

Les forêts aléatoires (« Random Forest ») ont été introduites par Breiman également. Il s’agit simplement de la
méthode de Bagging, appliquée avec des arbres de décisions comme classifieurs faibles.

T̂B(x) = 1

B

B∑
b=1

Tb(x)

• On sélectionne aléatoirement m variables de l’arbre parmi les d variables initiales.

• On cherche à diminuer la corrélation entre les arbres.

• On a deux nouvelles sources d’aléa : le tirage bootstrap de l’échantillon et le choix des m variables sur les
arbres.

• Profondeur typique : 5 en régression, 1 en classification (heuristique).

• Valeur typique de m : d/3 en régression,
p

d en classification (heuristique).

• Attention au biais : le biais ne diminue pas en Bagging.

6.3.3 Mesures de performances

Comme pour les autres méthodes d’apprentissage statistique, on mesure l’erreur de prédiction en régression
par les moindres carrés et par la probabilité d’erreur en classification.

Utilisation par sous-ensemble d’apprentissage/validation ou par validation croisée.

Le bootstrap permet une estimation de l’erreur par OOB (Out of Bag).

Pour tout (Xi ,Yi ) de Dn , soit Ji le sous-ensemble des arbres qui ne contient pas l’observation i . La prévision de
Y en Xi est

Ŷi = 1

|Ji |
∑

b∈Ji

T(Xi ,Dnb).

L’erreur de prédiction OOB est : 1
n

∑n
i=1(Ŷi −Yi )2.

La probabilité d’erreur OOB est : 1
n

∑n
i=11[Ŷi ̸=Yi ].
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FIGURE 6.3 – À gauche : illustration des performances du Bagging et de forêts aléatoires. À droite : comparaison des
performances en Boosting et Bagging en fonction du nombre d’arbres. Crédit : Introduction to Machine Learning
with Python. James, Witten, Hastie, Tibshirani. Figures du chapitre 8.

6.4 Le Boosting vu comme une méthode d’agrégation

Comme nous l’avons vu au chapitre précédent, le Boosting est une méthode itérative qui combine plusieurs
modèles de base faibles pour créer un modèle fort. Chaque modèle de base est entraîné pour corriger les erreurs
du modèle précédent.

On Entraînee un modèle de base sur l’échantillon originel, puis on ajuste les poids des échantillons en fonction
des erreurs du modèle précédent. On entraîne un nouveau modèle de base sur ces données pondérées, puis on
répéte les étapes jusqu’à ce qu’un critère d’arrêt soit atteint.

On peut donc considérer le Boosting comme une méthode d’agrégation (itérative).

6.5 Stacking

6.5.1 Principe du stacking

Le stacking est une technique d’agrégation d’un petit nombre d’estimateurs (classifieurs ou régresseurs) ser-
vant de modèles de base à un méta-modèle. Contrairement aux techniques précédentes, les estimateurs de base
ne sont pas des estimateurs faibles et ils sont éventuellement de nature différente.

Une approche naïve consisterait à créer une combinaison linéaire pondérée de bons estimateurs en espérant
qu’elle soit meilleure que chaque estimateur de base. Cela n’est vrai que si les poids minimisent l’erreur théorique
(inconnue). Mais si l’on minimise l’erreur d’entraînement, on se retrouve rapidement en situation de surappren-
tissage. Il y a donc ,écessité d’une structure à deux niveaux et la combinaison linéaire (CL) sera performante si les
estimateurs sont individuellement performants, tout en étant très différents les uns des autres. Le stacking se dis-
tingue donc des autres techniques d’agrégation par son approche hiérarchique : dans un premier temps, plusieurs
modèles de base sont entraînés sur les données disponibles. Ensuite, un méta-modèle, souvent plus simple, est
entraîné pour apprendre à combiner au mieux les prédictions des modèles de base. L’idée sous-jacente est que
le méta-modèle peut capturer les forces et les faiblesses des différents modèles de base, conduisant ainsi à une
prédiction finale plus robuste et précise.

Précisons : le premier niveau est formé de plusieurs modèles de base, chacun entraîné séparément sur les
mêmes données. Chaque modèle donne des prédictions différentes à une donnée. Le second niveau est appelé
méta-modèle. Les prédictions du niveau 1 servent de données au niveau 2. Le méta-modèle est entraîné sur ces
prédictions mais pas sur l’échantillon du niveau 1. Les poids initiaux di niveau 2 sont fonction des performances
de chaque modèle du niveau 1. Ces poids sont modifiés lors de l’entraînement du méta-modèle et celui-ci propose
une prédiction finale. Il est important que les différents modèles soient construits de façon indépendantes.
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Dn

Modèle 1

Modèle 2

Modèle 3

Modèle 4

g1(x)

g2(x)

gm(x)

gM(x)

Méta

D′
s

ϵ1

ϵ2

ϵm

ϵM

M∑
m=1

αm gm(x)

FIGURE 6.4 – Illustration du Stacking. Chaque classifieur niv.1 gm fournit au méta-modèle son erreur de régression
/ classification ϵm . Le méta-modèle initialise les poids αm à partir de ϵm . Il met à jour les poids lors de son entraî-
nement sur D′

s .

Exemples de modèles de base : régression logistique, arbre de décision, k-ppv, SVM, réseaux de neurones, etc.

Quelques remarques.

• Le gain vient de la diversité des modèles !

• Sur quelles données d’apprentissage doit-on entraîner les algorithmes?

— Bagging : sur des versions modifiées du même échantillon (tirages avec remise).

— Boosting : sur les même données mais avec pondération des individus.

— Stacking niveau 1 : sur le même échantillon à tous les classifieurs de niveau 1.

— Stacking niveau 2 : sur un autre échantillon pour entraîner le niveau 2.

• Il est nécessaire d’utiliser une validation croisée pour éviter le surapprentissage entre niveaux et il est impor-
tant de garder peu de modèles pour ne pas avoir trop de paramètres ou de complexité.

• Le stacking peut réduire à la fois la variance et le biais.

6.6 Comparaison des méthodes

Bagging Boosting Stacking

Objectif Réduire la variance Réduire le biais Augmenter les perf.
Modèles de base Identiques Identiques Différents

Entraînement Parallèle Séquentiel Au niveau du méta-modèle
Agrégation Vote majoritaire ou moyenne Moyenne pondérée Moyenne pondérée

Nous reprenons ici un type de tableau utilisé par Laurent Rouvière dans ces cours pour résumer les points forts
et les points faibles des différentes méthodes.

Linéaire SVM RN Arbre Forêt Boosting

Performances ■ ■ ■ × ✓ ✓
Calibration × × ✓ ✓ ✓

Coût en calcul ■ × × ✓ ✓ ✓
Interprétation ✓ × × ■ × ×

Bibliographie :

— Bagging Predictors. Breiman. Machine Learning. 1996.

— Forêts aléatoires. Genuer. Thèse de doctorat. 2010.

— Stacked Generalization. D. Wolpert. Neural Networks. 1992.

— Super Learner. Van der Laan, Polley, Hubbard. Statistical Applications in Genetics. 2007.

— + Chapitre 5 (bootstrap p.212) Intro to Statistical Learning with Python.
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— + Chapitre 8 (Bagging et random forests p.343) Intro to Statistical Learning with Python.

— + Chapitre 7 (Bagging p.88) du polycopié de Frédéric Sur.
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Chapitre 7

Les réseaux de neurones

À venir....

Input #1
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Input #4

Output

Hidden
layer

Input
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Output
layer

Training Data

sample and feature bagging

. . .

Tree 1 Tree 2 Tree n

mean in regression or majority vote in classification

prediction
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Chapitre 8

Brève introduction aux méthodes de
l’apprentissage non supervisé

À venir....

8.1 Formalisation et principales méthodes

L’apprentissage non supervisé se distingue de l’apprentissage supervisé par son objectif fondamental : extraire
des structures, des motifs ou des regroupements cachés dans des données sans utiliser d’étiquettes prédéfinies ;
regrouper ce qui se ressemble (« ce qui se ressemble s’assemble »), éloigner ce qui est vraiment différent. Il inter-
vient dans des contextes où aucune information de sortie n’est disponible. Il s’agit donc de laisser les données
« parler d’elles-mêmes », de découvrir leur organisation intrinsèque, leur géométrie, leurs regroupements ou leur
distribution, souvent en grande dimension.

Il est nécessaire de définir une notion de cluster (dans une partition), c’est à dire un groupe de « données
similaires » et de définir une bonne notion de similarité.

L’apprentissage non supervisé est utile dans des situations où les données sont brutes, n’ont pas été annotées
ou catégorisées. On cherche alors à explorer, identifier des tendances, des segments ou des structures latentes sans
avoir d’hypothèse initiale forte.

Les données peuvent ne pas avoir été étiquetées pour différents motifs :

• Pas de temps ou d’argent.

• Pas de spécialiste pour étiquetter.

• Trop de catégories.

• Impossible à étiquetter.

Le but est alors de réduire la dimension des données pour faciliter leur visualisation ou leur traitement.

L’apprentissage non supervisé recouvre plusieurs approches classiques :

• Clustering (regroupement) : consiste à répartir les observations en groupes (les clusters) homogènes selon
une notion de similarité.

• k-means, clustering hiérarchique, DBSCAN, spectral clustering, etc.

• Réduction de dimension : pour représenter les données dans un espace de dimension réduite tout en pré-
servant leur structure (distance, variance, etc.).

• Analyse en composantes principales (ACP, PCA), algorithme de visualisation t-SNE, autoencodeurs.

• Isolation Forest.

• Analyse de densité et de distribution : estimer la structure probabiliste des données, souvent utilisée dans la
génération de données ou la modélisation de phénomènes latents.

• Modèles de mélange gaussien (GMM), algorithme EM, modèles génératifs.

• Apprentissage de représentations (unsupervised representation learning) : apprentissage de caractéristiques
ou d’encodages utiles pour d’autres tâches, par exemple via des réseaux de neurones non supervisés ou
autoencodeurs.
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L’absence de vérité terrain (« ground truth ») complique considérablement l’évaluation des résultats. Évalua-
tion : Il n’y a souvent pas de critère objectif unique. On doit recourir à des mesures internes (inertie, silhouette), à la
visualisation, ou à des comparaisons a posteriori avec des labels si ceux-ci sont disponibles. Paramétrage : De nom-
breuses méthodes nécessitent des paramètres à choisir sans supervision (nombre de clusters, voisinage, seuils. . . ).
Sensibilité aux données : Le prétraitement (normalisation, codage des variables, gestion des valeurs manquantes)
influence fortement les résultats. Interprétabilité : Les structures extraites doivent souvent être interprétées par un
expert humain, en tenant compte du contexte métier.

Domaines d’application possibles :

• Segmentation de clientèle en marketing,

• Regroupement de documents ou de contenus multimédias,

• Analyse exploratoire en biologie ou en sociologie,

• Compression de données,

• Détection de fraude ou d’attaques dans les systèmes,

• Prétraitement pour l’apprentissage supervisé (via apprentissage auto-supervisé, clustering préalable, etc.).

Voici un premier exemple intéressant, proposé par Nicolas Baskiotis, qui illustre bien la difficulté des méthodes
non supervisées. Dans la figure Fig. 8.1, quel est le bon partitionnement?

Réponse : aucun! L’échantillon est aléatoire, de loi uniforme.

8.2 La notion de similarité

L’apprentissage non supervisé est un problème de similarité. Il existe différentes approches :

• Géométrique : basée sur la connectivité, centroïde (k-moyennes, CAH).

• Graphes (spectral clustering).

• Distribution de probabilités latentes (estimation de densités).

• Modèles bayésiens.

• Apprentissage génératif (réseaux de neurones).

Les méthodes à base de partitionnement :

• k-moyennes, DBSCAN, Mean Shift.

• Hard : une donnée appartient à un unique groupe.

• Soft : probabilité d’appartenance à un groupe.

• Nombre de classes k inconnu a priori.

• Similarité intra-groupe et dissimilarité inter-groupe.

• La malédiction de la dimension n’est jamais loin.

Formalisation mathématique

• Échantillon D = {X1, ...,Xn} avec Xi ∈Rd .

• Partition πk sur D : D1,..., Dk .

• Critère de similarité d (distance) sur Rd ou X.

• Critère de similarité D sur les sous-ensembles de D.

• Clustering : à k fixé, trouver π⋆k = argminπφ(π)

• φ est une fonction des distances d et D.

Distances sur Rd et sur P (D)

dp (x, y) =
(

d∑
i=1

|xi − yi |p
)1/p

(1)

— p = 2 distance euclidienne.

— p = 1 distance de Manhattan.
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FIGURE 8.1 – En haut : un nuage de points à classifier. En bas : 4 propositions différentes de clustering en 2,3 et 4
classes. Crédit : Nicolas Baskiotis.
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— p → 0 distance de Hamming.

— p quelconque distance de Minkowski.

D(A,B) =

— PPV (simple linkage) : min{d(x, y), x ∈ A, y ∈ B}

— Diamètre max (complete linkage) : max{d(x, y), x ∈ A, y ∈ B}

— Moyenne (average linkage) : 1
|A|.|B|

∑
x,y d(x, y)

— Ward : |A|.|B|
|A|+|B| ||mA −mB||2

— Barycentres : d(A,B) = d(mA,mB)

A,B ∈ {D1, ...,Dk } et mA =∑
x∈A 1/|A| barycentre (centroïde) de A.

8.3 Classification ascendante hiérarchique

Classification ascendante hiérarchique : principe
Algorithme glouton :

— Fusionner les partitions les plus semblables selon D.

— Construire des clusters de plus en plus larges.

— S’arrêter quand il reste un unique cluster.

— ⇒ Arbre de partitionnement binaire : dendrogramme.

CAH : ce n’est pas une méthode de classification, mais de parititionnement (non supervisé) !

Selon le choix de D, le dendrogramme est plus ou moins équilibré.

Le choix de k est également important... et subjectif.
CAH : exemple 1 (J. Salmon, N. Verzelen) -1-

(Figure : J. Salmon, N. Verzelen)

Height sur l’axe (Oy) : distance entre les clusters.
CAH : exemple 1 -2-

(Figure : J. Salmon, N. Verzelen)
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CAH : exemple 2 (J. Salmon, N. Verzelen) -1-

(Figure : J. Salmon, N. Verzelen)

CAH : exemple 2 -2-

(Figure : J. Salmon, N. Verzelen)

CAH : exemple 2 -3-

(Figure : J. Salmon, N. Verzelen)

CAH : exemple 2 -4-
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(Figure : J. Salmon, N. Verzelen)

CAH : exemple 2 -5-

(Figure : J. Salmon, N. Verzelen)

CAH : exemple 2 -5-

(Figure : J. Salmon, N. Verzelen)
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(Figure : J. Salmon, N. Verzelen)

Choix de k : méthode du « coude ». CAH : complexité
O (n3) en implémentation naïve. (n itérations sur matrice n ×n.).

Meilleurs algorithmes en O (n2 lnn) voire O (n2)

8.4 Méthode des k-moyennes

Algorithme des k-moyennes
Construit la partition qui minimise la distance intra-cluster (inertie) :

ε(πk ) =
k∑

i=1

∑
x j ∈Di

||x j −mi ||2, (2)

avec mi barycentre (ou centroïde) du cluster (ou groupe) i :

mi = 1

|Di |
∑

x j ∈Di

x j (3)

L’algorithme construit :

ε̂k ∈ argmin
πk={D1,...,Dk }

ε(πk ).

Problème NP-difficile ⇒ obligation d’une méthode de résolution approchée.

k-means ̸= k-nn! ! ! ! !
CAH -4-

(Figure : J. Salmon, N. Verzelen)
Résolution approchée
Formation cluster : chaque donnée affectée au centroïde le + proche.
Algorithme de Lloyd (1957)
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— Affecter chaque point au cluster de plus proche centre mi .

— Ré-estimer les centres selon la nouvelle répartition.

— Itérer jusqu’à convergence

Complexité : O (n(k +1)).

Converge vers un minimum local seulement.

⇒ En pratique, on lance plusieurs fois l’algo avec ̸= initialisations.

Géométrie des classes

Les centres induisent une partition de Voronoi de Rd .

Vi = {x ∈Rd : ||x −mi || ≤ min
k ̸=i

||x −mk ||}

Vi est une cellule de Voronoi (convexe).

Convergence

Si la loi P est connue, on peut définir k centroïdes optimaux minimisant l’inertie.

Soit ε⋆k qui minimise l’inertie. Alors ε⋆k+1 ≤ ε⋆k .

Mais l’algorithme de Lloyd ne fournit pas forcément ce min.

ε(m1, ...,mk ) = E
[

min
i=1..k

||X−mk ||2
]

Théorème Si ε a un min unique en (m⋆
1 , ...,m⋆

k ) alors la suite des estimateurs minimisant εn converge p.s. vers...

Heursitique pour choisir k : méthode du coude (Elbow). Quand la décroissance devient moins franche.

Pour éviter les minima locaux, on recommence plusieurs dois l’algo.

Modèles génératifs

Modèle probabiliste : stochastic parrot (Shannon, Mathematical Theory of Communication, 1948).

Approche deep-learning : 2015
Chat-GPT (openAI) : 2022
Coût énergétique des LLM.
Chat-GPT : « écris-moi un cours d’apprentissage statistique pour les mastères spécialisés Data-Science »
Meow generator

8.5 Spectral clustering

Partitionnement spectral

— Les méthodes géométriques (dont k-means) ne trouvent que des clusters en boule.

— Ne tiennent pas compte d’une éventuelle structure.

— Même problème pour les estimations de densité.

⇒ Spectral clustering :

— On projète les données sur les nœuds d’un graphe pondéré.

— Les arêtes modélisent la similarité entre les données.

— Le poids de chaque arête est proportionnel à la distance (dissimilarité) entre données.

Données avec structure latente -1-

© 2025-2026 ENSAI 82



Données avec structure latente -2-
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Chapitre 9

Quelques aspects de l’apprentissage
semi-supervisé

À venir....
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Supervised learning
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x

y

Unsupervised learning

9.1 Introduction et problématique

L’apprentissage semi-supervisé forme une famille de méthodes qui se situent à l’interface entre l’apprentissage
supervisé et l’apprentissage non supervisé. Son objectif est de tirer parti d’un petit ensemble de données étiquetées
au milieu d’un grand nombre de données non annotées, pour améliorer la performance d’un modèle prédictif.
L’idée est d’utiliser les données non annotées pour compléter l’apprentissage supervisé.

Ce type d’apprentissage est souvent associé au concept d’apprentissage transductif : méthode qui s’effectue
sur les données d’apprentissage dans le but de faire des prédictions sur les observations de la base de test et uni-
quement celles-ci. On cherche alors à minimiser une erreur moyenne sur la base de test et pas forcément l’erreur
de généralisation.

L’apprentissage semi-supervisé s’inscrit dans un contexte où les données sont difficiles ou coûteuses à étique-
ter, alors que les données non annotées sont abondantes, faciles à collecter, mais inexploitables directement pour
des tâches de prédiction précises. Ce cadre est particulièrement pertinent dans les situations où :

• L’étiquetage est coûteux, chronophage ou nécessite une expertise (données médicales, vidéos, documents
juridiques, classification de pages internet),

• Un grand volume de données non étiquetées est disponible à faible coût (textes, images, capteurs, logs, etc.),
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• On souhaite réduire la dépendance aux données étiquetées, tout en bénéficiant des avantages de l’appren-
tissage supervisé.

Cadre formel.

Considérons un petit échantillon étiqueté L = {(xi , yi )i=1,..,l }, où chaque xi ∈Rd et yi ∈Y, et un échantillon non
étiqueté U = {(xi , yi )i=l+1,..,l+u}.

L’objectif est d’apprendre un modèle capable de généraliser à de nouvelles données en exploitant l’information
disponible dans L et U.

L’apprentissage semi-supervisé repose sur certaines hypothèses clefs quant à la structure des données, parmi
lesquelles :

• Hypothèses sur la densité ou les modèles statistiques sous jacents.

• Hypothèse de continuité : des points proches dans l’espace des caractéristiques ont probablement la même
étiquette.

• Hypothèse de regroupement (cluster assumption) : les données forment des groupes bien séparés, et les
étiquettes sont constantes à l’intérieur de chaque groupe.

• Hypothèse de la marge : la frontière de décision optimale doit passer dans les régions de faible densité des
données non étiquetées.

Ces hypothèses sont essentielles pour justifier l’utilisation d’informations non étiquetées dans la construction
du modèle.

Application possibles :

— Vision par ordinateur : classification d’images, détection d’objets, segmentation.

— Traitement du langage naturel : classification de texte, analyse de sentiment, résumé automatique.

— Médecine : détection de maladies sur imagerie avec peu de données annotées.

— Cyber-sécurité : détection d’anomalies ou de menaces avec peu d’exemples labellisés.

— Industrie : maintenance prédictive, surveillance de systèmes.

Les performances de l’apprentissage semi-supervisé sont fortement dépendantes de la qualité des labels pré-
dits (risque d’amplifier les erreurs si le modèle se trompe dès le départ). Il est par ailleurs difficile de mesurer les
performances pendant l’apprentissage si peu de labels sont disponibles. Le choix des hyperparamètres : est cru-
cial mais difficiles à optimiser sans validation supervisée. Les données non étiquetées peuvent être bruitées, hors
distribution ou redondantes, ce qui amène à des étiquetages pas toujours robustes.

9.2 Principales approches

Il existe plusieurs grandes familles de méthodes semi-supervisées, dont voici une liste non exhaustive (nous ne
rentrerons pas dans le détail de ces méthodes, exceptée les réseaux neuronaux sur graphe) :

1. Auto-apprentissage (self-training) : une première version du modèle est entraînée sur les données étiquetées.
Il est ensuite utilisé pour prédire les étiquettes des données non étiquetées. Les prédictions étiquetées avec un
haut de degré de confiance sont ajoutées à la base d’apprentissage, comme si elles étaient correctes. Le modèle
est réentraîné sur ce nouvel ensemble enrichi et la procédure est répétée jusqu’à satisfaire un critère d’arrêt. Dans
cette méthode, le classifieur utilise ses propres prédictions pour apprendre.

2. Co-apprentissage (co-training) : deux modèles sont entraînés sur des sous-ensembles de variables disjoints
(des « features » différentes) de l’échantillon de données. Chacun fournit à l’autre des étiquettes sur les données
non supervisées. C’est une méthode adaptée aux données pour lesquelles les features peuvent être divisées de
façon indépendantes. Cette méthode peut être vue comme un auto-apprentissage croisé effectué sur deux classi-
fieurs.

3. Apprentissage actif : au lieu d’exploiter les données non étiquetées, on annote de façon active uniquement
les données qui apporteront le plus d’information.

4. Méthodes à base de graphes (GNN) : on construit un graphe de similarité entre tous les points (étiquetés et
non étiquetés) de l’échantillon de données. Chaque nœud du graphe représente une donnée et deux nœuds sont
reliés par une arête s’ils sont considérés comme proches relativement à une mesure de similarité (ou une distance

© 2025-2026 ENSAI 86



entre les variables statistiques constituant le vecteur des features). L’information sur les labels est ensuite propa-
gée à travers le graphe. Cette méthode est basée sur l’idée (hypothèse d’« homophilie ») que des nœuds voisins
connectés ont probablement les mêmes étiquettes.

5. Méthodes basées sur la régularisation : de façon générale, les régions denses du jeu de données sont consi-
dérées comme des classes bien représentées (un cluster bien déterminé) que l’on va conserver. Les modèles sont
entraînés avec une fonction de coût qui favorise la régularité sur les données non annotées (mesurées par la consis-
tance entre prédictions voisines) et qui pénalise les frontières de décision pour ne pas couper de région de grande
densité. Par exemple : entropy minimization, Virtual Adversarial Training (VAT), etc.

6. Méthodes basées sur l’apprentissage profond : pseudo-étiquetage, MixMatch, FixMatch, Mean Teacher, et
d’autres algorithmes très efficaces utilisent des réseaux neuronaux et diverses techniques de régularisation ou
d’augmentation de données.

7. Laplacien SVM ou séparateur semi-supervisé à vaste marge (S3VM) : On ajoute deux contraintes au problème
d’optimisation traditionnel définissant les SVM, afin de maintenir les données non étiquetées à l’extérieur de la
marge, tout en minimisant l’erreur de classification. De façon plus générale, les méthodes de « Manifold Learning »
utilise de l’information sur la structure géométrique de la distribution marginale des données non étiquetées.
L’hypothèse sous jacente est que les données vivent dans une sous-variété régulière (un sous espace vectoriel, par
exemple) de plus petite dimension. La frontière de décision doit alors respecter la forme de cette sous-variété.

8. T-SVM.

9. Méthodes de mélange : les différentes classes sont mélangées, par exemple par des gaussiennes. On utilise
ensuite un algorithme de type EM (Expectation Maximization) et on s’assure que le modèle s’adapte bien à la fois
aux données étiquetées et à celles qui ne le sont pas.

10. Clustering semi-supervisé : on dispose d’un superviseur qui peut produire quelques données annotées ou
des informations sous la forme de contraintes entre les données. On procède en apprenant une métrique avec
laquelle on va utiliser un algorithme de clustering standard. On peut aussi utiliser un algorithme travaillant direc-
tement sur les contraintes.

De façon générale, beaucoup d’algorithmes reposent sur des fonctions de distance entre les données. Les per-
formances dépendent alors directement de la qualité de cette métrique. En grande dimension, les données ont
tendance à être équirépartie dans l’espace, il est donc important de choisir une métrique qui ne soit pas trop
« géométrique ».

9.3 Brève introduction aux réseaux neuronaux sur graphes (GNN)

Un réseau neuronal sur graphe (Graph Neural Network, GNN) est une classe de modèles d’apprentissage pro-
fond géométrique spécialement conçus pour les données structurées en graphes [?, ?, ?, ?, ?]. Les GNN atteignent
d’excellentes performances dans de nombreuses tâches liées aux graphes, telles que la classification de nœuds
ou de graphes, la prédiction de liens, le regroupement de graphes, l’apprentissage semi-supervisé ou encore la
réduction de dimension.

Les GNN utilisent un algorithme de propagation de messages comme règle de mise à jour : chaque nœud reçoit
de l’information uniquement de ses voisins directs, et met à jour itérativement ses vecteurs de features, selon un
principe proche de l’algorithme de propagation de croyance proposé par Pearl [?]. En agrégeant l’information issue
du voisinage local, les GNN intègrent les données des nœuds, les poids des arêtes et la topologie du graphe dans le
processus d’apprentissage.

Une couche dans un GNN correspond, pour un nœud donné, à son voisinage direct (les nœuds auxquels il est
relié). L’empilement des couches permet une mise à jour itérative du processus de propagation de messages : un
GNN à l couches effectue l itérations sur un même graphe, où la l -ième itération apporte à chaque nœud l’infor-
mation provenant de son voisinage à l sauts (cf. Fig. 9.1). La nécessité de disposer de l itérations pour permettre à
deux nœuds distants de l de communiquer est connue sous le nom de problème du rayon (problem radius) [?].

La formulation mathématique d’un GNN est définie par son graphe sous-jacent G = (V,E), la matrice des vec-
teurs de features des nœuds X ∈ Rn×d , dans laquelle xv ∈ Rd est la ligne de X correspondant au nœud v ∈ V, et par
la règle de propagation : 

h0
v = xv ,

hl+1
v =φl

(
hl

v ,
∑

u∼v
Âuvψl

(
hl

u

))
.

(1)
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FIGURE 9.1 – Structure typique d’un GCN. En haut : le nœud cible est v1, et l’on se situe juste avant la première itération. Le

voisinage à 1 saut de v1 (constitué de v2, v3, v4) envoie leurs vecteurs de features initiaux (h20 = x2, h30 = x3, h40 = x4) vers v1

au cours de la première itération. Ces vecteurs sont alors agrégés avec h10 = x1 à l’aide de la fonctionφ. Le résultat est le vecteur

de features mis à jour h11, qui remplace x1 et sera ensuite envoyé à tous les voisins de v1 lors de l’itération 2. En bas : arbre

correspondant au voisinage à 2 sauts de v1. La première couche agrège les messages en provenance du voisinage à 1 saut, ce

qui correspond à l’opération décrite dans le schéma de gauche, où les vecteurs de features de v2, v3, v4 sont transmis et agrégés

au niveau de v1. Le même processus est appliqué à tous les nœuds, en particulier à v2, v3, v4. La seconde couche agrège les

messages provenant du voisinage à 2 sauts de v1, c’est-à-dire les nœuds situés à distance 2 de v1. Les messages mis à jour dans

ces nœuds parviennent au nœud initial au cours de la deuxième itération. Les carrés gris représentent le processus d’agrégation,

modélisé par les fonctions φ1. Les nœuds du graphe sous-jacent coïncident avec les nœuds du réseau de neurones : 1 couche

de GNN = 1 itération de l’algorithme de propagation de messages.

Pour chaque nœud v , hl
v ∈ Rd est le vecteur de features de v mis à jour à l’iétration l , φl et ψl sont les fonctions

à apprendre, qui sont supposées différentiables. Â = A+ I est la matrice d’adjacence modifiée de G, qui inclut des
boucles. Les boucles permettent à un nœud d’intégrer sa propre information à celle de ses voisins.and are known
to prevent the phenomenon of over-smoothing described below.

For the sake of simplicity, we present our results on a typical Graph Convolutional Network (GCN) [?] whose
simple formal expression is given in matrix form :

Hl+1 =σ
(
D−1/2ÂD−1/2Hl Wl

)
, (2)

with Hl =
(
hl

v

)
v ∈ Rn×d , D = diag(di i ), di i =∑

j Âi j , Wl is the trainable weight matrix. σ=φl is an activation func-
tion (ReLU, sigmoid, etc.) and ψl = Id.

Over-smoothing, over-squashing and under-reaching are three issues that impair the performance of a GNN

when using message passing algorithms. Over-smoothing occurs when node features quickly converge toward a
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common average and become indistinguishable [?]. Under-reaching happens when the network is not deep en-
ough to convey information from distant nodes due to the problem of radius [?]. To prevent over-smoothing, the
depth of the network should not be too great, while the opposite is necessary to prevent under-reaching. Although
these two phenomena are now well understood, less is known about over-squashing, which measures the difficulty
of propagating information between distant nodes, often due to bottlenecks between nodes in certain parts of the
graph [?]. While under-reaching is solely due to the neighborhood radius, over-squashing is linked to the topology
and connectivity of the entire graph and seems to occur mainly in tasks that depend on long-range interactions
[?].

To prevent over-squashing, the most common technique is local rewiring, which involves adding, removing
or changing weights of edges selected to optimize certain properties related to the graph topology, thereby redu-
cing bottlenecks. The property to optimize can be graph curvature [?], algebraic connectivity [?], commute time
distance [?], effective resistance [?, ?, ?] or the use of specific graphs such as expanders [?] or complete graphs [?].

9.3.1 Application to GNNs : learning on the sparsified graph

As an application of our sparsification methods, we propose to learn on the sparsified graph of a GNN before
any training or learning process. The objective is to reduce the computational resources required to store the graph
and to speed up the training and processing of the data, while preserving connectivity. We aim to study the extent
to which performance is affected by the sparsification process and how connectivity optimization limits this effect
and the occurrence of over-squashing.

Our approach differs from previous work in several key aspects :

• We do not improve the connectivity of the graph by locally adding edges, but at the contrary we aim to
preserve it in a simplified version of the graph.

• We adopt a global strategy, optimal within greedy methods, to preserve the graph’s connectivity while signi-
ficantly simplifying it by deleting a substantial number of edges (typically up to 30% or 50%).

• Our method is completely independent of the GNN architecture, which does not need to be modified ; we
simply replace the initial graph with its sparsifier before any operation are performed.

Our application benefits from the low complexity of our algorithms : to the best of our knowledge, a quadratic
complexity in the number of operations is the lowest existing complexity for a deterministic sparsification algo-
rithm optimizing connectivity in GNN. The greedy total resistance (GTR) algorithm [?] has a complexity of O(n3)
and the first-order spectral rewiring (FoSR) algoritm [?] has a complexity of O(kn2) operations ; the stochastic dis-
crete Ricci flow (SDRF) [?] and the Random local edge flip (RLEF) algorithms [?] also have higher complexity. [?]
proposed an implementation in O(nm lnn) operations, similar to the Spielman-Teng random algorithm, making
it suitable only for weighted graphs.

9.3.2 Experiments

The following simulations demonstrate the performance of several GCNs on classic graph datasets run on a
node classification task : the three Planetoid citation networks Citeseer, Pubmed and Cora, whose size is given
in Table. 9.1. The nodes represent documents with bag-of-words feature vectors, and the edges are citation links
between research papers. The different classes correspond to research fields and the model is trained to predict
missing labels.

TABLEAU 9.1 – Citation network datasets.

Name #nodes #edges #features #classes

Cora 2708 5278 1433 7
CiteSeer 3327 4552 3703 6
PubMed 19717 44324 500 3

Given a target number k of edges (n ≤ k ≤ m), for each dataset, a GCN architecture is built around five different
graphs : the original dataset’s underlying graph and four other graphs sparsified to k edges. The sparsified graphs
include two generated by our algorithms GSMVDIV and GSMVCORR, one with edges sampled uniformly at random
and one sparsified using the Spielman-Teng algorithm [?]. All GCNs are trained and run on a node classification
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task. The accuracy curves for training and testing data are then assessed for different values of the parameters,
such as the number and dimension of the hidden layers.

TABLEAU 9.2 – Models of the simulations.

Name Underlying graph

Gi Base : initial graph
GSMVDIV GSMVDIV

GSMVCORR GSMVCORR

Spielman-Teng [?] Spielman-Teng
Random Random

Name of the different models of GNN and their underlying graph.

TABLEAU 9.3 – Performance for the Cora dataset.

#layers dim HL Gi GSMVCORR Spielman-Teng Random

4 64 82,1±0,5 81,2±0,6 80,2±0,4 78,5±0,5
16 80,0±0,9 79,5±0,6 77,1±0,7 76,4±0,9
8 74,2±2,1 74,4±0,8 71,3±2,0 71,9±1,5

8 64 82,9±0,5 80,6±0,4 78,5±0,4 77,6±0,3
16 78,6±0,8 78,5±0,6 74,4±0,8 73,5±0,7
8 77,6±1,0 75,9±2,0 72,7±1,5 73,1±1,5

12 64 82,6±0,8 80,6±0,4 79,5±0,5 77,8±0,6
16 80,7±1,2 79,3±0,8 78,7±1,0 75,4±1,5
8 76,1±2,1 75,9±1,7 73,9±1,9 69,1±2,4

24 64 82,5±0,8 78,7±2,4 74,7±3,5 71,7±3,3
16 60,3±6,5 58,4±4,7 47,3±8,1 44,8±8,1
8 48,9±8,1 48,6±6,4 40,4±6,2 39,7±7,5

Accuary of the test set in node classification task using the (largest connected composant of) Cora dataset, for a GCN model

with 4 different underlying graphs, as a function of the number and dimension of hidden layers. The best performance among

the 3 sparsified graphs is highlighted in red. Each accuracy value represents the average of 10 independent samples, with the

standard deviation indicated as ±.

Regarding Cora and Citeseer datasets and in most cases, PubMed, the model GSMVCORR outperforms the
Spielman-Teng algorithm and always outperforms the randomly sparsified graph. The performance of GSMVCORR

remains close to that of the initial model Gi, thus demonstrating that the sparsification does not significantly affect
the classification task.

Tables 9.3, 9.4 and 9.5 present the performance metrics for respectively the Cora, CiteSeer and PubMed data-
sets. The difference in performance between Gi and GSMVCORR remains small, regardless of the number and the
dimension of the layers, even for a significant percentage of edges deleted. As the dimension of the hidden layers
decreases and the number of layers increases, the performance gap between the group Gi, GSMVCORR and the two
models Spielman-Teng and Random widens. Over-squashing, known to appear with a high number of layers of
small dimension, might be mitigated by the maximization of connectivity, potentially explaining the strong per-
formance of our algorithms. Figure 9.3 illustrates these points for the Cora dataset by showing the accuracy curves
for all graphs as a function of the number of layers.

The performance improvements are significant only for homophilic graphs, where the neighbors of a node
provide relevant information about its state. In the case of heterophilic graphs, the topology does not contribute
as effectively.
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TABLEAU 9.4 – Performance for the CiteSeer dataset.

#layers dim HL Gi GSMVCORR Spielman-Teng Random

4 64 74,6±0,5 74,6±0,4 73,1±0,5 72,5±0,6
16 75,5±0,7 75,9±0,3 74,7±0,7 73,4±0,5
8 75,9±1,2 75,8±1,1 75,1±0,4 74,4±0,6

8 64 73,9±0,5 73,3±0,2 72,9±0,5 71,8±0,4
16 74,3±0,7 74,3±0,5 73,2±0,6 72,5±0,6
8 73,4±0,9 74,1±1,1 72,9±0,7 72,1±0,6

12 64 73,5±0,7 73,2±0,4 73,5±0,5 72,5±0,6
16 73,3±1,0 73,4±0,8 72,7±0,8 72,4±0,8
8 71,4±1,3 71,2±0,8 71,1±1,1 69,5±1,0

24 64 72,9±1,0 72,4±0,8 72,1±0,7 69,9±1,7
16 48,8±1,2 46,5±7,0 47,7±8,0 38,0±8,7
8 36,9±9,3 32,3±3,7 29,9±6,3 28,3±3,4

Accuary of the test set in node classification task using the (largest connected composant of) CiteSeer dataset, for a GCN

model with 4 different underlying graphs, as a function of the number and dimension of hidden layers. The best performance

among the 3 sparsified graphs is highlighted in red. Each accuracy value represents the average of 10 independent samples,

with the standard deviation indicated as ±.

Chapitre5/fig/cora.jpg

FIGURE 9.2 – Biggest connected component of Cora dataset. Nodes color correspond to the different features value.

Our algorithms have better performance for almost all parameter configurations, along with lower complexity.
The connectivity is thus a crucial property to preserve and optimizing connectivity proves to be an effective solu-
tion to prevent over-squashing phenomenon.

Datasets configuration

For each dataset, the training set is extended to half of the data, the other half being the test set (using a ran-
dom state parameter of 42). If the graph is not connected, the largest connected component is selected and the
simulations are run on this subgraph.

The GNN architecture is a classical GCN as defined in [?], with some minor modifications : a linear classifier is
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TABLEAU 9.5 – Performance for the PubMed dataset.

#layers dim HL Gi GSMVCORR Spielman-Teng Random

4 64 88,9±0,2 88,7±0,1 88,3±0,3 88,1±0,1
16 88,5±0,1 88,4±0,2 88,3±0,1 87,7±0,2
8 87,3±0,1 87,7±0,3 87,4±0,1 86,7±0,2

8 64 88,4±0,1 88,3±0,3 87,8±0,6 87,0±0,2
16 88,0±0,3 87,5±0,1 87,7±0,1 87,3±0,2
8 87,5±0,1 86,7±0,5 87,3±0,2 86,9±0,3

12 64 88,2±0,3 88,0±0,2 87,8±0,1 86,8±0,2
16 87,6±0,1 87,4±0,1 87,4±0,2 86,8±0,1
8 86,9±0,6 86,8±0,7 87,0±0,1 86,8±0,4

24 64 86,2±0,3 85,0±0,5 85,0±0,5 83,9±0,1
16 83,1±0,8 82,9±1,0 82,6±2,0 77,6±0,8
8 69,1±3,9 73,5±4,0 59,7±9,8 56,8±6,5

Accuary of test set in the node classification task using the (biggest connected composant of) PubMed dataset, for a GCN

model with 4 different underlying graphs, as a function of the number and dimension of hidden layers. The best performance

among the 3 sparsified graphs is highlighted in red. Each accuracy value represents the average of 10 independent samples,

with the standard deviation indicated as ±.

Chapitre5/fig/Shadecurveb.png

FIGURE 9.3 – Accuary of the test set in a node classification task, using the (largest connected component of the) Cora dataset,

with a GCN architecture, for different underlying graphs, as a function of the number of layers. The initial graph has n = 2485

nodes and 5069 edges. Blue : Gi, red : GSMVCORR (GCorr), green : Spielman-Teng (ST), yellow : Random. The shaded confidence

interval represents ± standard deviation over 10 independent samples. Each hidden layer has a dimension of only 8 and the

number of edges in the sparsified graphs is 2500 (50% of the initial graph). Note that the sparsified graph is nearly a spanning

tree.

defined as the first layer, a sequence of GCNConv forms the hidden layers, which end with another linear classifier.
The output of each layer, after applying the non-linear activation function, is added with to the input vector (or the
residual after the first GCNConv layer) to serve as a residual connection preventing over-smoothing.

Some parameters are fixed throughout all simulations and their values are provided in Tab. 9.6.

The dimension of each hidden layer varies from 8 to 64, and the number of layers ranges from 3 to 27.
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TABLEAU 9.6 – Fixed parameters.

Parameter Value

Learning rate 5×10−3

Weight decay 5×10−4

Dropout 0,5
Epochs 200

9.4 Conclusion

In this work, we proposed two greedy algorithms to sparsify a graph while preserving its connectivity. These
algorithms emerge from a geometric interpretation of the volume of the graph Laplacian matrix and modify the
sprectum of the initial graph to optimize its robustness.

Both algorithms are deterministic, adapted to unweighted graphs and of reasonable quadratic complexity in
time. We provided a detailed implementation of several variants and empirically demonstrated that they perform
better than state of the art sparsification algorithms.

We proposed an application to GNNs that simplifies the architecture and accelerates the processes executed on
the network, without significantly degrading performance. Our method seems to be an effective way to limit the
over-squashing phenomenon, but only for homophilic graphs where the neighbors of a node bring meaningful
information.
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Chapitre 10

Apprentissage statistique et économétrie

À venir....
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