STATISTIQUE MATHEMATIQUE - MS ENSAI
RESUME CHAP.S - 2025

1 Exhaustivité, minimalité,
complétude

Une statistique S est exhaustive pour X relati-
vement a 6 si la loi conditionnelle de X sachant
[S = s] ne dépend pas de 6.

YNy Critere de factorisation de Neyman

S exhaustive ssi, la vraisemblance s’écrit

L(x,0) = h(x) x g(S(x),0) (1

Théoreme ~N

Soit T' une statistique exhaustive et ¢ une fonc-
tion mesurable. Alors la statistique S vérifiant
T = ¢(S) est exhaustive.

Si ¢ est bijective, S et T sont alors équivalentes
et T exhaustive < S exhaustive.
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S minimale si elle est fonction de toute statis-
tique exhaustive:

T exhaustive minimale <
VS exhaustive , ¢ : T = H(S), Py —p.s., VO
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Rapport de vraisemblance (« likelihood ratio ») pour
x,y fixés:

L(x,0)

60 — LR(x,y,0)=
Y L,0)

(2)

N0y Critere de minimalité%

Soit S stat. d'un modele dominé /

LR(x,y,0) ne dépend pas de 6 < T'(x) =T(y)

Alors T exhaustive et minimale.
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S libre / 6 si sa loi ne dépend pas de 6.
U ignorable si 3 T exhaustive L de U.
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S complete s’il n’existe pas de fonction g non
constante, intégrable, a valeurs dans R qui soit
libre :

VO, Eglg(T)]=0=>g=0 Py —p.s.
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Théoreme ~N

S compléte = S minimale.
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Ex: si modeéle exponentiel:

o La statistique canonique S est exhaustive.

e Si A, espace des parametres, contient 1 ouvert de
R* ou 1 repére affine, alors S minimale compléte.

2 Information de Fisher

e 0=(01,...,0p) € © cRP ouvert.

¢ S =(8y,...,Sp) € R? statistique de 0.

e g:0 — R de classe C2.

e Vg(0) gradient en 0 de g.

* H4(0) sa matrice hessienne.

¢ V(S) matrice de variance/covariance de S.

¢ [(X,0)=1nL(X,0) log-vraisemblance de X.

e S.(X,0)=01/060(X,0)=VI(0) score du modele.
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Un modele paramétrique est régulier s’il est:
e dominé, homogene et ©® c R? ouvert.

e L(x,0)>0VxeX,VOeOB.

e 0 — L(x,0) de classe C? pour p.Vx.

e YBeX, 0 — [z L(x|0)du(x) C? sous [.

e Le score VI(X,0) € L2(Py).
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L'information de Fisher [(6) du modele est la va-
riance du score:

1(0) = Vg(S) 3
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» B[VI(X,0)]1=0
e Endim.1, 1(0) =E[VI%] = —E[I"(0)].
e En dim.p > 1,



15 ul37 ) — info d'un modele régulier /—m

921 T* est de variance uniformément minimale
@] =—Eg[H] parmi les estimateurs sans biais de 8§ (VUMSB)
si T* admissible pour le risque quadratique,
dans la classe des estimateurs sans biais :

o 1(0) =Eg[VI.VIT] = —F¢ [

o E[T*]1=6 8

Soit (X, §,(Pg)gee) modele régulier et T stat. [77] o . @)
Soit g(£,0) densité de 7. o ' ol U = Wp ) (@)
.

e Info d dele i : I7(0)=V(S(T,0

nfo du modele image : I7(6) 5 ) de Rao-Blackwell}
e Score du modele image : f—g Ing(T,0)
e SiS1 LSy : Is, 5,0 =Ig,0)+Is,0) i’lun estimateur sans biais et S stat. exhaustive.
ors

e En particulier : lix, . x,)(0) =n xIx,(0)

« Info conditionnelle : 1() = I5(6) + Ix5(6)

« S exhaustive < Ix(0)=I5(0) estimateur sans biais de 6 préférable a T' pour
le risque moyen quadratique.

T* =E[T|S] (10)

* Reparamétrage : si A = ¢(0), [x(1) = JTx(0)J

J est la matrice jacobienne de ¢. En dimension 1, N ‘de Lehmann-Scheffé
on a la formule importante suivante :

T estimateur sans biais et S stat. complete.

1x(0) *
Ix(1) = ——= 4 Alors T* =Eg[T|S] est VUMSB.
x (1) 072 (4)

3 Estimateurs optimaux

N TS0y Borne FDCR
Différentes fonctions de cotit (perte ou loss) :

¢2(0,0") =0 —0")2, ¢1(0,0") =10 -0/, X ~ Py modele régulier ot I(9) ™1 3 VO € O.
c0(0,0") = 1g-g/>e|1- T un estim. sans biais de ¢(6) e R? / :

o ¢(0) = Eg[T1] différentiable en 6.

”_M N\ | ¢ Eg[T1] différentiable en 0 sous |[.

Le risque moyen dun estimateur 7" de 0 est Alors
I’espérance de la fonction de cotit entre T et 6: Vo(T) = Vp(6) x 10)~! x qu(H)T (11)

R(S,0) =Eqlc(T',0)] (6]

Cas particulier important : ¢ =Id, c.-a-d. T estim.
sans biais de 6, alors Vg(T) = 1(6)~L.
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T classe d’estimateurs de 6, T € 7 admissible
dans 7T pour 0 §’il est uniformément préférable T estimateur de ¢(0) est efficace s’il est sans
a tout autre estimateur de 7 biais et atteint la borne FDCR.

vT'eT,V0€®, R(T,0)<R(T',0) (6)

Le théoréme suivant est tres important car il
permet de généraliser et de remplacer le théoréeme
de la limite centrale, dans des cas ou les va ne sont
pas indépendantes ou des cas ou les estimateurs ne
sont pas sous la forme de moyennes empiriques.

On rappelle la formule biais variance :

R(T,0) = Vg(T) + (Eg[T] - 6)* (7



Efﬁcacité asymptotique de l’e.m.v.jﬁ

Soit X1, ...,X, un n-échantillon de X ~ Py, 6 € O,
ou f(x,0) est 1a densité de Py par rapport a p. On
suppose que le modele est régulier. Alors 'e.m.v.
8, de 6 est y/7n-consistant et AN :

Vv (6, —6) L N0,16)™) (12)

En particulier @n est asymptotiquement sans
biais et efficace.
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2e principe fondamental de la stat.}\

Mieux vaut un petit biais qu'une grosse va-
riance.
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Le risque moyen a posteriori de I'estimateur T
associé a la loi a priori I1 et a 'observation x est

R(L T, x) = Elc(H, T(x))|X = ] (13)
_ f 0, T@)LO,xd0  (14)
(€]
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Le risque intégré de I'estimateur 7' associé a la
loi a priori IT est

R(IL,T) = Ele(H, T)] (15)
- f f ¢(0, T)L(O,x)d0du(x)  (16)
XJO
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Soit 7 classe d’estim. de 6. Risque de Bayes :
R(IT) = inf R(IT, T) a7
TeT

Lestim. de Bayes 011 associé a la loi a priori I1
est 'estim. qui minimise le risque intégré :

« R(I1,0) = R(IT) (18)
e 0 = argminpR(I1,T) (19)




