
STATISTIQUE MATHÉMATIQUE - MS ENSAI
RÉSUMÉ CHAP.3 - 2025

1 Exhaustivité, minimalité,
complétude

Une statistique S est exhaustive pour X relati-

vement à θ si la loi conditionnelle de X sachant

[S = s] ne dépend pas de θ.

Définition

S exhaustive ssi, la vraisemblance s’écrit

L(x,θ)= h(x)× g(S(x),θ) (1)

Théorème Critère de factorisation de Neyman

Soit T une statistique exhaustive et φ une fonc-

tion mesurable. Alors la statistique S vérifiant

T =φ(S) est exhaustive.

Si φ est bijective, S et T sont alors équivalentes

et T exhaustive ⇐⇒ S exhaustive.

Théorème

S minimale si elle est fonction de toute statis-

tique exhaustive:

T exhaustive minimale ⇐⇒
∀S exhaustive , ∃ φ : T =φ(S), Pθ−p.s.,∀θ

Définition

Rapport de vraisemblance (« likelihood ratio ») pour

x, y fixés:

θ −→ LR(x, y,θ)=
L(x,θ)

L(y,θ)
(2)

Soit S stat. d’un modèle dominé /

LR(x, y,θ) ne dépend pas de θ ⇐⇒ T(x)= T(y)

Alors T exhaustive et minimale.

Théorème Critère de minimalité

S libre / θ si sa loi ne dépend pas de θ.

U ignorable si ∃ T exhaustive ⊥⊥ de U .

Définition

S complète s’il n’existe pas de fonction g non

constante, intégrable, à valeurs dans R qui soit

libre :

∀θ, Eθ[g(T)]= 0⇒ g ≡ 0 Pθ−p.s.

Définition

S complète ⇒ S minimale.

Théorème

Ex: si modèle exponentiel:

• La statistique canonique S est exhaustive.

• Si Λ, espace des paramètres, contient 1 ouvert de

R
k ou 1 repère affine, alors S minimale complète.

2 Information de Fisher

• θ = (θ1, ...,θp) ∈Θ⊂R
p ouvert.

• S = (S1, ...,Sp) ∈R
p statistique de θ.

• g :Θ−→R de classe C2.

• ∇g(θ) gradient en θ de g.

• Hg(θ) sa matrice hessienne.

• V(S) matrice de variance/covariance de S.

• l(X ,θ)= lnL(X ,θ) log-vraisemblance de X .

• Sc(X ,θ)= ∂l/∂θ(X ,θ)=∇l(θ) score du modèle.

Un modèle paramétrique est régulier s’il est:

• dominé, homogène et Θ⊂R
p ouvert.

• L(x,θ)> 0 ∀x ∈X,∀θ ∈Θ.

• θ −→ L(x,θ) de classe C2 pour p.∀x.

• ∀B ∈X, θ −→
∫

B L(x|θ)dµ(x) C2 sous
∫

.

• Le score ∇l(X ,θ) ∈ L2(Pθ).

Définition

L’information de Fisher I(θ) du modèle est la va-

riance du score:

I(θ)=Vθ(S) (3)

Définition

• Eθ[∇l(X ,θ)]= 0

• En dim.1, I(θ)= E
[
∇l2

]
=−E

[
l′′(θ)

]
.

• En dim.p > 1,
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• I(θ)= Eθ[∇l.∇lT ]=−Eθ
[
∂2l

∂θ2

]
=−Eθ [Hl]

Propriété info d’un modèle régulier

Soit (X,F, (Pθ)θ∈Θ) modèle régulier et T stat.

Soit g(t,θ) densité de T.

• Info du modèle image : IT (θ)=V (S(T,θ))

• Score du modèle image : d
dθ

ln g(T,θ)

• Si S1 ⊥⊥ S2 : I(S1,S2)(θ)= IS1
(θ)+ IS2

(θ)

• En particulier : I(X1,...,Xn)(θ)= n× IX1
(θ)

• Info conditionnelle : I(θ)= IS(θ)+ IX |S(θ)

• S exhaustive ⇐⇒ IX (θ)= IS(θ)

• Reparamétrage : si λ=φ(θ), IX (λ)= JT
IX (θ)J

Propriété

J est la matrice jacobienne de φ. En dimension 1,

on a la formule importante suivante :

IX (λ)=
IX (θ)

φ′(θ)2
(4)

3 Estimateurs optimaux

Différentes fonctions de coût (perte ou loss) :

c2(θ,θ′)= (θ−θ′)2, c1(θ,θ′)= |θ−θ′|,
c0(θ,θ′)=1[|θ−θ′|>ǫ|].

Le risque moyen d’un estimateur T de θ est

l’espérance de la fonction de coût entre T et θ:

R(S,θ)= Eθ[c(T,θ)] (5)

Définition

T classe d’estimateurs de θ, T ∈ T admissible

dans T pour θ s’il est uniformément préférable

à tout autre estimateur de T :

∀T ′ ∈ T ,∀θ ∈Θ, R(T,θ)≤ R(T ′,θ) (6)

Définition

On rappelle la formule biais variance :

R(T,θ)=Vθ(T)+ (Eθ[T]−θ)2 (7)

T∗ est de variance uniformément minimale

parmi les estimateurs sans biais de θ (VUMSB)

si T∗ admissible pour le risque quadratique,

dans la classe des estimateurs sans biais :

• E[T∗]= θ (8)

• ∀ T sans biais ,Vθ(T∗)≤Vθ(T) (9)

Définition

T un estimateur sans biais et S stat. exhaustive.

Alors

T∗ = Eθ[T|S] (10)

estimateur sans biais de θ préférable à T pour

le risque moyen quadratique.

Théorème de Rao-Blackwell

T estimateur sans biais et S stat. complète.

Alors T∗ = Eθ[T|S] est VUMSB.

Théorème de Lehmann-Scheffé

X ∼Pθ modèle régulier où I(θ)−1 ∃ ∀θ ∈Θ.

T un estim. sans biais de φ(θ) ∈R
d / :

• φ(θ)= Eθ[T] différentiable en θ.

• Eθ[T] différentiable en θ sous
∫

.

Alors

Vθ(T)≥∇φ(θ)× I(θ)−1 ×∇φ(θ)T (11)

Théorème Borne FDCR

Cas particulier important : φ= Id, c.-à-d. T estim.

sans biais de θ, alors Vθ(T)≥ I(θ)−1.

T estimateur de φ(θ) est efficace s’il est sans

biais et atteint la borne FDCR.

Définition

Le théorème suivant est très important car il

permet de généraliser et de remplacer le théorème

de la limite centrale, dans des cas où les va ne sont

pas indépendantes ou des cas où les estimateurs ne

sont pas sous la forme de moyennes empiriques.
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Soit X1, ..., Xn un n-échantillon de X ∼Pθ, θ ∈Θ,

où f (x,θ) est la densité de Pθ par rapport à µ. On

suppose que le modèle est régulier. Alors l’e.m.v.

θ̂n de θ est
p

n-consistant et AN :

p
n

(
θ̂n −θ

) Pθ
 N (0, I(θ)−1) (12)

En particulier θ̂n est asymptotiquement sans

biais et efficace.

Théorème Efficacité asymptotique de l’e.m.v.

Mieux vaut un petit biais qu’une grosse va-

riance.

Théorème 2e principe fondamental de la stat.

Le risque moyen a posteriori de l’estimateur T

associé à la loi a priori Π et à l’observation x est

R(Π,T, x)= E[c(H,T(x))|X = x] (13)

=
∫

Θ

c(θ,T(x))L(θ, x)dθ (14)

Définition

Le risque intégré de l’estimateur T associé à la

loi a priori Π est

R(Π,T)= E[c(H,T)] (15)

=
∫

X

∫

Θ

c(θ,T(x))L(θ, x)dθdµ(x) (16)

Définition

Soit T classe d’estim. de θ. Risque de Bayes :

R(Π)= inf
T∈T

R(Π,T) (17)

L’estim. de Bayes θ̂Π associé à la loi a priori Π

est l’estim. qui minimise le risque intégré :

• R(Π, θ̂)= R(Π) (18)

• θ̂ = argminT R(Π,T) (19)

Définition
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