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1. Classifieur de Bayes

On considère un n-échantillon de v.a.i.i.d.
Dn = {Z1, ..., Zn} avec Zi = (Xi ,Yi ). Les Xi sont des
observations issues d’une v.a. X , ce sont les données que
l’on souhaite classer et qui formeront les variables
explicatives. Les Yi sont issues d’une v.a. Y et sont les
catégories auxquelles appartiennent les Xi (on dit
également étiquettes ou labels). L’objectif de
l’apprentissage supervisé est de déterminer au mieux la
catégorie Y à laquelle appartient la donnée X
correspondante, à partir des seules observations de
l’échantillon Z1, ...Zn .

On suppose que les v.a. X sont issues d’un espace X, que
les v.a. Y sont issues d’un espace Y et l’on se donne une
loi de probabilité (inconnue) P sur l’espace E =X×Y. P
est la loi de (X ,Y ) et également la loi jointe commune
des (Xi ,Yi ).

Une fonction de prédiction est un élément
g ∈F =F (X,Y) qui associe une étiquette à une
observation. Pour mesurer la qualité de g , on définit
différentes fonctions de perte l :Y2 −→R+ telles que
l (Y , g (X )) mesure l’écart entre la vraie valeur Y
correspondant à X et la valeur g (X ) prédite à partir de la
fonction g . Le risque de g est la valeur moyenne des
réalisations de toutes les pertes possibles. Autrement dit,

R(g ) = RP(g ) = E[
l (Y , g (X ))

]
(1)

Le prédicteur de Bayes est l’élément g⋆ de F qui
minimise la perte R(g ). C’est donc la fonction de
prédiction optimale sachant les observations.

Dans cet exercice, nous nous limitons au problème de
classification binaire, c’est à dire que Y ne peut prendre
que deux valeurs : 0 ou 1. La fonction de perte naturelle
associée est alors la fonction

l (Y ,Y ′) =1[Y ̸=Y ′] (2)

On note

η(x) =P[Y = 1|X = x] = E[Y |X = x] (3)

et

g⋆(x) =1[η(x)>1/2] (4)

Nous allons montrer que g⋆ minimise l’erreur de
classification binaire.

1°. Montrer que

P[Y = g (X )|X = x] = η(x)1[g (x)=1] + (1−η(x))1[g (x)=0]

2°. En déduire que

P[Y ̸= g⋆(X )|X = x] ≤P[Y ̸= g (X )|X = x] (5)

pour toute fonction g et conclure.

3°. Montrer que le risque de Bayes R⋆ = R(g⋆) vérifie

R⋆ = E[η(X )∧ (1−η(X ))] (6)

= 1

2

(
1−E[|2η(X )−1|]) (7)

avec x ∧ y = inf(x, y).

4°. Montrer de façon plus générale que quelque soit la
fonction f de X dans R, η(X ) minimise l’erreur
quadratique lorsque f (X ) prédit Y . C’est à dire, montrer
que

E
[
(η(X )−Y )2]≤ E[

( f (X )−Y )2] (8)

5°. On prédit la réussite d’un étudiant à un examen en
fonction du nombre d’heures X passées à travailler. Y = 1
signifie que l’étudiant réussit son examen. On suppose
que

η(x) = x

x +c
(9)

où c > 0. Si X suit une loi uniforme sur [0,4c], calculer
R⋆.

6°. On suppose que Y suit une loi de Bernoulli de
paramètre p ∈]0,1[ et que la loi de X sachant [Y = 0] est
une loi uniforme sur [0,1/2], tandis que la loi de X
sachant [Y = 1] est une loi uniforme sur [0,1].
Déterminer la loi marginale de X , sa fonction de
répartition en fonction de p, sa densité f , puis calculer
E[Y 1[X≤x]].

Démontrer que pour tout x ∈]0,1[,

E[Y 1[X≤x]] =
∫ x

0
η(u) f (u)du (10)

En déduire l’expression de η(x). Déterminer la loi
conditionnelle de Y sachant [X = x] ainsi que la forme
du prédicteur de Bayes.

7°. On dispose de deux variables aléatoires X et Y pour
modéliser le comportement de clients. Y est une variable
de Bernoulli de paramètre p, valant 1 si le client achète
un article à une date donnée et 0 dans le cas contraire. X
représente le nombre d’achats qu’il a déjà effectués dans
le passé, durant un laps de temps donné. On suppose
que la loi conditionnelle de X sachant [Y = 1] est une loi
de Poisson de paramètre 2θ tandis que la loi de X
sachant [Y = 0] suit une loi de Poisson de paramètre θ,
θ > 0. Déterminer l’expression de η(x) ainsi que le
prédicteur de Bayes.

2. Prédicteur optimal pour la régression au
sens des MCO

Démontrer que le prédicteur optimal est

g⋆(x) = E[Y |X = x] (11)
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3. Prédicteur de Bayes en classification binaire

On suppose que Y suit une loi de Benoulli de paramètre
p ∈]0,1[. On considère X , dont la loi conditionnelle
sachant Y est définie comme suit : la loi de X sachant
[Y = 0] est une loi uniforme sur [0,1/2] et la loi de X
sachant [Y = 01 est une loi uniforme sur [0,1].

1°. Quelle est la loi marginale de X ? Déterminer sa
fonction de répartition en fonction de p.

2°. Déterminer la densité f de X par rapport à la mesure
de Lebesgue.

3°. Pour tout x ∈ [0,1], calculer E[Y 1[X≤x]].

4°. On pose η⋆(x) = E[Y |X = x]. Montrer que pour tout
x ∈]0,1[,

E[Y 1[X≤x]] =
∫ x

0
η⋆(u) f (u)du (12)

et en déduire l’expression de η⋆(x).

5°. Déterminer la loi conditionnelle de Y sachant X ainsi
que la forme du classifieur de Bayes.

4. Prédicteur de Bayes en classification binaire

On considère le problème de classification binaire avec
Y= {0,1} et X=N. On suppose que (Xi ,Ui )i∈N est une
suite de vecteurs aléatoires i.i.d. telle que pour chaque i ,
Xi suit une loi de Poisson de paramètre θ, Ui suit une loi
de Poisson de paramètre γ, Xi et Ui sont indépendantes.
L’étiquette Yi de chaque exemple Xi est déterminée par

Yi =1[Xi+Ui≥λ]. (13)

Les paramètres θ,γ,λ sont inconnus. Les variables Ui ne
sont pas observables. On ne dispose que d’un
échantillon (Xi ,Yi ) pour i = 1, ...,n et on veut en déduire
une règle de classification.

1°. Déterminer la loi marginale de Y1 en fonction de (θ,γ)
lorsque λ= 1.

2°. Calculer la fonction de régression η⋆(x).

3°. Déterminer la forme du classifieur de Bayes.

4°. En utilisant le résultat de la question précédente,
proposer une méthode de classification qui tire profit de
la forme de la loi des observations (Xi ,Yi ).

5. Minimisation de l’erreur stochastique

Soit g⋆ le prédicteur optimal minimisant le risque
moyen sur un dictionnaire G .
Soit gn le minimiseur du risque empirique à partir de
l’échantillon Dn sur un G .
Ces deux fonctions dépendent de G , même si G

n’apparaît pas dans la notation.

On cherche à quantifier à quel point le risque de
prédiction de R(ĝn) est éloigné du risque de prédiction
minimal R(g⋆).

1°. Expliquer pourquoi R(g⋆) ≤ R(ĝn) et Rn(g⋆) ≥ Rn(ĝn).

2°. Montrer que

R(ĝn)−Rn(ĝn) ≤ max
g∈G

|R(g )−Rn(g )|

R(g⋆)−Rn(g⋆) ≤ max
g∈G

|R(g )−Rn(g )|

3°. En déduire que :

0 ≤ R(ĝn)−R(g⋆) ≤ 2max
g∈G

|R(g )−Rn(g )|

4°. Interpréter les inégalités précédentes en termes de
biais et de fluctuation ou variance.

6. Inégalité oracle pour un dictionnaire fini

On considère une fonction de perte l à valeurs dans [0,1]
et un dictionnaire fini G contenant M fonctions. On pose
δ ∈]0,1[.

On considère à nouveau un n-échantillon de v.a.i.i.d.
Dn = {Z1, ..., Zn} avec Zi = (Xi ,Yi ). Les Xi sont des
observations issues d’une v.a. X , les Yi sont issues d’une
v.a. Y et sont les catégories auxquelles appartiennent les
Xi . On suppose que X est issu d’un espace X et Y d’un
espace Y. P définie sur E =X×Y est la loi inconnue de
(X ,Y ) .

g ∈G ⊂F (X,Y) est une fonction de prédiction. Le risque
moyen est

R(g ) = E[
l (Y , g (X ))

]
(14)

et g⋆ est le risque minimal optimal sur G qui minimise la
perte R(g ).

Soit enfin ĝn le minimiseur du risque empirique Rn

calculé à partir de Dn .

Le but de cet exerice est de démontrer qu’avec
probabilité supérieure à 1−ϵ,

R(ĝn)−R(g⋆) ≤
√

2

n
ln

(
2M

ϵ

)
(15)

1°. Commencer par interpréter et discuter ce résultat.

2°. Rappeler l’expression de l’inégalité de Hoeffding.

3°. En utilisant cette inégalité, en déduire l’inégalité
recherchée.

7. Classifieur non binaire

Soient Y= {a1, ..., aK } et X sous ensemble mesurable de
Rd . On considère le cadre d’apprentissage supervisé à
partir d’un échantillon Dn = {(Xi ,Yi ), i = 1, ..,n} de loi
commune P sur Rd ×Y. On note ν la mesure de Lebesgue
sur Rd et δ. la mesure de Dirac sur Y. On dit que la
fonction f :Rd ×Y à valeurs dans R+ est la densité de P
par rapport à la mesure produit(

K∑
k=1

δak

)
⊗ν, (16)

si pour toute fonction h de Rd ×Y dans Rmesurable et
bornée, on a :
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E[h(X ,Y )] =
K∑

k=1

∫
Rd

h(x, ak ) f (x, ak )d x (17)

1°. Montrer que pour tout classifieur g :X−→Y, on a :

P[g (X ) ̸= Y ] = 1−
∫
Rd

f (x, g (x))d x (18)

2°. En déduire que si P est une loi à densité, alors le
classifieur oracle est donné par :

g⋆(x) = argmax
a∈Y

f (x, a) (19)

3°. Soit K = 2 avec a1 = 0 et a2 = 1. Montrer que le
classifieur oracle coïncide avec le classifieur oracle
binaire du cours.

4°. On suppose maintenant que Y= {0,1} et que f (x,k)
est la densité de la loi gaussienne de moyenne µk et
matrice de covariance Σ. Déterminer la forme du
classifieur de Bayes et montrer qu’il coïncide avec la
règle de classification linéaire de Fisher. Proposer un
estimateur simple de g⋆ dans ce contexte, basé sur Dn .

8. Consistance universelle uniforme

Cet exercice est difficille, inutile d’essayer de le faire, vous
n’y arriverez jamais. On reprend les hypothèses et
notations vues en classification binaire (c.f. exercice 1).

1°. On suppose que X est fini, de cardinal K . Quel est le
cardinal de F (X,Y) ?

2°. Rappeler la borne de risque obtenue pour un
dictionnaire fini. Peut-on déduire que ĝn est
uniformément et universellement consistant?

3°. On suppose que X est infini et que K = Kn dépend de
la taille de l’échantillon. Démontrer que si Kn/n tend
vers 0 quand n tend vers l’infini, alors ĝn est
uniformément et universellement consistant.

9. Minimiseur du risque empirique en
classification et régression pour une méthode
à partition

Soit A = (A1, ..., AM ) une partition de X et
G (A ) ⊂F (X,Y) l’ensemble des fonctions constantes sur
chaque Am ∈A .
Soit ĝn = ĝn(.,A ) le minimiseur du risque empirique sur
le dictionnaire G (A ) et Nm le nombre d’exemples
appartenant à Am :

ĝn ∈ argmin
g∈G (A )

Rn(g ) = argmin
g∈G (A )

1

n

n∑
i=1

l (Yi , g (Xi ))

et Nm =∑n
i=11Am (Xi )

1°. Montrer que pour le problème de régression,

ĝn(x,A ) =
M∑

m=1
Y Am1Am (x)

=
M∑

m=1

(
1

Nm

n∑
i=1

Yi1Am (Xi )

)
1Am (x)

2°. Montrer que pour le problème de classification
binaire, ∀m = 1, ..., M , ∀x ∈ Am ,

ĝn(x,A ) =


1 si Y Am > 1/2
am si Y Am = 1/2
0 si Y Am < 1/2

10. Non consistance de k-NN pour k = 1

On pose X= [0,1] et Y= {0,1}. Soit PX la loi marginale
des Xi . X et Y sont des va génériques de même loi que
les Xi et Yi . On suppose que

η⋆(x) =P[Y = 1|X = x] ≡ 3

4
, ∀x ∈X. (20)

L’objectif des questions suivantes est de calculer le risque
du classifieur oracle g⋆ ainsi que celui du classifieur
k-NN avec k = 1. On verra que ce dernier ne dépend pas
de la taille de l’échantillon et est strictement plus grand
que le risque de l’oracle.

1°. Montrer que pour toute fonction g de X dans {0,1},

R(g ) = E[η⋆(X )]+E[g (X )(1−2η⋆(X )] (21)

2°. En déduire que si η⋆ ≡ 3/4, alors le classifieur oracle
de Bayes est donné par g⋆ ≡ 1 et que son risque vaut
R(g⋆) = 1/4.

3°. Montrer que pour toute fonction g ,

R(g ) = 3

4
− 1

2

∫
X

g (x)PX (d x) (22)

4°. Soit ĝn(x) le classifieur au sens des plus proches
voisins (ppv). Posons Zi =1[Xi est le ppv de x]. Montrer que

E[ĝn(x)] =
n∑

i=1
E[Yi Zi ] (23)

5°. Montrer que Yi et Zi sont indépendantes et que∑n
i=1 Zi = 1.

6°. En déduire que

E[ĝn(x)] = 3

8
(24)

7°. Considérer le cas du minimiseur du risque ĝ3,n pour
l’algorithme des 3-ppv. Montrer que son risque moyen
E[R(ĝ3,n)] est égal à 21/64.

8°. Pour le cas général du prédicteur ĝk,n , considérer
V1, ...,Vk des vaiid de loi de Bernoulli de paramètre 3/4.
Montrer que

E[ĝk,n(x)] =P[V k > 1/2] (25)

en déduire que cette espérance tend vers 1 lorsque k
tend vers l’infini et que le risque espéré tend vers le
risque de l’oracle, c’est à dire 1/4.

11. Arbres de décision

On considère le problème de classification binaire avec
Y= {0,1} et X⊂ R2 × {1,2,3}. Soit Dn = (Z1, ..., Zn) n vaiid
de loi P. On suppose que l’on dispose de 3 arbres de
décision suivants :
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X3 = 1

X2 < 4

Non Oui

Non

X2 > X3
Non Oui

Oui

X1 > 1

X1 < X2

Non
X2 > 1

X1 >−1

Non Yes

Non Oui

Oui

Non Yes

X2 > 4

X3 = 3

No Yes

No

X2 > X1

X3 = 1

No Yes

No Yes

Yes

qui fournissent les prédicteurs ĝ1, ĝ2 et ĝ3. On note A1,
A2 et A3 les partitions de X engendrées par ces trois
arbres.

1°. Lesquel des 3 prédicteurs a le moins de risque de
sur-apprendre ?

2°. Soit Gi l’ensemble des prédicteurs constants par
morceaux sur la partition Ai et soit G la réunion des
trois. On note ĝn le minimiseur du risque empirique sur
G :

ĝn ∈ argmin
g∈G

1

n

n∑
i=1

1Yi ̸=g (Xi ) = argmin
g∈G

Rn(g ) (26)

Montrer que

ĝn ∈ argmin
g∈{ĝ1,ĝ2,ĝ3}

Rn(g ) (27)

4°. On observe un échantillon de taille n = 10 comportant
les valeurs suivantes :

X1 0.1 -0.3 1.2 1.8 -0.9 0.5 -1.1 1.4
X2 -0.4 1.1 0.2 -0.3 -0.5 0.6 -0.7 -0.6
X3 1 3 1 2 2 2 1 1
Y 0 0 1 0 1 1 1 0

X1 -1.3 1.01
X2 0.9 0.81
X3 1 3
Y 1 0

Déterminer les valeurs de ĝ1 et ĝ3 sur chacune des
feuilles.

12. Convexification du problème de
minimisation du risque empirique

Soit g :R−→R+ et G :R−→ [0,1] la densité et la fonction
de répartition de la loi gaussienne N (0,1). On définit la
fonction de perte φ(u) part la formule

φ(u) = g (u)+uG(u), ∀u ∈R. (28)

1°. φ est-elle monotone? Convexe?

2°. On définit ψ : [0,1] −→R par

ψ(p) = inf
u∈R

[
pφ(−u)+ (1−p)φ(u)

]
, (29)

pour u ∈ [0,1]. Déterminer les valeurs de ψ en 0,1 et 1/2.

3°. Montrer que

ψ(p) = inf
u∈R

(φ(u)−pu). (30)

4°. Soit Q :]0,1[−→R la fonction quantile de la loi
gaussienne standard. Elle est définit par :

G(Q(p)) = p et Q(G(x)) = x, ∀p ∈]0,1[, x ∈R. (31)

En utilisant la question précédente, montrer que
ψ(p) = g (Q(p)).

5°. Vérifier que Q(1/2) = 0 et en déduire que ψ′(1/2) = 0.

6°. Vérifier que ψ(G(x)) = g (x) pour tout x réel. En
déduire les expressions de ψ′(G(x)) et ψ′′(G(x)) pour tout
x réel.

7°. Déterminer les constantes c et γ du lemme de Zhang
et écrire l’inégalité qui relie l’excès de risque de
classification à l’excès du φ-risque pour la fonction φ
définie en début d’exercice.

13. Conditions de consistance pour le
minimiseur du φ-risque

Le minimiseur du φ-risque empirique est défini par

ĥn = argmin
h∈H

1

n

n∑
i=1

φ(−Yi h(Xi )). (32)

Il dépend de H . La consistance de ce classifieur peut
être obtenue en utilisant le résultat suivant :

Soit φ :R−→R une fonction convexe telle que
u(φ(u)−φ(−u)) ≥ 0 pour tout u ∈R. Soit ψ définie par

ψ(p) = inf
u∈R

[
pφ(−u)+ (1−p)φ(u)

]
. (33)

S’il existe γ ∈ [0,1] et c > 0 tels que

|1−2p| ≤ c[φ(0)−ψ(p)]γ, ∀p ∈ [0,1], (34)

alors quelque soit la fonction de prédiction h,

R(sgn(h))−R(g⋆) ≤ c[A(h)− A(h⋆]γ. (35)

Le but de cet exercice est d’étudier la fonction ψ et de
vérifier que la perte de Boosting φ(u) = eu vérifie les
conditions de ce théorème.

1°. Montrer que φ(0) =ψ(1/2).
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2°. Vérifier l’inégalité ψ(p) =φ(0) et en déduire que la
condition (34) équivaut à

ψ(1/2)−ψ(p) ≥
(

2

c

∣∣∣∣1

2
−p

∣∣∣∣)1/γ

. (36)

3°. Montrer que ψ(p) =ψ(1−p). En déduire que si
l’inégalité (36) est satisfaite pour tout p ∈ [0,1/2], alors
elle l’est pour tout p ∈ [0,1].

4°. Montrer que ψ est une fonction concave et que si
ψ′(1/2) existe, alors ψ′(1/2) = 0. En déduire que si ψ est
deux fois différentiable alors

ψ(1/2)−ψ(p) ≥
(

p − 1

2

)2

inf
p
|ψ′′(p)|. (37)

5°. Soit ψ une fonction deux fois continûment
différentiable sur [0,1/2] avec

sup
u∈]0,1/2]

ψ′′(u) =−a < 0. (38)

Montrer que la condition (34) est remplie avec γ= 1/2 et
c =p

8/a. Trouver γ et c qui correspondent à la perte de
Boosting φ(u) = eu .

14. SVM : résolution du problème
d’optimisation cas linéairement séparable

1°. Écrire le problème d’optimisation primal lié aux
machines à vecteur de support, en gardant les notations
du cours.

2°. En déduire le lagrangien correspondant.

3°. Préciser les conditions KKT de Karush-Kuhn-Tucker.

4°. Déterminer le problème dual associé.

5°. Décrire la méthode de résolution du problème et la
forme de la solution.

15. SVM : problème d’optimisation cas non
linéairement séparable

1°. Écrire le problème d’optimisation primal lié aux
machines à vecteur de support, dans le cas d’une marge
souple.

2°. En déduire le lagrangien correspondant.

3°. Préciser les conditions KKT de Karush-Kuhn-Tucker.

4°. Déterminer le problème dual associé.

5°. Décrire la méthode de résolution du problème.

6°. Que devient le problème dual lorsqu’on utilise un
noyau non linéaire ? Expliquer pourquoi w et b
n’interviennent plus.

16. Adaboost

On observe un échantillon Dn = {(xi , yi )}i=1...n avec
yi ∈ {−1,+1}. On considère une famille de classifieurs
faibles H à valeurs dans {−1,+1}.

On rappelle l’algorithme ADABOOST (version binaire)
pour un nombre d’itérations M :

1. Initialiser wi (0) = 1/n pour tout i .

2. Pour m = 1, . . . , M :

• Apprendre hm ∈H minimisant l’erreur
pondérée

εm =P[h(xi ) ̸= yi ] =
n∑

i=1

wi (m)

||w ||1
1[h(xi )̸=yi ].

• Poser αm = 1
2 ln

(
1−εm
εm

)
.

• Mettre à jour ∀i = 1, ..,n :

wi (m +1) = wi (m)exp
(
αm1[yi ̸=h(xi )]

)
.

3. Le classifieur final est

ĥM (x) = sgn

(
M∑

m=1
αmhm(x)

)
.

1°. Rappeler l’expression de la perte Boosting et du
φ-risque empirique noté An(h) associé à cette perte
Boosting.

2°. Démontrer l’inégalité 1[yi h(xi )≤0] ≤ exp(−yi h(xi )).

3°. Montrer que le choix de (hm ,αm) ci-dessus réalise, à
chaque itération, le minimum de An(h).

17. Bagging

On considère M échantillons indépendants Dn,m , de
taille n, chacun étant utilisé pour entraîner un
estimateur hm de régression au sens des moindres carrés
et l’on note hM leur moyenne empirique.

1°. Étudier comment varie le biais et la variance de hM

quand M augmente.

On ne dispose maintenant que d’un seul échantillon Dn .
Á partir de cet échantillon, on construit M échantillons
Dn,m de taille n en effectuant un tirage uniforme avec
remise dans Dn . On entraîne un estimateur de régression
au sens des moindres carrés hm pour chacune de ces
échantillons bootstrap et on note à nouveau hM leur
moyenne empirique.

2°. Comparer, en termes de biais et de variance, le
comportement de hM construit par bootstrap à celui de
hM dans le cas idéal où l’on dispose de M échantillons
indépendants.

3°. Expliquer en quoi cette procédure peut permettre de
réduire l’erreur de généralisation d’un estimateur de
régression instable (par exemple un arbre de décision).
Comment appelle-t-on cette méthode ?

5


