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Prédicteur de Bayes en classification
binaire

On considère un n-échantillon de v.a.i.i.d.
Dn = {Z1, ...,Zn} avec Zi = (Xi ,Yi ). On suppose que les
v.a. X sont issues d’un espace X, que les v.a. Y sont
issues d’un espace Y et l’on se donne une loi de
probabilité (inconnue) P sur l’espace E =X×Y. P est
la loi de (X,Y) et également la loi jointe commune des
(Xi ,Yi ).

Fonction de prédiction g ∈F =F (X,Y). Fonction de
perte l :Y2 −→R+ telles que l (Y, g (X)). Le risque de g
est

R(g ) = RP(g ) = E[
l (Y, g (X))

]
(1)

Le prédicteur de Bayes est l’élément g⋆ de F qui
minimise la perte R(g ).

l (Y,Y′) =1[Y ̸=Y′] (2)

η(x) =P[Y = 1|X = x] = E[Y|X = x] (3)

g⋆(x) =1[η(x)>1/2] (4)

1°.

P[Y = 1|X = x]

=P[Y = g (X)|X = x]1[g (x)=1] +P[Y = 0|X = x]1[g (x)=0]

= η(x)1[g (x)=1] + (1−η(x))1[g (x)=0]

2°.

P[g (X) ̸= Y|X = x] = 1−P[g (X) = Y|X = x]

= 1−P[Y = 1, g (X) = 1|X = x]−P[Y = 0, g (X) = 0|X = x]

= 1−1[g (x)=1]P[Y = 1|X = x]−1[g (x)=0]P[Y = 0|X = x]

= 1−1[g (x)=1]η(x)−1[g (x)=0](1−η(x))

Ainsi,

P[g (X) ̸= Y|X = x]−P[g⋆(X) ̸= Y|X = x]

= η(x)
(
1[g⋆(x)=1] −1[g (x)=1]

)+ ...

...+ (1−η(x))
(
1[g⋆(x)=0] −1[g (x)=0]

)
= (2η(x)−1)

(
1[g⋆(x)=1] −1[g (x)=1]

)
≥ 0

par définition de g⋆(x) et parce que
2η(x)−1 > 0 ⇐⇒ g⋆(x) = 1. D’où l’inégalité
demandée :

P[Y ̸= g⋆(X)|X = x] ≤P[Y ̸= g (X)|X = x] (5)

3°.

R(g ) = E[1[g (X)̸=Y]]

=P[g (X) ̸= Y] = E
[(

g (X)−Y
)2

]
.

La dernière égalité provient du fait que d’une part, Y
et g (X) valent 0 ou 1 uniquement et d’autre part
l’indicatrice de [g (X) ̸= Y] et

(
g (X)−Y

)2 prennent les
mêmes valeurs (0 ou 1) quelque soit les valeurs prises
par g (X) et Y (0 ou 1).

1[g (X)̸=Y] =
(
g (X)−Y

)2

= Y2 + g (X)2 −2Yg (X) = Y+ g (X)(1−2Y)

(car Y = Y2). Ainsi,

R(g ) = E[Y]+E[g (X)(1−2Y)]

= E[E[Y|X]]+E[g (X)(1−2E[Y|X])]

= E[η(X)]+E[g (X)(1−2η(X))]

Maintenant, si g = g⋆,

R⋆ = R(g⋆) = E[η(X)]+E[1[η(X)>1/2](1−2η(X))]

Si η(X) > 1/2 l’expression devient

R⋆ = E[
η(X)(1−21[η(X)>1/2])+1[η(X)>1/2]

]
= E[1−η(X)]

et de même, si η(X) < 1/2,

R⋆ = E[
η(X)

]
et donc

R⋆ = E[η(X)∧ (1−η(X))]

Pour la seconde égalité, rappelons que

a ∧b = (a +b −|a −b|)/2

de sorte que

R⋆ = E
[

1

2

(
1−|2η(X)−1|)]= 1

2

(
1−E[|2η(X)−1|])

avec x ∧ y = inf(x, y).

4°.

E
[
( f (X)−Y)2|X = x

]= E[
( f (x)−η(x)+η(x)−Y)2|X = x

]
= ( f (x)−η(x))2 +2( f (x)−η(x))E[η(x)−Y|X = x]+E[(η(X)−Y)2|X = x]

= ( f (x)−η(x))2 +E[(η(X)−Y)2|X = x]

en passant à l’espérance des deux côtés de l’égalité
(par linéarité de l’espérance), il vient :

E
[
( f (X)−Y)2]= ( f (x)−η(x))2 +E[(η(X)−Y)2|].

Comme le terme ( f (x)−η(x))2 est positif, on en
déduit l’inégalité recherchée :

E
[
(η(X)−Y)2]≤ E[

( f (X)−Y)2]
Quelque soit la fonction f de X dans R, η(X) minimise
donc bien l’erreur quadratique lorsque f (X) prédit Y.

5°. Si X suit une loi uniforme sur [0,4c], alors

η(x) = E[Y|X = x]

et
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R⋆ = E[η(X)∧ (1−η(X))] = E
[

c ∧X

c +X

]
= 1

4c

∫ 4c

0

c ∧ x

c + x
d x = 1

4
ln

(
5e

4

)
≃ 0,3

6°. Soit F la fonction de répartition de X. On a :

F(x) =P[X ≤ x]

=P[X ≤ x|Y = 0]P[Y = 0]+P[X ≤ x|Y = 1]P[Y = 1]

= 2x(1−p)+xp = x(2−p) si x ∈ [0,1/2]

= (1−p)+xp si x ∈ [1/2,1]

On en déduit la densité de X en dérivant F :

f (x) = 2−p si x ∈ [0,1/2]

= p si x ∈ [1/2,1]

puis

E
[
Y1[X≤x]

]= E[
1[X≤x]∩[Y=1]

]
=P ([X ≤ x]∩ [Y = 1])

=P ([X ≤ x]|[Y = 1])P[Y = 1]

= px

Nous allons maintenant calculer η(x), en identifiant
deux expressions différentes de E

[
Y1[X≤x]

]
.

Rappelons que

η(x) = E[Y|X = x]

Par ailleurs, en utilisant la loi jointe de (X,Y) on a
également

E
[
Y1[X≤x]

]= ∫ ∫
y1[X≤x]P(X,Y)(d x,d y)

=
∫ ∫

y1[X≤x]P(Y/X)(x,d y)PX(d x)

=
∫ (∫

y P(Y/X)(x,d y)

)
1[X≤x]PX(x)

=
∫ x

0
E[Y|X = u] fX(u)du

=
∫ x

0
η⋆(u) fX(u)du = px =

∫ x

0
pdu

Si x < 1/2, alors fX(u) = 2−p et par identification avec
l’égalité précédente, on a η⋆(x) = p/(2−p). De la
même façon, si x > 1/2, fX(u) = p et par identification
on a alors η⋆(x) = 1

Finalement, la loi conditionnelle de Y sachant [X = x]
est une loi de Bernoulli :

P[Y = 1|X = x] = E[Y|X = x] = η⋆(x) = 1 ou p/(2−p)

P[Y = 0|X = x] = 1−P[Y = 1|X = x] = 0 ou 1−p/(2−p)

et le prédicteur de Bayes s’exprime de la façon
suivante :

g⋆(x) =1[η⋆(x)>1/2]

La fonction φ(p) = p/(2−p) est croissante de 0 à 1
lorsque p varie de 0 à 1 et l’on voit facilement que
φ(p) > 1/2 dès que p > 2/3. Ainsi,

g⋆(x) =


{
0 si p < 1/3 et x ≤ 1/2
1 si p > 1/3 et x ≤ 1/2

1 si x ≥ 1/2

7°. On utilise la formule de Bayes

η(x) =P[Y = 1|X = x] = P[X = x|Y = 1]P[Y = 1]

P[X = x]

avec

P[X = x] =P[X = x|Y = 1]P[Y = 1]+P[X = x|Y = 0]P[Y = 0]

=
x∑

k=0

(2θ)k

k !
e−2θp +

x∑
k=0

θk

k !
e−θ(1−p)

=
x∑

k=0

θk

k !
e−θ×

(
e−θ2x p + (1−p)

)
en remplaçant dans l’expression initiale de η(x), on
obtient le résultat.

Minimisation de l’erreur stochastique

1°. g⋆ est par définition le minimiseur de R (sur G ),
d’où la première inégalité. De la même façon, ĝn est
par définition le minimiseur de Rn , d’où la seconde
inégalité.

2°. Il est clair que

R(ĝn)−Rn(ĝn) ≤ sup
g∈G

|R(g )−Rn(g )|

puisque ĝn est une fonction de G . Et de la même
façon,

Rn(g⋆)−R(g⋆) ≤ sup
g∈G

|R(g )−Rn(g )|

puisque g⋆ est une également une fonction de G .

3°. D’après la question 1°, R(ĝn)−R(g⋆) ≥ 0. Par
ailleurs,

R(ĝn)−R(g⋆) = R(ĝn)−Rn(ĝn)+Rn(ĝn)−Rn(g⋆)+Rn(g⋆)−R(g⋆)

La différence du centre Rn(ĝn)−Rn(g⋆) est négative
par définirion de ĝn . Donc

R(ĝn)−R(g⋆) ≤ R(ĝn)−Rn(ĝn)+Rn(g⋆)−R(g⋆)

≤ 2sup
g∈G

|R(g )−Rn(g )|

d’après la question précédente.
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Inégalité oracle pour un dictionnaire fini

1°. L’interprétation a été vue en cours : l’écart de
risque augmente avec M, mais à M fixé, il tend vers 0
lorsque n tend vers l’infini à la vitesse 1/

p
n.

L’inégalité ne fait absolument aucune hypothèse sur
la loi P. Le terme majorant dépend de M de façon
logarithmique. Donc on peut prendre M assez grand
(modèle riche) sans sur-apprentissage (par rapport à
n). L’inégalité représente un contrôle de l’erreur
stochastique pour un dictionnaire fini, qui sert
souvent dans les inégalités d’oracle ; on peut
comparer les performances de l’estimateur à celles
du « meilleur » élément du dictionnaire, avec un
terme de pénalisation dépendant de n et lnM.

Cette inégalité est utilisée partout où un estimateur
est choisi parmi un nombre fini de modèles. Elle est la
base des méthodes de sélection de modèle,
agrégation, apprentissage statistique, PAC-learning,
etc.

2°. Une des versions de l’inégalité de Hoeffding est la
suivante : si (Vi )i est une suite de v.a.i.i.d. à valeurs
presque sûrement dans [a,b], alors ∀t > 0,

P
[∣∣∣Vn −E[Vn]

∣∣∣≥ t
]
≤ 2exp

(
− 2nt 2

(b −a)2

)
la démonstration (que nous ne ferons pas
maintenant) est très intéressante.

3°. On part de l’inégalité sur l’erreur stochastique : on
sait que

R(ĝn)−R(g⋆) ≤ 2sup
g∈G

|R(g )−Rn(g )|

Donc,

P
[
R(ĝn)−R(g⋆) ≥ 2t

]≤P[
2sup

g∈G
|R(g )−Rn(g )| ≥ 2t

]

=P
[

2
M

max
m=1

|R(gm)−Rn(gm)| ≥ 2t

]
=P

(
M⋃

m=1

[|R(gm)−Rn(gm)| ≥ t
])

≤
M∑

m=1
P

[|R(gm)−Rn(gm)| ≥ t
]= •

Mais

Rn(gm) = 1

n

n∑
i=1

l (Yi , gm(Xi ))

Posons alors Vi = hm(Xi ,Yi ) = l (Yi , gm(Yi )) ∈ [0,1].
Ces va sont i.i.d. car les (Xi ,Yi ) sont iid (et gm est une
fonction quelconque de G qui ne dépend pas de
l’échantillon). Par ailleurs, l’espérance de Rn(gm) est
égale à R(gm). On peut alors poser a = 0 et b = 1 et
appliquer l’inégalité de Hoeffding :

• ≤
M∑

m=1
2exp

(
− 2nt 2

(1−0)2

)
= 2Me−2nt 2

Pour avoir un majorant égal à ϵ, il suffit alors de poser

ϵ= 2Me−2nt 2

⇐⇒ t = 1

2

√
2

n
ln

(
2M

ϵ

)
.

Finalement, pour obtenir l’inégalité demandée, il
suffit de passer à l’évènement complémentaire.

Arbres de décision

1°. C’est le premier arbre qui a le moins de risque de
sur-apprendre, car il possède le moins de feuilles.
C’est donc le modèle le moins riche.

2°. G est la réunion des Gi , donc ĝn ∈G . Supposons
que ĝn ∈G1 (i = 1). Alors le minimum est atteint sur
G1 ⊂G , donc il coïncide avec celui de G1. On a alors

Rn(ĝ1) ≤ Rn(ĝ2) et Rn(ĝ1) ≤ Rn(ĝ3)

⇒Rn(ĝ1) = Rn(ĝn) ∈ argming=ĝ1,ĝ2,ĝ3
Rn(g )

La démonstration est la même si l’on suppose i = 2,3.

3°. Pour chaque observation, on détermine à quelle
feuille elle appartient. Notons-les F1, ...,F4 de gauche
à droite. On a, dans l’ordre des cases,

F2 −F3 −F2 −F3 −F3 −F3 −F2 −F2 −F2 −F3

avec 0 observations dans F1 et F4. On définit ĝ1 sur F1

et F4 par tirage à pile ou face équitable. F2 contient 5
observations de labels : 0,1,1,0,1 donc ĝ1 = 1 est
majoritaire. F3 contient 5 observations de labels :
0,0,1,1,0 donc ĝ1 = 0 est majoritaire sur cette feuille.
Ainsi,

ĝ1(x) =1F2 (x)+ϵ1F1 (x)

où ϵ est le résultat d’un tirage à pile ou face.

Adaboost

Soit h0 ∈F (X,R), φ(x) = ex la perte boosting et An le
φ-risque. On cherche le couple (α̂, ĥ) qui minimise ce
φ-risque :

(α̂, ĥ) =∈ argmin
α≥0,h∈H

An(h0 +αh) (6)

L’expression à minimiser s’écrit

An(h0 +αh) = 1

n

n∑
i=1

exp(−Yi h0(Xi )−αYi h(Xi )) (7)

= 1

n

n∑
i=1

wi e−αYi h(Xi ) (8)

= 1

n

n∑
i=1

wi e−αYi h(Xi ) [1[Yi=h(Xi )] +1[Yi ̸=h(Xi )]
]

(9)

en posant (pour alléger les formules et sans perte de
généralité) :
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wi =φ(−Yi h0(Xi ))/
n∑

i=1
φ(−Yi h0(Xi )) (10)

qui ne dépend que de l’échantillon de données et de
h0 (autrement dit on normalise les poids wi ).

Puisque Yi et h(Xi ) sont à valeurs binaires (±1),
Yi = h(Xi ) ⇐⇒ Yi h(Xi ) = 1 et de même,
Yi ̸= h(Xi ) ⇐⇒ Yi h(Xi ) =−1. Ainsi,

(α̂, ĥ) = argmin
α≥0,h∈H

(
e−α

1

n

n∑
i=1

wi1[Yi=h(Xi )] +eα
1

n

n∑
i=1

wi1[Yi ̸=h(Xi )]

)

= argmin
α>0

(
(eα−e−α)

1

n

n∑
i=1

wi1[Yi ̸=h(Xi )] +
1

n
e−α

)
.

∀α≥ 0, le minimum est atteint quand

ĥ ∈ argmin
h

∑
i

wi1[Yi ̸=h(Xi )]. (11)

La forme de l’expression permet de minimiser
séparemment h et α. ĥ étant choisi pour minimiser h,
alors

α̂ ∈ argmin
α>0

(
(eα+e−α)ϵ+e−α

)= argmin
α

G(α), (12)

avec ϵ=∑
i wi1[Yi ̸=h(Xi )].

G′(α) = (eα−e−α)ϵ−e−α et G′′(α) = eαϵ+e−α(1−ϵ).
Ainsi, G est convexe et sa dérivée s’annule en

α= 1

2
ln

(
1−ϵ
ϵ

)
(13)

que l’on choisit dans l’étape 3 de l’algorithme.

Il est important de noter que la perte Boosting
lb(x) = ex est convexe et que lb(x) ≥ l0−1(x). Adaboost
minimise cette perte en minimisant l’expression∑

i wi1[•].

Bagging

On note (X,Y) une variable aléatoire suivant la loi
théorique inconnue, et

f (x) = E[Y | X = x]

la fonction de régression. Pour un estimateur h
évalué en un point x, on rappelle la décomposition
biais–variance :

E
[
(h(x)−Y)2]= (

E[h(x)]− f (x)
)2︸ ︷︷ ︸

biais2

+ V(h(x))︸ ︷︷ ︸
variance

+σ2(x).

1°. Cas de M échantillons indépendants.

On dispose de M échantillons indépendants
Dn,1, . . . ,Dn,M, tous de taille n. Chaque échantillon
sert à entraîner un estimateur de régression au sens
des moindres carrés : h1, . . . ,hM. On définit la
moyenne empirique

ĥM(x) = 1

M

M∑
m=1

hm(x).

Comme les hm sont i.i.d.,

E[ĥM(x)] = 1

M

M∑
m=1

E[hm(x)] = E[h1(x)],

d’où
B(ĥM(x)) =B(h1(x)).

Le biais de B(ĥM) est identique à celui d’un
estimateur individuel.
Variance. Par indépendance :

V(ĥM(x)) =V
(

1

M

M∑
m=1

hm(x)

)

= 1

M2

M∑
m=1

V(hm(x))

= 1

M
V(h1(x)).

La variance de ĥM décroît comme 1/M.

2°. Cas bootstrap : un seul échantillon

On ne dispose plus que d’un seul échantillon

Dn = {(Xi ,Yi )}n
i=1.

On construit M échantillons bootstrap D∗
n,1, . . . ,D∗

n,M
en tirant n observations avec remise dans Dn avec la
loi uniforme. Pour chaque échantillon bootstrap, on
calcule un estimateur h∗

m et on définit

h∗
M(x) = 1

M

M∑
m=1

h∗
m(x).

Analyse conditionnelle : conditionnellement à Dn , les
échantillons bootstrap D∗

n,m sont i.i.d. suivant la loi
empirique. Ainsi :

E∗[h∗
M(x) |Dn] = E∗[h∗

1 (x) |Dn],

et

V∗(
h∗

M(x) |Dn
)= 1

M
V∗(

h∗
1 (x) |Dn

)
,

où E∗ et V∗ désignent les espérances et variances
prises uniquement par rapport au mécanisme de
bootstrap.

Conclusion conditionnelle : pour un jeu de données
fixé, moyenner les estimateurs bootstrap réduit la
variance conditionnelle par un facteur 1/M, sans
modifier le biais conditionnel.

Comparaison avec le cas idéal : lorsque n est grand, la
loi empirique est proche de la vraie loi : les propriétés
biais–variance du bootstrap miment alors celles
obtenues dans la question 1°. En pratique :

— le biais global de h∗
M reste proche de celui de

h∗
1 ;

— la variance décroît avec M, ce qui réduit l’erreur
de généralisation pour des estimateurs
instables (par exemple les arbres de régression).

Nom de la méthode : la procédure décrite (tirages
bootstrap + moyenne des estimateurs) est le bagging.
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