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Prédicteur de Bayes en classification
binaire

On considére un n-échantillon de v.a.i.i.d.

Dy =1{Z4,...., Ly} avec Z; = (X;,Y;). On suppose que les
v.a. X sont issues d'un espace X, que les v.a. Y sont
issues d'un espace Y et I'on se donne une loi de
probabilité (inconnue) P sur 'espace & = X x Y. P est
laloi de (X,Y) et également la loi jointe commune des
Xi,Yq).

Fonction de prédiction g € & = % (X, Y). Fonction de
perte [ : Y2 — R, telles que (Y, g(X)). Le risque de g
est

R(g) =Rp(g) =E[I(Y,g(X))] 8]

Le prédicteur de Bayes est 1'élément g* de & qui
minimise la perte R(g).

1Y, Y) = Ly vy 2
nNx) =PY=1X=x]=E[YIX=x] 3)
g% () = Liw>1/2) 4)
1°.
PlY=1X=x]

=P[Y= g(X)|X = x]]l[g(x)zl] +P[Y=0X= x]]l[g(x):()]
=N Lg=11 + 1 =N Lig=o)
2°,
PlgX)ZYIX=x]=1-P[gX) =Y|X = x]
=1-PlY=1,gX)=1X=x]-P[Y=0,gX) =0|X = x]
=1- ﬂ[g(x):l]P[Y = 1|X = x] - ﬂ[g(x):o]ﬂm[Y = 0|X = x]
=1-1gw=1nx) - Ligu=01-nx))
Ainsi,
PlgX) #YIX=x] -P[g* X) # YIX = x]
=10 (Ligr =11 ~ Ligw=1)) + -
et (=10 (Ligx (9=01 — Ligo=0)
=N =1 (Lig =1 — Ligw=1)
>0
par définition de g* (x) et parce que

2n(x) —1>0 < g*(x) = 1. D’ou I'inégalité
demandée :

PIY # g* X)X =x] < P[Y # gX) X = x] (5)
3°,
R(g) = E[Lgx)#v1]
=PIg) £ Y] =E[(g00-Y)°].

La derniere égalité provient du fait que d’'une part, Y
et g(X) valent 0 ou 1 uniquement et d’autre part
I'indicatrice de [g(X) # Y] et (g(X) —Y)2 prennent les
mémes valeurs (0 ou 1) quelque soit les valeurs prises
par gX)etY (Ooul).

gy = () -Y)*
= Y2+ g(X)? —2Yg(X) = Y + g(X)(1 - 2Y)

(car Y = Y?). Ainsi,

R(g) =E[Y]+E[g(X)(1-2Y)]
= E[E[YIX]] + E[g(X) (1 - 2E[YIX])]
=EMX)] +E[gX) (1 -2nX))]

Maintenant, si g = g*,

R* =R(g™) = EMX)] +E[11nx)>1/2) (1 = 2n(X))]

Sin(X) > 1/2'expression devient

R* =E[NX) (1 - 21 yx)>1/2) + Lino>1/21]
=E[1 -nX)]

et de méme, sinX) <1/2,
R* =E[nX)]
etdonc
R* =EMX) A (1 -nX))]
Pour la seconde égalité, rappelons que
anb=(a+b-|a->b|)/2
de sorte que

1
R*=E 5(1—|2n(X)—1|) =-(1-E[I12n®) - 11])

D=

avec x A y =inf(x, y).
4°,

E[(fX) -V?IX = x] =E[(f(x) = n(x) +n(x) = V?|X = x]

= (£ (%) = (X)) +2(f () =M)EM(x) - YIX = x] + E[((X) = V)*|X = x]

= (f(x) =) +E[X) - )?X = x]

en passant a I'espérance des deux cotés de I'égalité
(par linéarité de ’espérance), il vient :

E[(fX) -] = (f(x) = n(x)?* +El(X) - V?]1.

Comme le terme (f(x) — 1(x))? est positif, on en
déduit I'inégalité recherchée :

E[(®X) -V?] <E[(fX) -]

Quelque soit la fonction f de X dans R, n(X) minimise
donc bien I'erreur quadratique lorsque f(X) prédit Y.

5°. Si X suit une loi uniforme sur [0, 4c], alors
N(x) =E[YIX=x]

et



AX
R* = EMX) A (1-n(X))] :[E[C—] 85 () =Ly m>172

4c
= 1 CAxd = _1 ( ) 0,3 La fonction ¢(p) = p/(2 — p) est croissante de 0 a 1
dcJo ctx 4 lorsque p varie de 0 a 1 et 1'on voit facilement que
&(p) > 1/2 des que p > 2/3. Ainsi,

6°. Soit F la fonction de répartition de X. On a:
Osip<1l/3etx=<1/2
F(x) =PX < x] g x) = Isip>1/3etx<1/2
=PX=x|Y=0]P[Y=0]+PX=<x|Y=1]P[Y=1] lsix=1/2
=2x(1-p)+xp=x(2-p)six€[0,1/2]
=(1-p)+xpsixe[l/2,1] 7°. On utilise la formule de Bayes

PX=x|Y =1]P[Y =1]
nx)=PY=1X=x]=

On en déduit la densité de X en dérivant F : P[X = x]
fx)=2-psixel0,1/2] avec
= pSi)CE [1/2,1] PX=x]=P[ X:x|Y: 1IP[Y = 1] +P[X = x|Y:O]|P[Y=O]

29k X ek

X

puis 2:: k:O k!
X
g

E[Ylix<x] = E[Lx<xniy=11]
“P(X<xIN[Y=1])

=PX=xJIlY=1DP[Y=1] en remplacant dans |'expression initiale de n(x), on
= px obtient le résultat.

( 04 (l—p))

w|®

Nous allons maintenant calculer n(x), en identifiant

deux expressions différentes de E[Y1 x<y]. Minimisation de 'erreur stochastique
Rappelons que
1°. g* est par définition le minimiseur de R (sur %),
n(x) =E[YIX = x] d’oti la premiére inégalité. De la méme facon, g, est
par définition le minimiseur de R,,, d’ot1 la seconde

Par ailleurs, en utilisant la loi jointe de (X,Y) on a
également

E[Y1x<x] ffyﬂ[x<x1p(xw(dx dy)

inégalité.
2°. Il est clair que

R(g1) —Ru(8n) < suplR(g) —Ru(g)l
:ffy]l[sz]P(Y/X)(X, dy)Px(dx) 8e9

_ P x,dy) | Lixer Py (x puisque g, est une fonction de 4. Et de la méme
f(fy X J/)) x<xPx (x) facon,

X
= fo ENYIX = ul fx(w)du R,(g*) ~R(g*) = sup|R(g) — Ru(g)|
X X gey
=f N (W) fx(wdu = pxzf pdu
0 0 puisque g* est une également une fonction de ¢.
Six < 1/2,alors fx(u) =2 - p et par identification avec
I’égalité précédente, on an*(x) = p/(2 - p). Dela
méme facon, si x > 1/2, fx(u) = p et par identification
onaalorsn*(x)=1

3°. D’apres la question 1°, R(g,) — R(g*) = 0. Par
ailleurs,

R(gn) —R(§") =R(&n) —Rn(§n) + Rn(8n) —Rn(g™) +Ru(g™) —~R(g™)
Finalement, la loi conditionnelle de Y sachant [X = x]
est une loi de Bernoulli : La différence du centre R, (g,,) — R, (g™) est négative
. par définirion de g,. Donc
PY=1X=x]=E[YX=x]=n"(x)=1oup/2-p)
PY=0X=x]=1-P[Y=1X=x]=00ul-p/2-p) R(§x) —R(g™) <R(&n) —Rn(gn) +Ru(g™) —R(g™)

< 28up IR(g) —Rn(g)l

gE

et le prédicteur de Bayes s’exprime de la fagcon
suivante : d’apres la question précédente.



Inégalité oracle pour un dictionnaire fini

1°. L'interprétation a été vue en cours : I'écart de
risque augmente avec M, mais a M fixé, il tend vers 0
lorsque 7 tend vers I'infini a la vitesse 1/+/n.
L'inégalité ne fait absolument aucune hypothese sur
laloi P. Le terme majorant dépend de M de facon
logarithmique. Donc on peut prendre M assez grand
(modele riche) sans sur-apprentissage (par rapport a
n). Linégalité représente un controle de I'erreur
stochastique pour un dictionnaire fini, qui sert
souvent dans les inégalités d’oracle; on peut
comparer les performances de l'estimateur a celles
du « meilleur » élément du dictionnaire, avec un
terme de pénalisation dépendant de n et InM.

Cette inégalité est utilisée partout o1 un estimateur
est choisi parmi un nombre fini de modeles. Elle est la
base des méthodes de sélection de modele,
agrégation, apprentissage statistique, PAC-learning,
etc.

2°. Une des versions de I'inégalité de Hoeffding est la
suivante : si (V;); est une suite de v.a.i.i.d. a valeurs
presque stirement dans [a, b], alors V¢ >0,

2nt?
= t] = 2exp (_(b——a)z)

la démonstration (que nous ne ferons pas
maintenant) est trés intéressante.

PV, —E[Vy,]

3°. On part de 'inégalité sur 'erreur stochastique : on
sait que

R(g,) —R(g™) <2sup|R(g) —R, ()|
gey

Donc,

P[R(g:) —-R(g™) =2t] <P |2sup|R(g) —Rn(g)I = 21

ge¥

=P [zé\%m(gm) —Ru(gm)l =2t

M
= [P’( U [R(gm) —Ru(gm)| = t])
m=1

A

M
= Z P[IR(gm) —Rn(gm)| =] =
m=1

Mais
1 n
Rn(gm) = W Z 1(Y;, gm(X:))
i=1

Posons alors V; = h, (X;,Y;) = (Y, gm(Y;)) € [0, 1].
Cesva sonti.i.d. car les (X;,Y;) sontiid (et g;, est une
fonction quelconque de ¢4 qui ne dépend pas de
I'échantillon). Par ailleurs, 'espérance de R, (g5,) est
égale aR(g;,). On peut alors posera=0etb=1et
appliquer 'inégalité de Hoeffding :

- M ve p( 2nt? )
o< X] —
= (1-0)2
= 2Me 2"

Pour avoir un majorant égal a e, il suffit alors de poser

52
€=2Me 2"

Finalement, pour obtenir I'inégalité demandée, il
suffit de passer a I'événement complémentaire.

Arbres de décision

1°. C’est le premier arbre qui a le moins de risque de
sur-apprendre, car il possede le moins de feuilles.
C’est donc le modeéle le moins riche.

2°. ¢ estlaréunion des ¢;, donc g, € 4. Supposons
que g, €% (i =1). Alors le minimum est atteint sur
¢, ¥4, donc il coincide avec celui de ¢;. On a alors

Ru(81) =R, (82) et Ry (81) <Ry (83)
=Rn(81) =Rn(gn) € argming_g = 5 Ru(g)
La démonstration est la méme sil'on suppose i =2,3.

3°. Pour chaque observation, on détermine a quelle
feuille elle appartient. Notons-les Fy, ...,F4 de gauche
a droite. On a, dans I'ordre des cases,

Fo—F3—F;-F3—-F3—F3—-F>-F,-F,—F3

avec 0 observations dans F; et F4. On définit g; sur F;
et F, par tirage a pile ou face équitable. F, contient 5
observations de labels : 0,1,1,0,1 donc g = 1 est
majoritaire. F3 contient 5 observations de labels :
0,0,1,1,0 donc g; = 0 est majoritaire sur cette feuille.
Ainsi,

81(x) = 1g, (x) +€lg, (x)

ol € est le résultat d'un tirage a pile ou face.

Adaboost

Soit hy € F (X,R), b(x) = e* la perte boosting et A, le
¢-risque. On cherche le couple (@, ) qui minimise ce
¢p-risque :

@, h) =€ argmin A, (ho + ah) (6)
a=0,he A

Lexpression a minimiser s’écrit

Apn(ho +ah) = 1 Y exp (=Yiho(X;) —aY; h(X;)) @

n i=1
1& .
[ Z wl.e_‘thh(Xz) (8)
n;s
Lh oV
- ZZ wie” Y [Ty e + Livneon]

I
—

9)

en posant (pour alléger les formules et sans perte de
généralité) :



n
wi = G(=Y;iho (X)) ) d(=Yiho(X;)

i=1

(10

qui ne dépend que de I’échantillon de données et de
hy (autrement dit on normalise les poids w;).

Puisque Y; et h(X;) sont a valeurs binaires (+1),
Y; = h(X;) < Y;h(X;) =1et de méme,

Y; # h(X;) < Y;h(X;) = —1. Ainsi,

@, h) = argmin | e~®
o=0,he

S

—_

a>0 i=1

. —ay L -
= argmln((eo‘—e 0(); Z wi]l[yi¢h(xi)] +;e O‘).

Va =0, le minimum est atteint quand

ﬁeargminz w,-]l[Yl.#h(X,.)]. 11
i

h
La forme de I'expression permet de minimiser
séparemment / et a. h étant choisi pour minimiser h,
alors

aeargmin((e*+e %e+e *) =argminG(e), (12)
a>0 a

avec e = Zi wi]]-[Yi¢h[Xi)]-
G=("—eMNe—e%etG"(®) =e%c+e %1 —¢).
Ainsi, G est convexe et sa dérivée s’annule en

1 ) (1 6) (13)

=—In
2 €

que I'on choisit dans I'étape 3 de ’algorithme.

Il est important de noter que la perte Boosting

Ip(x) = e* est convexe et que lj(x) = lp—1(x). Adaboost
minimise cette perte en minimisant I'expression
Yiwilp.

Bagging

On note (X,Y) une variable aléatoire suivant la loi
théorique inconnue, et

fx)=

la fonction de régression. Pour un estimateur i
évalué en un point x, on rappelle la décomposition
biais—variance :

E[Y | X =x]

E[(h(x) —V)?] = (E[h(0)] - £(0))* + V(h(x)) + 02 (x).

—_—

biais2 variance

1°. Cas de M échantillons indépendants.

On dispose de M échantillons indépendants
Dnis---»PnM, tous de taille n. Chaque échantillon
sert a entrainer un estimateur de régression au sens
des moindres carrés: h,..., hy. On définit la
moyenne empirique

M

m=1

Ay (x) =

B 12 0(1 n
e~ Y willyy,=pexp + e = Y willyznxo
i=1 i=1

Comme les h;, sonti.i.d.,
M

hM(x)l— Y Elhm(x)] =E[h (0)],
m:

d’ ol
B(hAm (X)) = B(hy (x)).
Le biais de [EB(EM) est identique a celui d'un

estimateur individuel.
Variance. Par indépendance :

V(7 (x)) =

M

Z m(x))
m

M

Z (hm(x))

= M\/(’h(x)).

La variance de EM décroit comme 1/M.
2°. Cas bootstrap : un seul échantillon

On ne dispose plus que d’'un seul échantillon

Dn =X, Y,
On construit M échantillons bootstrap 2, ,,...,2;,
en tirant n observations avec remise dans @n avec la

loi uniforme. Pour chaque échantillon bootstrap, on
calcule un estimateur #;;, et on définit

1 M
hy(x) = — he (x).

M) = o m; (%)
Analyse conditionnelle : conditionnellement a 2,,, les
échantillons bootstrap 9;, ,,, sonti.i.d. suivant la loi
empirique. Ainsi :

E* [y (%) | D] = E* [} (x) | D],

et

V* (hi (0 | D) = — V* (R} () | D),

ou E* et V* désignent les espérances et variances
prises uniquement par rapport au mécanisme de
bootstrap.

Conclusion conditionnelle : pour un jeu de données
fixé, moyenner les estimateurs bootstrap réduit la
variance conditionnelle par un facteur 1/M, sans
modifier le biais conditionnel.

Comparaison avec le cas idéal : lorsque 7 est grand, la
loi empirique est proche de la vraie loi : les propriétés
biais—variance du bootstrap miment alors celles
obtenues dans la question 1°. En pratique :

— le biais global de hy; reste proche de celui de
hy;

— la variance décroit avec M, ce qui réduit |'erreur
de généralisation pour des estimateurs
instables (par exemple les arbres de régression).

Nom de la méthode : la procédure décrite (tirages
bootstrap + moyenne des estimateurs) est le bagging.



