APPRENTISSAGE STATISTIQUE - MS ENSAI
TP1 : k-PPV ET ARBRES DE DECISIONS. 2025-2026

1 Objectifs du TP

Nous allons mettre en application I'algorithme des k
plus proches voisins et I'algorithme CART d’arbres de
décisions sur deux jeux de données tres classiques.
En fonction de votre temps disponible et de vos
envies, vous pouvez étudier un ou plusieurs
problémes supplémentaires proposés ci-apres

Dans chaque cas, il s’agit d’effectuer rapidement une
premiere exploration descriptive des données et une
analyse statistique univariée des variables d’intérét
supposées, puis d’appliquer d’abord I'algorithme
k-NN et ensuite I'algorithme CART.

Pour chacun des deux problemes, il est demandé de
découper en plusieurs parties 'ensemble des
données, pour former des échantillons
d’apprentissage et des échantillons de test. Une des
meéthodes possibles (validation croisée de type
V-Fold) consiste a séparer le jeu de données en 5
blocs de tailles égales, puis de diviser chaque bloc en
un échantillon d’entrainement comprenant 80% des
données et un échantillon de test. Pour chaque bloc,
on estime le prédicteur a partir du sous-échantillon
d’entrainement, puis on calcule son risque empirique
sur le sous-échantillon de test (et cela pour chaque
valeur de k que I'on souhaite tester).

ENSEMBLE D’ENTRAINEMENT TEST

‘ |

ensemble découpé en k sous-échantillons égaux

FIGURE 1 - Validation croisée k-Fold pour k = 10.
Vous devrez évaluer la qualité des prédictions a I'aide

des techniques usuelles.

2 Reconnaissance de chiffres
manuscrits

La base de données est tirée de "’ « UC Irvine Machine
Learning Repository ». C’est un jeu de données

regroupant 5620 images de chiffres manuscrits
compris entre 0 et 9. On a demandé a plusieurs
personnes de tracer des chiffres, d’abord de fagon
posée, puis de facon plus rapide. Les images de ces
chiffres ont été discrétisées en matrices de pixels de 8
lignes sur 8 colonnes, dont chaque coefficient est un
entier compris entre 0 et 16 représentant le niveau de
gris du pixel.

Les données sont disponibles a I’adresse
https://archive.ics.uci.edu/ml/datasets, mais on peut
les charger directement a partir d'une bibliotheque
Python. Nous n’utilisons que la partie test du jeu de
données qui comprend 1797 images.

1°. Les données sont disponibles via la commande
load_digits delabibliotheque
sklearn.datasets. Charger les données, vérifier la
taille de I'’échantillon et afficher quelques un des
chiffres manuscrits a I’aide de la commande imshow.

2°. Calculer et afficher quelques statistiques
descriptives.

3°, Al'aide la commande TSNE, utiliser cet algorithme
pour afficher en deux dimensions une représentation
de la base de données. Il sera nécessaire de
transformer les matrices 8 x 8 en vecteurs colonnes a
64 coordonnées. Que pensez-vous du résultat?

4°. Découper les données en échantillons
d’entrainement et de test (20% pour le test, 80% pour
I'entrainement). Le classifieur k-NN est donné par la
fonction KNeighborsClassifier de
sklearn.neighbors. Les parametres les plus
importants sont la valeur de k (n_neighbors), les
poids (weights) et le parameétre p de la métrique de
Minkowski. Créer un vecteur contenant plusieurs
valeurs de ces parametres, puis a I’aide de la fonction
GridSearchCV de sklearn.model_selection
récupérer les meilleures valeurs des parametres.
GridSearchCV opere une validation croisée de type
k-fold sur les données dont on peut fixer la valeur (on
prendra cv=5).

5°. Al’aide de la fonction classification_report,
évaluer la qualité de la prédiction. Afficher la matrice
de confusion.

6°. Importer et utiliser les fonctions
DecisionTreeClassifier etcross_val_predict
pour construire un arbre de décisions. Evaluer ses
performances et comparer avec la méthode des ppv.

7°. Avec la fonction plot_tree afficher 'arbre
obtenu. Qu’en pensez-vous? Comment
expliquez-vous I'écart de performances entre les deux
méthodes?

8°. Si vous avez le temps, reprendre I'exercice avec le
jeu de données MNIST, qui est beaucoup plus fourni
(60 000 images). Pour télécharger les données,
installer python-mnist.


https://archive.ics.uci.edu/dataset/80/optical+recognition+of+handwritten+digits

3 Iris de Fisher

1°. Charger le jeu de données des iris de Fisher, en
méme temps que les bibliotheques habituelles de
traitement des données.

2°. Découper le jeu de données en réservant 75% des

données pour 'entrainement et le reste pour les tests.

ATaide de la fonction
tree.DecisionTreeClassifier construire un
arbre de décisions, I'entrainer et évaluer ses
performances.

3°. Afficher I'arbre de décision a I'aide des fonctions
tree.export_graphviz, pydotplus et
tree.plot_tree. Jouer sur la taille de la figure et
celle de la police de caracteres pour que I'arbre soit
lisible.

4°. Reprendre le jeu de données et appliquer une
validation croisée afin d’optimiser I’arbre. Vous
pouvez utiliser par exemple la fonction
cross_val_predict puis
classification_report. Comparer les résutlats.

5°. Tester la méthode k-NN sur le jeu de données en
déterminant la valeur de k optimale; pour cela, faire
une boucle sur les différentes valeurs de k a tester et
utiliser la fonction cross_val_score. Avec les
parametres, 'appel ressemblera a :
cross_val_score(knn, X_train, Y_train,
cv=10, scoring=’accuracy’).Comparer les
performances des deux méthodes.

4 Reconnaissance de formes de
chiffres manuscrits : un second

jeu

Ici, la base de données est tirée de I’ « UC Irvine
Machine Learning Repository ». C’est un jeu de
données regroupant 1593 images de chiffres
manuscrits compris entre 0 et 9. Les images de ces
chiffres ont été discrétisées en tableaux de 16 lignes
sur 16 colonnes, puis un seuillage a été effectué sur
les niveaux de gris. Finalement, un chiffre manuscrit
est représenté par un tableau 16 x 16 formé de 0 et de
1. Ce tableau est transformé en vecteur ligne (de 256
coordonnées binaires) dans la base de données. Pour
chaque ligne, 10 colonnes sont ajoutées et
contiennent, sous forme de variables catégorielles,
les valeurs réelles des chiffres correspondants.

La base de données est disponible ici :
https://archive.ics.uci.edu/ml/datasets.

Reprendre les questions de la section 2 et les
appliquer a ce jeu de données.

5 Prévision du niveau de revenus
annuels

La base de données « Census Income Data Set » est
disponible sur cette page et contient 48842 individus
dont on a observé 15 variables (4dge, CSP, niveau
d’éducation, métier, situation professionnelle, sexe,
etc.). Il s’agit de prédire le niveau de revenu annuel
des individus en fonction des 14 premiéres variables :
est-il plus grand ou plus petit que 50K par an?

Séparer la base de données en un échantillon
d’apprentissage (les 32561 premiéres lignes) et un
échantillon test (les 16281 dernieres lignes) et évaluer
la différence de performances des classifieurs pour
une régression logistique, une classification par la
méthode des k plus proches voisins et un arbre de
décision.

6 Regression par k-ppv et arbres
de décision

1°. Créer un nuage de points autour d'une sinusoide
et utiliser un régresseur a base de k-ppv pour
approcher la courbe initiale (utiliser la fonction
KNeighborsRegressor). Faire varier le parametre k
et évaluer la qualité de 'approximation en fonction
de k. Modifier également le parametre poids.

2°. Effectuer le méme travail avec un arbre de décision
(utiliser la fonction DecisionTreeRegressor). Faire
varier la profondeur de I'arbre et évaluer la qualité de
I’approximation en fonction de ce parametre.


https://archive.ics.uci.edu/ml/datasets/semeion+handwritten+digit
https://archive.ics.uci.edu/ml/datasets/census+income

	Objectifs du TP
	Reconnaissance de chiffres manuscrits
	Iris de Fisher
	Reconnaissance de formes de chiffres manuscrits : un second jeu
	Prévision du niveau de revenus annuels
	Regression par k-ppv et arbres de décision

