
APPRENTISSAGE STATISTIQUE - MS ENSAI
TP3 : Boosting, Bagging, Stacking. 2025-2026

Objectifs du TP

Nous allons mettre en application les algorithmes
relatifs aux méthodes d’agrégation et de convexité (en
classification et régression), et les comparer aux
autres méthodes d’apprentissage supervisé (k-ppv,
arbres de décision, régression logistique, machines à
vecteurs de support et réseaux de neurones).

Comme dans les TP précédents, pour chaque jeu de
données réelles, il s’agit d’effectuer rapidement une
première exploration descriptive des données et une
analyse statistique simple des variables d’intérêt. Il
faut ensuite utiliser les classifieurs et régresseurs
Boosting, Bagging et Stacking, tester les différentes
fonctions et leurs options, puis comparer les
performances avec toutes les méthodes vues
précédemment.

N’hésiter pas à aller chercher de la documentation en
ligne et à utiliser Chat-GPT ou autre IA pour générer
ou corriger des parties de votre code (en tâchant de
comprendre ce qu’ils font !).

1 Comparaison d’un arbre seul
avec Adaboost en régression

1°. Construire un échantillon d’une centaine de
points en deux dimensions à partir d’une fonction
sinusoïde perturbée par un bruit aléatoire.

2°. Utiliser les fonctions DecisionTreeRegressor et
AdaboostRegressor pour ajuster deux modèles et
les comparer sur un même graphique (on pourra
prendre initialement 200 arbres avec une profondeur
de 4).

3°. Étudier les paramètres de AdaboostRegressor
(type d’estimateur, nombre, taux d’apprentissage,
perte) et les attributs (en particulier l’importance des
variables) de cette fonction. Les faire varier et
observer graphiquement l’effet.

2 Comparaison d’Adaboost et
Gradient Boosting en
classification

4°. À l’aide de la fonction make_hastie_10_2, créer
un échantillon de taille 1000 et le séparer en deux
sous-échantillons d’apprentissage et de test (utiliser
train_test_split). À l’aide des fonctions
GradientBoostingClassifier,
AdaBoostClassifier et
DecisionTreeClassifier, ajuster un classifieur
selon l’algorithme Adaboost (dont les classifieurs
faibles seront des arbres de décision) et un autre

selon l’algorithme Gradient Boosting, avec
initialement n = 200 arbres d’une profondeur
maximale de 3. Comparer leurs performances.

5°. reprendre la question précédente en faisant varier
le taux d’apprentissage de 0.1 à 1.9. Représenter
graphiquement les performances des deux
classifieurs en fonction du taux d’apprentissage.
Représenter ensuite les performances de chaque
algorithme sur son échantillon d’apprentissage et son
échantillon de test. Détecter l’apparition du
phénomène de sur-apprentissage.

6°. En jouant sur les paramètres des arbres, essayer de
corriger ce sur-apprentissage.

3 Gradient Boosting en régression

7°. Construire deux échantillons (un pour
l’apprentissage et un pour le test) d’une centaine de
points en deux dimensions à partir d’une fonction
sinusoïde perturbée par un bruit aléatoire.

8°. Utiliser la fonction DecisionTreeRegressor
pour ajuster un modèle d’arbre de décision et tracer
sur un même graphique les données, ainsi que
plusieurs arbres correspondants à des profondeurs
différentes.

9°. À l’aide de la fonction GradientBoostRegressor,
ajuster un modèle de Boosting contenant 1000 arbres
et de profondeur maximale 1. Tracer la fonction de
régression sur le même graphique que
précédemment.

10°. Étudier les paramètres de
GradientBoostRegressor et les faire varier pour en
étudier l’effet.

11°. Écrire une fonction qui calcule l’erreur de
régression et afficher cette quantité en fonction du
nombre d’arbres, à la fois pour les données
d’entraînement et de test.

4 Comparaison de tous les
algorithmes de Boosting en
classification

12°. Étudier les fonctions Python permettant
d’effectuer du Boosting (Gradient Boosting, XGBoost,
AdaBoost, CatBoost et LightGBM) et leurs paramètres
respectifs.

13°. À l’aide de la fonction make_classification,
créer un échantillon de taille 1000 avec des variables
de dimension 20 (n_features). Séparer l’échantillon
en deux en conservant 30% pour la partie test.

14°. Créer une liste des 5 classifieurs et entraîner
chacun d’eux sur l’échantillon. Évaluer leurs
performances respectives en termes d’AUC et tracer
sur un même graphique toutes les courbes ROC
correspondantes. Comparer également les temps

1



d’entraînement de chaque algorithme dans un
histogramme.

15°. En vous aidant de la littérature trouvée sur
internet et des simulations précédentes, construire
un tableau de comparaison des 5 algorithmes.

5 California Housing Dataset

Le jeu de données « California Housing Dataset » est
une base de données très courante utilisée comme
benchmark en apprentissage statistique. Il contient
des données issues d’un ancien recensement effectué
en Californie, relatives au prix des logements en
fonction de la position géographique, du nombre de
pièces, de l’âge de la construction, de la population
du district où le logement est construit, etc. La
variable cible est le prix médian du logement. Ce jeu
de données est inclus dans la librairie
sklearn.datasets. Nous avons déjà utilisé ce jeu de
données lors des TPs précédents ; ici, il s’agit de
prévoir le prix médian à l’aide des algorithmes de
Boosting et de Bagging pour un problème de
régression.

16°. À l’aide de fetch_california_housing,
importer ce jeu de données et effectuer des
statistiques descriptives permettant de visualiser la
base de données et d’étudier ses caractéristiques.

17°. Séparer les données en un échantillon
d’apprentissage et un échantillon de test. Afin de
pouvoir se comparer avec les résultats donnés dans
l’ouvrage "the Elements of Statistical Learning" de
Hastie et ses collaborateurs, on choisira une
proportion de 0.8 pour la taille de l’échantillon
d’apprentissage et on mesurera l’erreur par la
métrique de MAE (Mean Absolute Error).

18°. À l’aide de la fonction
GradientBoostingRegressor, ajuster un modèle de
Boosting aux données et mesurer ses performances
(dans un premier temps, vous pourrez sélectionner
300 arbres de profondeur maximale 2, avec un taux
d’apprentissage de 0.04 et une fonction perte de
Huber).

19°. Afficher sous la forme d’un histogramme
l’importance relative des variables (attribut
feature_importances de l’estimateur).

20°. Il vaut mieux travailler avec le logarithme du prix
médian. Une fois cette transformation effectuée,
normaliser également les données avec
StandardScaler. Utiliser l’instruction RFE pour
effectuer une sélection des variables par la méthode
des modèles imbriqués. Conserver les 5 variables les
plus significatives et utiliser la fonction
GridSearchCV pour déterminer les meilleurs
paramètres (nombre de classifieurs faibles, taux
d’apprentissage et profondeur maximale) du modèle
de Gradient Boosting.

21°. Ajuster le modèle correspondant aux meilleurs

paramètres avec l’échantillon et mesurer ses
performances.

22°. Étudier les fonctions RandomForestRegressor,
BaggingRegressor, XGBRgressor et
LGBMRegressor en prêtant attention aux paramètres
importants.

23°. Ajuster chacun des modèles à l’aide d’une
validation croisée et déterminer les paramètres qui
optimisent la prédiction sur les données de test.

6 Stacking

24°. Étudier les fonctions StackingClassifier et
VotingClassifier de scikit-learn. Quelles sont
leurs différences ?

25°. Charger le jeu de données des iris de Fisher.

26°. Initialiser 3 classifieurs (k-ppv, forêt aléatoire,
classifieur bayésien naïf) et les intégrer dans un
méta-modèle à l’aide de la fonction
StackingClassifier.

27° Ajuster ces modèles à l’échantillon (les 3
classifieurs seuls ainsi que le méta-modèle), calculer
leurs performances et visualiser les régions de
décision.

2


	Comparaison d'un arbre seul avec Adaboost en régression
	Comparaison d'Adaboost et Gradient Boosting en classification
	Gradient Boosting en régression
	Comparaison de tous les algorithmes de Boosting en classification
	California Housing Dataset
	Stacking

