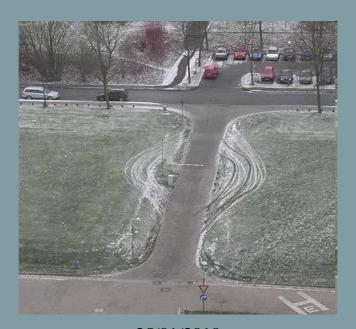


Introduction à la cryptographie – Chapitre I Systèmes à clef publique



Plan du cours

- 0. Courte introduction.
- I. Systèmes à clef publique.
- II. Systèmes à clef secrète.
- III. Authentification.
- IV. Exemples.

I. Systèmes à clef publique.

- 1.1. Quelques notions d'arithmétique.
- 1.2. Le protocole Diffie & Hellman.
- 1.3. Le protocole RSA.
- 1.4. Autres protocoles.
- 1.5. Conclusion.

I. Systèmes à clef publique.

- 1.1. Quelques notions d'arithmétique.
- 1.2. Le protocole Diffie & Hellman.
- 1.3. Le protocole RSA.
- 1.4. Autres protocoles.
- 1.5. Conclusion.

1.1. Quelques notions d'arithmétique.

La présentation des protocoles à clef publique utilise, hélas, beaucoup de calculs arithmétiques. Nous allons revoir quelques définitions sur les nombres premiers et les calculs modulo un entier n.

• Les nombres dont nous allons parler sont tous des entiers.

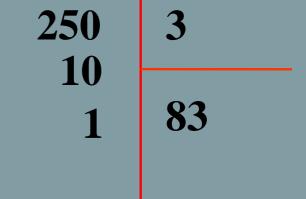
Définition 3

On dit que a divise b et l'on note a/b s'il existe d tel que b=ad On dit alors que b est un multiple de a.

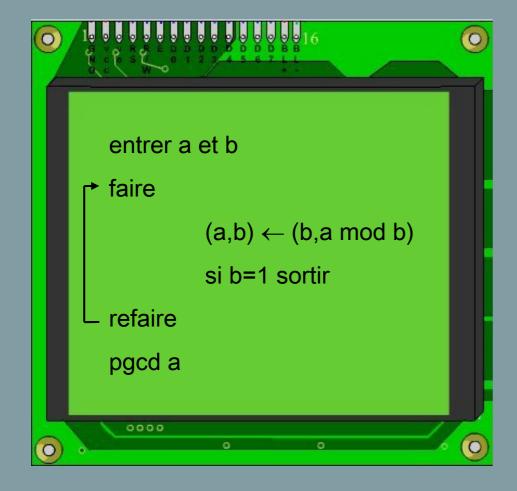
- \bullet Ex: 3 divise 12 car $12 = 3 \times 4$
- Le *pgcd* de deux entiers est leur plus grand diviseur commun.
- Ex: $pgcd(24, 18) = 6 \text{ car } 24 = 2 \times 2 \times 2 \times 3 \text{ et } 18 = 2 \times 3 \times 3$
- Ex: $pgcd(15, 28) = 1 \text{ car } 15 = 3 \times 5 \text{ et } 28 = 2 \times 2 \times 7$

Pgcd de deux nombres.

- Lorsque le pgcd de deux nombres est égal à 1, on dit qu'ils sont premiers entre eux.
- Pour calculer le pgcd de deux nombres, on utilise l'algorithme d'Euclide. Vous l'utilisez aussi lorsque vous faites une division euclidienne.
- Cet algorithme a plus de 2500 ans et est déjà présent dans les élements d'Euclide. Les historiens pensent qu'il antérieur de 200 ans à Euclide. C'est sans doute le plus vieil algorithme informatique connu au monde.



L'algorithme d'Euclide.



L'algorithme d'Euclide en langage C.

```
void euclide (int a,int b,int u,int v,int d)
  int u1=1,v1=0,d1=a,u2=0,v2=1,d2=b,u3,v3,d3,q;
 while (d2!=0)
    q=d1/d2;
    u3=u1-u2*q;v3=v1-v2*q;d3=d1-d2*q;
    u1=u2; v1=v2; d1=d2;
    u2=u3; v2=v3; d2=d3;
  u=u1; v=v1; d=d1
```


Les nombres premiers.

Définition 5

Un nombre est premier s'il est supérieur à 1 et si ses seuls diviseurs sont 1 et lui-même.

- Exemples: 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59,
- Le nombres premiers vont en se raréfiant (rapport avec la conjecture de Riemann), mais il en existe quand même une infinité.
- Le théorème fondamental de l'arithmétique dit que: Tout nombre entier se décompose de façon unique en produit de facteurs premiers.
- Exemples: $12 = 2^2 \times 3^1$

$$4200 = 2^3 \times 3^1 \times 5^2 \times 7^1$$

$$175 = 2^0 \times 3^0 \times 5^2 \times 7^1$$

R&I

25/01/2010

La fonction indicatrice d'Euler. (1)

Définition 6
$$\left\| \begin{array}{l} \Phi(n) = Card\{k/\ 1 \leq k < n\ et\ pgcd(k,n) = 1\} \\ \Phi(1) = 1 \end{array} \right.$$

k	1	2	3	4	5	6	7	8	9
$\Phi(k)$	1	1	2	2	4	2	6	4	6

o De façon générale, on calcule $\Phi(n)$ à partir de la décomposition en facteurs premiers de n.

La fonction indicatrice d'Euler. (2)

Afin de pouvoir exposer l'algorithme de la méthode RSA, nous aurons juste besoin de connaître les deux propriétés suivantes :

• Si p est un nombre premier, $\Phi(p) = p - 1$

• Exemple:

$$\Phi(77) = \Phi(7)\Phi(11) = 6 \times 10 = 60$$

• On dit que deux entiers sont égaux *modulo* n si n divise leur différence :

$$a \equiv b \mod n \iff n/(b-a) \iff \exists k \in \mathbb{N}/a = b+k \times n$$

b est appelé résidu de a modulo n

• Exemples :

$$19 \equiv 7 \mod 12 \text{ car } 19 = 7 + 1 \times 12$$

$$|4 \equiv 14 \mod 5 \text{ car } 14 = 4 + 2 \times 5$$

• En particulier :

$$a \equiv 0 \mod n$$
 ssi a est un multiple de n

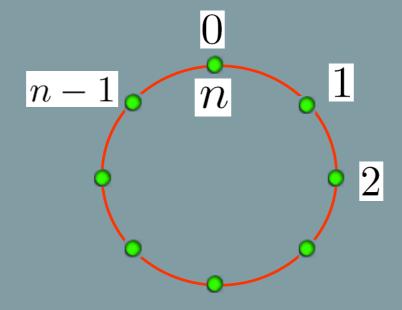
• Exemple:

$$36 \equiv 0 \mod 12 \text{ car } 36 = 3 \times 12$$

• Calculer *modulo n* revient à ne considérer que le reste d'un entier dans la division par *n* :

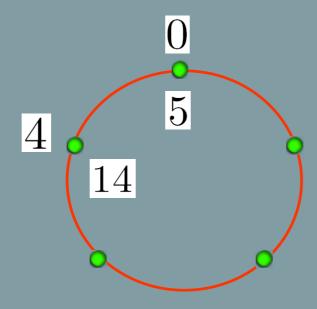
$$|4 \equiv 14 \mod 5 \text{ car } 14 = 4 + 2 \times 5$$

• Travailler modulo *n* revient à travailler sur un cercle de *n* points régulièrement espacés. Lorsque l'on a fait un tour complet, on revient en θ :

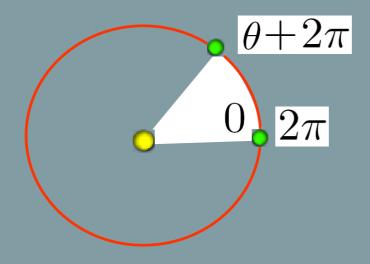


Congruences et calculs modulo un entier. (4)

•
$$4 \equiv 14 \mod 5 \text{ car } 14 = 4 + 2 \times 5$$



• Finalement vous savez déja travailler modulo n: Les calculs trigonométriques (\nearrow oux \bigcirc bouvenirs) se font modulo 2π .



• Et puis vous savez aussi lire l'heure : Les calculs horaires se font modulo 12.

• Exemple de calcul:

$$(9+11) \mod 7 = 20 \mod 7 = 6 \mod 7$$

ou

$$(9+11) \mod 7 = (2+4) \mod 7 = 6$$

• Autre Exemple :

$$(9 \times 11) \mod 7 = 99 \mod 7 = (14 \times 7 + 1) \mod 7 = 1 \mod 7$$
ou

$$(9 \times 11) \mod 7 = (2 \times 4) \mod 7 = 1 \mod 7$$

- Un élément a est inversible modulo n s'il existe b tel que $ab \equiv 1 \mod n$
- Exemple:

$$(9 \times 11) \mod 7 = (2 \times 4) \mod 7 = 1 \mod 7$$

• Autre exemple :

$$3 \times 2 = 6 \equiv 1 \mod 5$$

• Mais modulo 4, 2 n'a pas d'inverse... En fait,

a est inversible modulo n ssi pgcd(a, n) = 1

Le petit théorème de Fermat.

• Exemple: $2^4 \equiv 1 \mod 5$

Le théorème de Fermat - Euler.

Théorème (Théorème de Fermat-Euler)
$$\| \operatorname{Si} \ pgcd(a,n) = 1, \ on \ a \ a^{\Phi(n)} \equiv 1 \mod n$$

• Qui sert à calculer l'inverse modulo *n* :

$$a \times a^{\Phi(n)-1} \equiv 1 \mod n$$

• On peut calculer très efficacement les puissances modulo $n : \mathbb{R}_{r}$

$$a^x \mod p$$

- $3^{1234567890} \mod 7826348737 = 7590405247$
- Le calcul par ordinateur se fait (rapidement) grâce à la « squaring method »

L'exponentiation modulaire. (2)

- L'opération inverse est par contre très difficile à réaliser (problème du logarithme discret).
- Connaissant $f(x) = a^x \mod p$ il faut retrouver \mathcal{X}

0				_	_			
						4		6
		3^x	3	9	27	81	243	729
	3^x	$\mod 7$	3	2	6	4	5	1

 $0.0031234567890 \mod 7826348737 = 7590405247$

I. Systèmes à clef publique.

- 1.1. Quelques notions d'arithmétique.
- 1.2. Le protocole Diffie & Hellman.
- 1.3. Le protocole RSA.
- 1.4. Autres protocoles.
- 1.5. Conclusion.

1.2. Le protocole Diffie & Hellman.

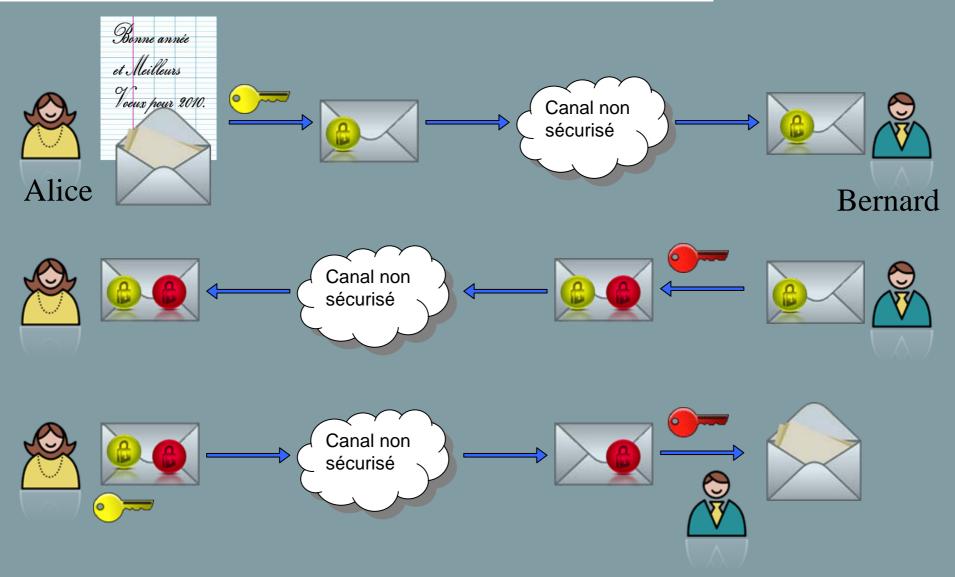
- Whitfield Diffie, Martin Hellman et Ralph Merkle se rencontrent en 1974 à Stanford.
- Leurs recherches portent sur le problème de la distribution des clefs en cryptographie.

La distribution des clefs.

• Question fondamentale :

Est-il possible de trouver un système cryptographique dans lequel aucun échange de clef entre l'expéditeur (Alice) et le destinataire (Bernard) ne serait nécessaire ?

Première piste : l'idée du double cadenas.



Seconde piste : les fonctions à sens unique. (1)

 Une fonction à sens unique est facile à calculer, mais sa réciproque est très difficile à exprimer.

Seconde piste : les fonctions à sens unique. (2)

- Mathématiquement, que peut être une fonction à sens unique?
- O Diffie et Hellman ont l'idée d'utiliser l'arithmétique modulaire : on a vu qu'il était très facile d'élever un entier à une certaine puissance, modulo un autre entier.
- L'opération inverse s'appele le calcul d'un logarithme discret. C'est une opération très difficile (c-à-d très longue) à effectuer, même avec un ordinateur, pour peu que les nombres en jeu soient « grands ».

Seconde piste : les fonctions à sens unique. (3)

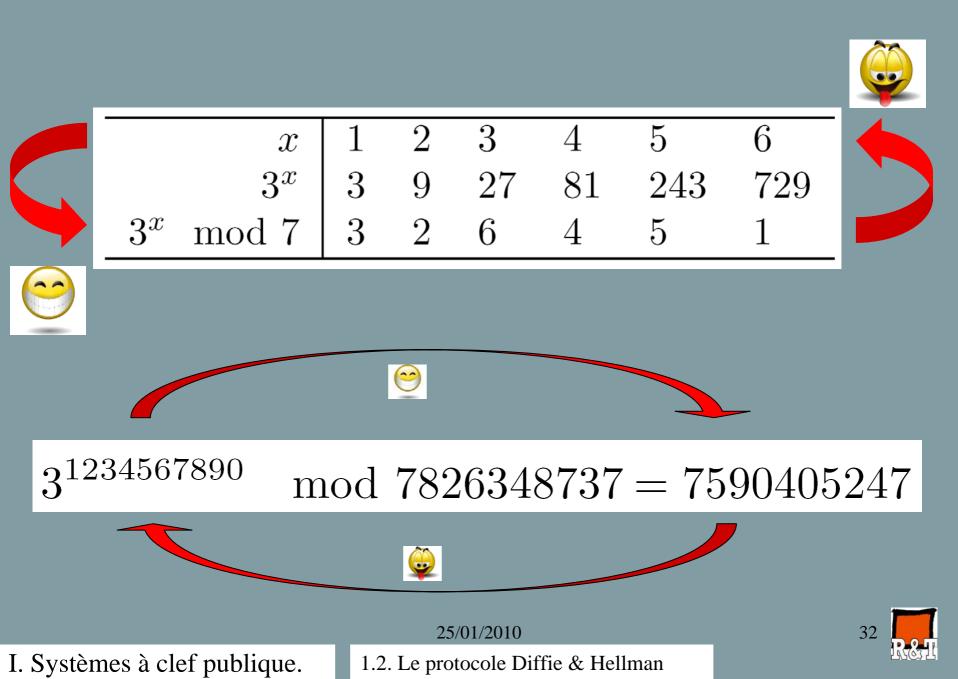
- On choisit deux nombres a et p.
- La fonction à sens unique est :

$$f(x) = a^x \mod p$$

• Sa réciproque est :

$$f^{-1}(y) = x$$

Seconde piste : les fonctions à sens unique. (4)



Le protocole Diffie & Hellman. (1)

- Alice et Bernard choisissent un nombre premier p, très grand, et un nombre a premier avec p.
- *a* et *p* forment la partie publique de leur clef.
- Alice choisit un nombre *x* compris entre *1* et *p-1* qui forme la partie privée de sa clef.
- Bernard choisit un nombre y compris entre 1 et *p*-1 qui forme la partie privée de sa clef.

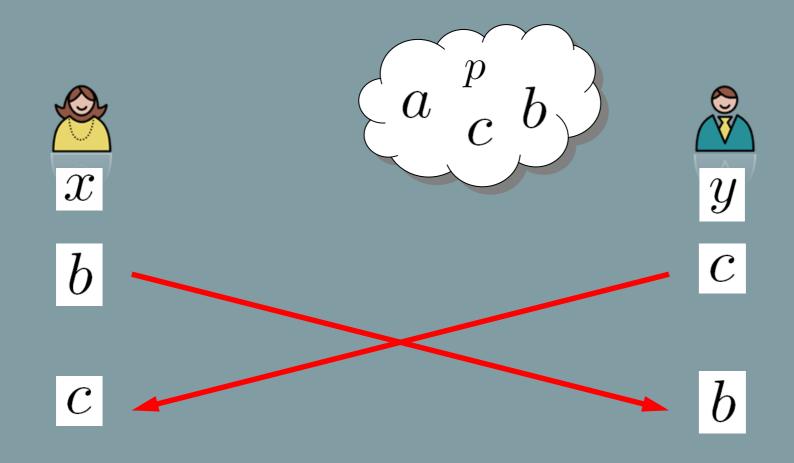
Le protocole Diffie & Hellman. (2)

• Alice calcule:

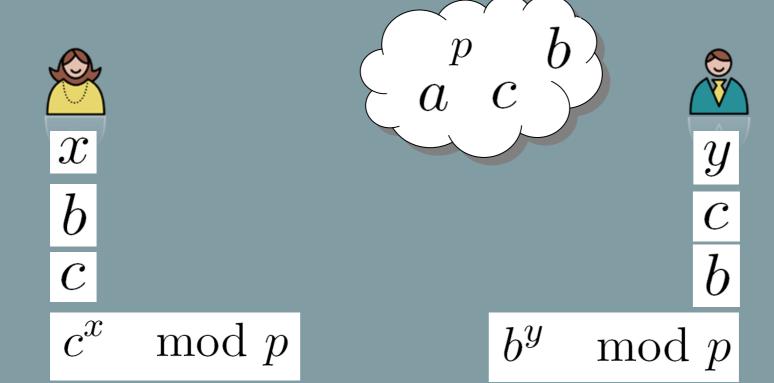
- $b = a^x \mod p$
- Bernard calcule:
- $c = a^y \mod p$

C

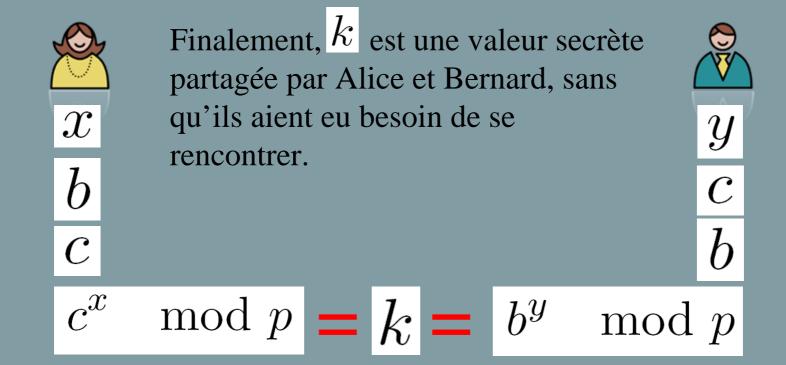
$^{\circ}$ Alice et Bernard s'échangent b et c



- Alice calcule:
- $c^x \mod p$
- Bernard calcule:
 - $b^y \mod p$



Le protocole Diffie & Hellman. (5)



Le protocole Diffie & Hellman. (6)

• Exemple:

Sont publics:

$$p = 17$$

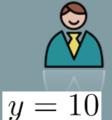
$$a = 3$$

 $b \mid c$

$$x = 6$$

$$b = 3^6 \mod 17 = 15$$

$$k = 8^6 \mod 17 = 4$$



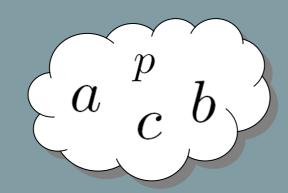
$$c = 3^{10} \mod 17 = 8$$

$$k = 15^{10} \mod 17 = 4$$

Le protocole Diffie & Hellman. (7)

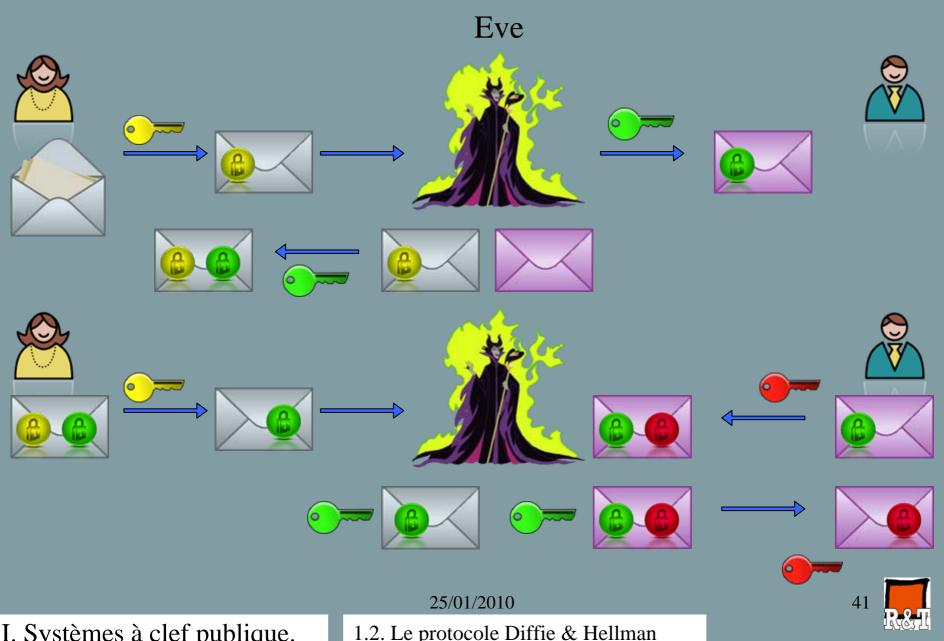
lacksquare Connaissant $a \mid p \mid b \mid c$

on ne peut pas en déduire k car le calcul d'un logarithme discret est impossible si p est très grand.



- L'article de Diffie & Hellman paraît en 1976.
 C'est le premier protocole utilisant la notion de clef publique et clef privée.
- C'est un protocole d'échange de clefs. Une fois qu'Alice et Bernard partagent la même clef secrète, ils peuvent chiffrer leur message avec n'importe quel algorithme à clef secrète.
- Ce protocole ne permet pas d'assurer
 l'authentification et le non-désavoeu, comme le montre l'attaque « man in the middle ».

L'attaque « man in the middle ».



I. Systèmes à clef publique.

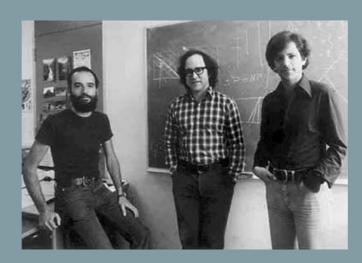
1.2. Le protocole Diffie & Hellman

I. Systèmes à clef publique.

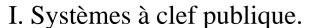
- 1.1. Quelques notions d'arithmétique.
- 1.2. Le protocole Diffie & Hellman.
- 1.3. Le protocole RSA.
- 1.4. Autres protocoles.
- 1.5. Conclusion.

1.3. Le protocole RSA.

- En 1977, Ronald Rivest, Adi Shamir et
 Leonard Adleman travaillent ensemble au MIT de Boston sur le protocole de Diffie et Hellman.
- Le système RSA va être le premier système de chiffrement à clef publique permettant en même temps la confidentialité, l'authentification et le non-désavoeu.



25/01/2010



Principe du RSA.

- La fonction à sens unique qu'ils découvrent repose sur la difficulté de la factorisation des grands nombres premiers.
- o Il est très facile de multiplier deux grands nombres premiers (même à la main). Moins d'une seconde suffit à un PC pour calculer le produit de deux nombres de plusieurs milliers de bits.

$$p = 28934793874928374982374984331$$

$$q = 109038493824092387983749872399$$

$$n = p \times q$$

- Principe au 150...

 O Topoction à sens unique qu'ils découvrent repolitique de la factorisation des grands in 35 es premiers.

 O Il est très facile de 25 iplier deux grands nombres premiers (me 35) la main). Moins d'une seconde suffit à un PC politique le produit de deux nombres de plusieurs mix q_{10} de bits. p = 28934793874928374982354984331 q = 109038493824092387983748223399 $m \times q$

$$p = 28934793874928374982354984331$$

$$q = 109038493824092387983745$$

$$n = p \times q$$

25/01/2010

La factorisation des grands entiers. (1)

- Et encore, ce sont de petits nombres...
- La taille d'un nombre se mesure en bits. Le nombre de bits nécessaire pour écrire un nombre décimal n est égal à : $|\log_2 n| + 1$
- q = 109038493824092387983749872 97 bits
- n = 315500634323276387122437362795 9492603597202806590874380069 192 bits
- Les plus petites clefs RSA font actuellement 768 bits

La factorisation des grands entiers. (2)

- Maintenant, ne connaissant que n, il est impossible de retrouver p et q. C'est la fonction à sens unique.
- Martin Gardner, dans sa rubrique jeux mathématiques de la revue « pour la science », écrit en août 1977 « New kind of cipher that would take millions of years to break ». Le nombre suivant est le produit de deux entiers. Lesquels ?

n=1143816257578888867669235779976146612010218296721242362562561842935706935245733897830597123563958705058989075147599290026879543541

7 **R&I**

La factorisation des grands entiers. (3)

16 ans plus tard, en avril 1994, Leyland, Graff et Atkins...

$$p = 349052951084765094914784961990 \\ 3898133417764638493387843990820577$$

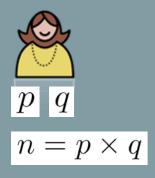
$$q = 327691329932667095499619881908$$

 $34461413177642967992942539798288533$

- 600 volontaires participèrent au calcul en formant un cluster d'ordinateurs via internet.
- Taille de $n = p \times q$ 129 bits

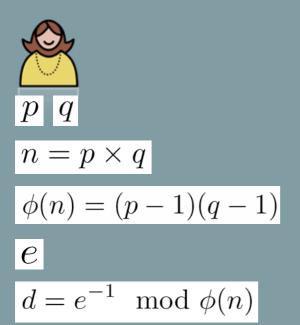
Présentation du protocole. (2)

- Alice et Bernard vont <u>chacun</u> construire une clef en deux parties. Nous nous intéressons pour l'instant à Alice.
- Alice choisit deux (très) grands nombres premiers : $p \mid q$
- Alice calcule $n = p \times q$



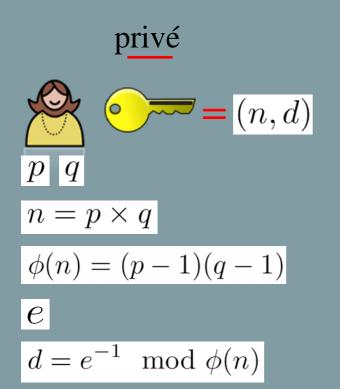
Présentation du protocole. (2)

- Alice calcule $\phi(n) = (p-1)(q-1)$
- Alice choisit un nombre e premier avec $\phi(n)$
- Alice calcule $d = e^{-1} \mod \phi(n)$

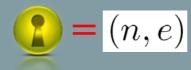


Présentation du protocole. (3)

- \circ Alice détruit $p \mid q$
- Sa clef privée sera le couple (n, d)
- Sa clef publique sera le couple (n, e)



public



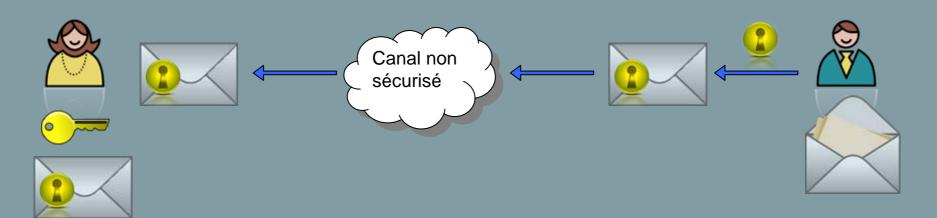
Clef privée et clef publique.

- Alice possède une clef en deux parties :
- La partie privée (n,d) (c'est la clef de sa boîte aux lettres)
- La partie publique (n,e) (c'est son adresse)

Pour envoyer un message (approche conceptuelle).

- Bernard veut envoyer un message à Alice.
- Il récupère sa clef publique sur un annuaire.

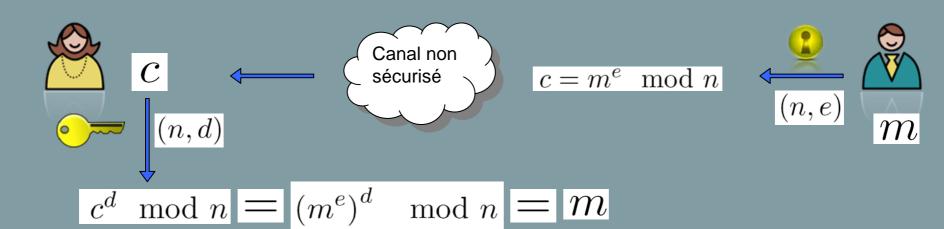
- Il chiffre son message avec.
- Alice est la seule à posséder la clef privée correspondante.



Pour envoyer un message (approche mathématique réelle). (1)

- Bernard chiffre le message m en calculant $c = m^e \mod n$
- Alice déchiffre le message c en calculant $c^d \mod n$
- Oui mais:

$$c^d \mod n = (m^e)^d \mod n = m^{e \times d} \mod n = m$$



Pour envoyer un message (approche mathématique réelle). (2)

$$c^{d} \mod n = (m^{e})^{d} \mod n = m$$

$$m^{ed} \equiv m^{1+k \times \phi(n)} = m \times m^{k \times \phi(n)}$$

$$\equiv m \times m^{k \times \phi(n)} \Leftrightarrow ed = 1 \mod \phi(n)$$

$$\equiv m \times (m^{k})^{\phi(n)} = m$$

$$\equiv m$$
Théorème de Fermat
$$a^{\Phi(n)} \equiv 1 \mod n$$

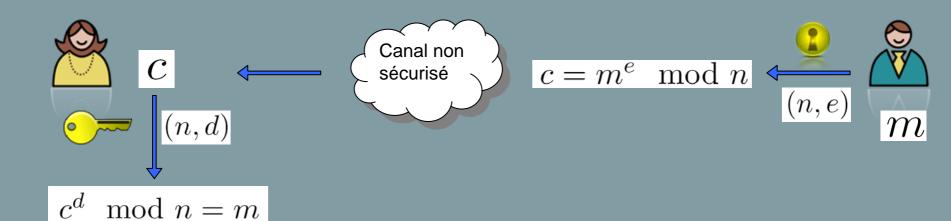
I. Systèmes à clef publique.

1.3. RSA.

Pour envoyer un message (approche mathématique réelle). (3)

- o Bernard chiffre le message m en calculant $c = m^e \mod n$
- Alice déchiffre le message c en calculant $c^d \mod n$
- Oui mais:

$$c^d \mod n = (m^e)^d \mod n = m^{e \times d} \mod n = m$$



Exemple simple.

$$p = 11047 \mid q = 19501$$

$$n = p \times q = 215427547$$

$$\phi(n) = (p-1) \times (q-1) = 215397000$$

$$e = 65537$$
 (2)

$$e = 00037$$

$$d = 65537^{-1} \mod 215397000 \quad d = 160194473$$

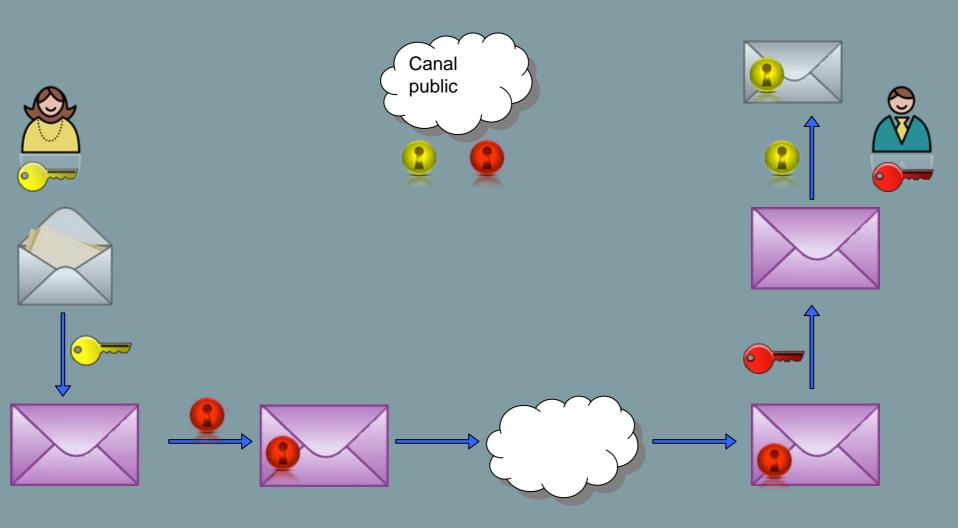
Bernard veut chiffrer « BON » dont le tableau des codes ascii est [66,78,79]. Il le transforme en nombre :

$$x = 78 + 79 \times 128 + 66 \times 128^2$$
 $x = 1091534$

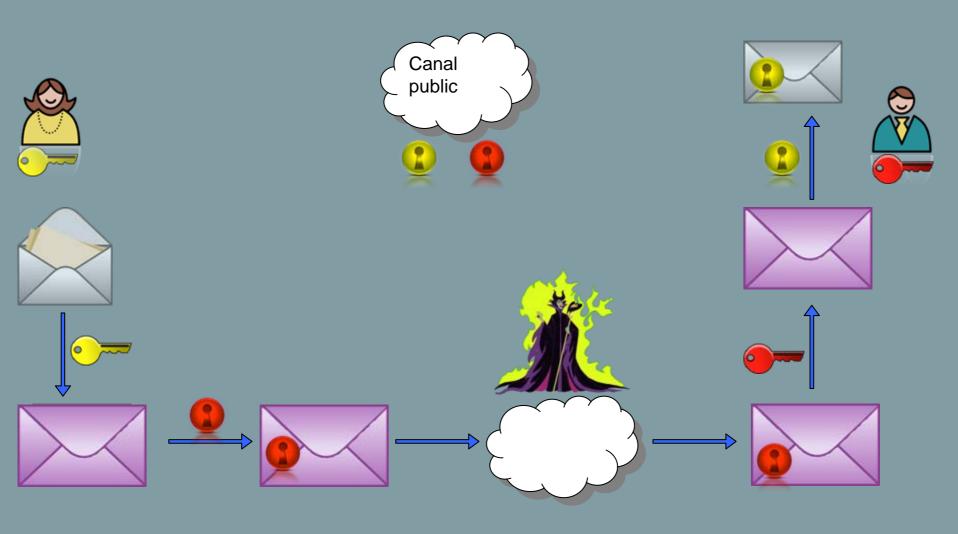
$$y = x^e \mod n$$
 $y = 109466891$

$$y^d \mod n = 1091534$$

Authentification par la méthode RSA.



« Man in the middle » devient impossible.



R-83 II

Derniers mots sur RSA.

- Résiste depuis 30 ans à toutes les tentatives de cryptanalyse.
- Système considéré comme fiable si l'on prend quelques précautions avec le choix et la longueur des clefs (n > 1024 bits).
- Résoud à la fois le problème de confidentialité, d'authentification et de non désavoeu.
- O Utilisé dans près de 500 millions de logiciels.

I. Systèmes à clef publique.

- 1.1. Quelques notions d'arithmétique.
- 1.2. Le protocole Diffie & Hellman.
- 1.3. Le protocole RSA.
- 1.4. Autres protocoles.
- 1.5. Conclusion.

El Gamal.

- Reprend le principe de Diffie & Hellman (logarithmes discrets) en le modifiant pour permettre l'authentification.
- Plus lent que le RSA.
- Il n'est plus couvert par un brevet depuis 1997.

Cryptosystèmes à courbes elliptiques.

 Mathématiquement beaucoup plus compliqué que RSA.

 Nécessite des clefs plus courtes que le RSA pour une sécurité réputée équivalente.

25/01/2010

 Inventé par Neal Koblitz en s'inspirant du protocole de Diffie & Hellman.

• Plus lent que le RSA.

I. Systèmes à clef publique. 1.4. Autres protocoles.

I. Systèmes à clef publique.

- 1.1. Quelques notions d'arithmétique.
- 1.2. Le protocole Diffie & Hellman.
- 1.3. Le protocole RSA.
- 1.4. Autres protocoles.
- 1.5. Conclusion.

Des questions?

Fin du chapitre I. Crédits photos & copyright :

- Photo de couverture: © Adi Shamir.
- Dessin du cadenas: © pkey.jpg.
- Circuit imprimé.
- Horloge.
- Photo Diffie, Hellman, Merkle.
- Point d'interrogation.
- Pots de peinture.
- Maléfique.
- Shamir, Rivest et Adlemann
- Logo RSA Security.
- Cliparts libres de droit.
- Autres sources d'inspiration:
 - O Cryptographie appliquée de Bruce Schneier, éditions Vuibert.
 - O L'art du secret, in « dossier pour la science ».
 - O Histoire des codes secrets, de Simon Singh, éditions livre de poche.

