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1. Modèle statistique



Définitions

• Expérience aléatoire ⇐⇒ espace probabilisé ⇐⇒ (X,F,P).

� X ensemble des issues possibles de l’expérience aléatoire.

� F tribu sur X (évènements de l’expérience).

� P mesure de probabilité sur F.

• Modèle statistique: famille d’expériences aléatoires, m̂ X et m̂ F:

(X,F,P).

• Observation x : réalisation d’une variable aléatoire X ∼ P.

• Objectif de l’inférence statistique: déterminer P ∈ P sachant x .

Savoir distinguer (X,F,P) et (X,F,P) !

Données réelles, observations

Modèle aléatoire sous-jacent

Inférence, modélisation

Tirage
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Exemple 1: épreuve de Bernoulli

• X v.a. de loi de Bernoulli b(θ), θ ∈ [0, 1] inconnu.

• x ∈ {0, 1} résultat d’un lancer à pile ou face, x réalisation de X .

• Choix raisonnable pour P: ensemble des lois de Bernoulli de paramètre

θ, θ variant de 0 à 1.

� X = {0, 1} = {π, ϕ} = {succès, échec}.
� F ensemble des parties de X: F = {∅, {0}, {1}, {0, 1}}.
� P = {Pθ; θ ∈ [0, 1]} avec Pθ[X = 1] = θ et Pθ[X = 0] = 1− θ.

0 Échec

1− θ

1 Succèsθ

3



Exemple 2: loi uniforme

• X v.a. de loi uniforme sur [0, θ], θ inconnu.

• X résultat d’un tirage aléatoire équitable entre 0 et θ.

� X = [0, θ].

� F ensemble des boréliens de X.
� P = {Pθ; θ > 0}. Pθ défini par sa densité:

f (x) =
1

θ
1[0,θ](x) (1)

Pθ caractérisé par le paramètre réel θ. Toute valeur de θ définit une

mesure.

x

fθ(x)

0 θ

1
θ
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Modèle d’échantillonnage

• Observons n réalisations x1, ..., xn d’une v.a. X , de manière

indépendante.

• X1, ...,Xn v.a.i.i.d. sous-jacentes à ces observations. Xi à valeurs dans

(X,F), P la loi commune des Xi . (X1, ...,Xn) n-échantillon de X .

Definition

On appelle modèle d’échantillonnage associé au n-échantillon, le triplet(
Xn,F⊗n,

{
P⊗n,P ∈ P

})
(2)

où P est une famille de probabilité définie sur (X,F).

Par ⊥⊥ et identique distribution des Xi , P⊗n loi du vecteur (X1, ...,Xn):

P⊗n(dx1, ..., dxn) =
n∏

i=1

P(dxi ) (3)
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Exemple 3: répétition de n épreuves de Bernoulli ⊥⊥

• Le modèle d’échantillonnage associé est

({0, 1}n,F⊗n, {b(θ)⊗n, θ ∈ [0, 1]}), avec F = {∅, {0}, {1},Ω}.

Ce modèle traduit simplement le fait que dans une expérience répétée de

façon indépendante, la loi de probabilité du n-échantillon est la loi

produit et l’espace sous-jacent est le produit cartésien de l’espace associé

à l’un des éléments de l’échantillon.

• Supposons que n = 10 et mettons qu’une réalisation du n-échantillon

soit (0, 0, 1, 1, 1, 0, 1, 0, 0, 1). Nous souhaitons évaluer θ à partir de cet

échantillon. Comment peut-on procéder ?
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Exemple 3: répétition de n épreuves de Bernoulli ⊥⊥

• Le modèle d’échantillonnage associé est

({0, 1}n,F⊗n, {b(θ)⊗n, θ ∈ [0, 1]}), avec F = {∅, {0}, {1},Ω}.

Ce modèle traduit simplement le fait que dans une expérience répétée de

façon indépendante, la loi de probabilité du n-échantillon est la loi

produit et l’espace sous-jacent est le produit cartésien de l’espace associé

à l’un des éléments de l’échantillon.

• Supposons que n = 10 et mettons qu’une réalisation du n-échantillon

soit (0, 0, 1, 1, 1, 0, 1, 0, 0, 1). Nous souhaitons évaluer θ à partir de cet

échantillon. Comment peut-on procéder ?

θ = x =
∑

xi/10 = 1/2.
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répétition de n épreuves ⊥⊥ d’une loi uniforme sur [0, θ]

(Xn,F⊗n, {P⊗n,P ∈ P}) avec

� X = [0, θ].

� F = B[0,θ].

� P = Pθ loi uniforme sur [0, θ].

• Supposons que n = 10 et que nous disposions uniquement de

l’échantillon x = (0, 1; 0, 6; 0, 2; 1, 2; 3; 0, 5; 1, 5; 2; 1; 1, 9).

• Comment estimer θ ?

0 θ ?
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répétition de n épreuves ⊥⊥ d’une loi uniforme sur [0, θ]

(Xn,F⊗n, {P⊗n,P ∈ P}) avec

� X = [0, θ].

� F = B[0,θ].

� P = Pθ loi uniforme sur [0, θ].

• Supposons que n = 10 et que nous disposions uniquement de

l’échantillon x = (0, 1; 0, 6; 0, 2; 1, 2; 3; 0, 5; 1, 5; 2; 1; 1, 9).

• Comment estimer θ ?

0 θ ?

θ = maxi xi = 3.
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Statistique sur un modèle

Definition

Une statistique S sur un modèle (X,F,P), à valeurs dans (Y,G), est une
application mesurable

S : X −→ Y (4)

x 7→ y = S(x) (5)

• Pour une réalisation x de X , y = S(x) réalisation de la v.a. S(X ).

Statistique = fonction mesurable des observations de l’expérience.

C’est simplement une variable aléatoire !
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Statistique : illustration

ω X (ω) Y (w) = S(X (ω))

X R
R

X
S

Figure 1: La statistique S : R −→ R est une fonction mesurable qui transforme

X en Y = S(X ).
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Exemple: loi binomiale

• X = (X1, ...,Xn) échantillon de Bernoulli de paramètre θ.

S(x1, x2, ..., xn) =
n∑

i=1

xi (6)

Statistique = somme de toutes les observations du n-échantillon.

• Statistique = fonction mesurable des données ⇒ définit une v.a. à

partir des données initiales.

• Loi image PS de P par S ⇒ modèle image.

• Dans l’exemple, S = S(X ) =
∑n

i=1 Xi .

• Loi image: loi binomiale PS ∼ B(n, θ). Modèle image:

(Y,G, {PS : P ∈ P}). Considérer S plutôt que X :

P[S ∈ B] = P[S(X ) ∈ B] = PS(B) = P[X ∈ S−1(B)], ∀B ∈ BR
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Rappels sur la loi binomiale

Definition

S suit une loi binomiale de paramètres n ∈ N et p ∈ [0, 1] ssi pour tout

k = 0, ..., n,

P[S = k] =

(
n

k

)
pk(1− p)n−k (7)

et P[S = k] = 0 ailleurs.

On note S ∼ B(n, p). On a E[S ] = np et V(S) = np(1− p).

0 2 4 6 8 10 12
0.00

0.05

0.10

0.15

0.20

k

P[X = k]
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Exemple: maximum d’une loi uniforme sur [0, θ].

• X = (X1, ...,Xn) échantillon uniforme sur [0, θ].

S(X1,X2, ...,Xn) =
n

max
i=1

Xi (8)

• L’information concernant la loi inconnue de X au travers de la

statistique S(X ) est contenue dans la tribu F(S) ⊂ F(X ).

• F(S) = F(X ) ⇐⇒ S bijective.

• Habituellement, F(S) plus petite que F(X ) car on attend d’une

statistique qu’elle réduise la tribu et condense l’information.

• Tribu = information.
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2. Quelques types de modèles

statistiques



Rappel: mesure dominée et théorème de Radon-Nikodym

• µ et ν deux mesures σ-finies sur (X,F).

• On dit que ν est absolument continue par rapport à µ et l’on note

ν ≪ µ, si

∀B ∈ F, µ(B) = 0 ⇒ ν(B) = 0 (9)

• Le théorème de Radon-Nikodym assure que ν possède une densité f

par rapport à µ définie par

ν(B) =

∫
B

f (x)dµ(x) (10)

On note f = dν/dµ. f est positive, mesurable et s’appelle densité ou

dérivée au sens de Radon-Nikodym de ν par rapport à µ.
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Modèle dominé

Definition

Un modèle statistique (X,F,P) est dominé si, et seulement si, tout

P ∈ P est dominé par une même mesure µ. µ est la mesure dominante

du modèle.

Si un modèle est dominé par une mesure σ-finie µ, alors le modèle image

est dominé par la mesure µS : ∀ B mesurable,

µS(B) = 0 ⇐⇒ µ(S−1(B)) = 0 ⇒
(
P(S−1(B)) = 0 ⇐⇒ PS(B) = 0

)
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Modèle paramétrique

Definition

Modèle statistique (X,F,P) paramétré si les éléments de P peuvent être

décrit par un paramètre: c.-à-d. il existe Λ surjection:

Λ : Θ −→ P (11)

θ 7→ Pθ (12)

P = {Pθ, θ ∈ Θ}. Si Λ bijection, on dit que le modèle est identifiable.

Modèle paramétrique si Θ ⊂ Rp pour p ∈ N. Sinon, non-paramétrique.

θ

Θ

Pθ

P
Λ

Figure 2: Modèle paramétrique. 15



Modèles paramétriques: exemples

• Épreuve de Bernoulli: X ∼ b(θ) paramètre: θ ∈ [0, 1]. Modèle

paramétrique, identifiable, dominé par mesure de comptage sur N. Si
paramètre = cos2 θ, modèle non identifiable car Pθ = Pθ+π.

• Modèle d’échantillonnage gaussien: X n-échantillon de loi N (m, σ2).

Modèle statistique correspondant:(
Rn,B⊗n

R ,
{
N (m, σ2)⊗n : m ∈ R, σ2 > 0

})
(13)

est paramétrique, dominé et identifiable. Paramétré par (m, σ2), dominé

par la mesure de Lebesgue sur Rn et identifiable car...

• Modèles non paramétriques: ensemble des lois de probabilités sur R
(paramètre /∈ à un espace vectoriel de dimension finie).

• Modèles semi-paramétriques: dépendant d’un paramètre θ ∈ Rp, mais

aussi d’un second paramètre ∈ à espace de dim. infinie. = terme de

nuisance. 16



Vraisemblance

Definition

Soit (X,F, {Pθ; θ ∈ Θ}) dominé par µ σ-finie.

La vraisemblance du modèle est la fonction θ 7→ L(x , θ) définie par

L(x , θ) = dPθ(x)/dµ(x) (14)

La vraisemblance est exactement la densité de la loi Pθ, vue comme

fonction de θ: Pθ(dx) = L(x , θ)dµ(x).

Soient (X,F) = (R,BR) et Pθ ≪ λ mesure de Lebesgue sur R; supposons
que Pθ possède une densité continue fθ(x) par rapport à λ et

plaçons-nous dans un modèle d’échantillonnage. C’est un modèle

paramétrique dominé par λ sur Rn et la vraisemblance de P⊗n
θ

relativement à λ⊗n est

L(x1, ..., xn, θ) =
n∏

i=1

fθ(xi ) (15)
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Exemple: vraisemblance d’un échantillon uniforme -1-

Soit X = (X1, ...,Xn) n-échantillon uniforme sur [0, θ].

L(x , θ) = L(x1, ..., xn, θ) (16)

=
n∏

i=1

(
1

θ
1[0,θ](xi )

)
(17)

=
1

θn

n∏
i=1

1[0,θ](xi ) (18)

=
1

θn
1[0,θ]n(x) =

1

θn
1[0≤min xi≤max xi≤θ] (19)

avec x = (x1, ..., xn). Ici, vraisemblance = produit des densités.

L’indicatrice de [0, θ]n ⊂ Rn vaut 1 si, et seulement si, toutes les

coordonnées xi du vecteur x appartiennent à [0, θ].
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Exemple: vraisemblance d’un échantillon uniforme -2-

Bien distinguer la densité d’une v.a. (fonction de x qui dépend de θ)

de la vraisemblance d’un échantillon ou d’une v.a. (fonction de θ qui

dépend de x).

θmax xi

L(x , θ)

1 θ0

1
θ

x

Figure 3: Vraisemblance échantillon uniforme (gauche), densité loi uniforme

(droite).
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Exemple: vraisemblance d’un échantillon de loi discrète

• Si (X,F) = (N,P(N)), où Pθ ≪ δ mesure de comptage sur N.

Pθ[X ∈ B] =
∑
x∈B

Pθ[X = x ] =
∑
x∈N

Pθ[X = x ]δx(B), ∀B ∈ N (20)

Le modèle d’échantillonnage correspondant est dominé par la mesure

discrète sur Nn et la vraisemblance de P⊗n
θ par rapport à cette mesure est

donnée par le produit des probabilités

L(x1, ..., xn, θ) =
n∏

i=1

Pθ[Xi = xi ] (21)

Exemple: échantillon de Bernoulli de paramètre θ.

L(x1, ..., xn, θ) =
n∏

i=1

(
θxi (1− θ)1−xi1{0,1}(xi )

)
= θs(1− θ)n−s1{0,1}n(x)

où x = (x1, ..., xn), s =
∑n

i=1 xi et 1{0,1}n(x) = 1 si xi = 0 ou 1 ∀ i .
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Modèle homogène

• Support d’une mesure de probabilité P de densité f par rapport à µ:

supp(f ) = {x ∈ R : f (x) > 0} (22)

Support défini à un ensemble de mesure nulle près.

Definition

Modèle paramétrique homogène si support des lois Pθ est le même.

⇒ support ne dépend pas de θ ⇒ toutes les lois de P sont ∼:

∀θ, θ′, Pθ ≪ Pθ′ (23)

Homogène ⇒ dominé ⇒ ensembles négligeables sont les mêmes ∀ Pθ.

Homogène ⇐⇒

∃ ν σ − finie/ ∀θ, Pθ ≪ ν et dPθ/dν > 0 ν − p.p. (24)
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Modèle exponentiel: définition 1/7

Definition

Un modèle statistique (X,F, {Pθ; θ ∈ Θ}) est exponentiel ⇐⇒

• Il est paramétrique, dominé et homogène.

• Sa vraisemblance s’écrit

L(x , θ) = h(x) exp (<λ(θ),T (x)>− β(θ)) = h(x)eλ•T−β (25)

� h : Rn −→ R mesurable positive (mesure de base).

� T = (T1, ...,Tk) : X −→ Rk mesurable (statistique naturelle).

� λ(θ) = (λ1(θ), ..., λk(θ)) : Θ ⊂ Rp −→ Rk (paramètre du modèle).

� β : Rp −→ R (fonction de log-partition).

Le produit scalaire de T par λ s’écrit également

λ • T = ⟨λ(θ),T (x)⟩ =
k∑

i=1

λi (θ)Ti (x) (26)
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Modèle exponentiel: propriétés 2/7

� λ(θ) = θ ⇒ paramètre canonique.

� ⇒ T est dite statistique canonique du modèle ou statistique

naturelle.

� Identifiable ⇐⇒ θ −→ λ(θ) injective.

� ⇒ on peut reparamétrer le modèle avec le nouveau paramètre

λ ∈ Λ = {λ(θ); θ ∈ Θ}.
� λ(θ) non injective ⇒ famille surparamétrée en θ.

� De plein rang si les T1(x), ...,Tk(x) ne sont pas linéairement

dépendants.

� Dans le polycopié: beaucoup plus de propriétés: transformée de

Laplace de la mesure, convexité de l’espace canonique des

paramètres, etc.
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Modèle exponentiel: exemples 3/7

• Épreuve de Bernoulli.

Modèle dominé, paramétré par θ, homogène (support {0, 1}) et la
vraisemblance s’écrit

L(x , θ) = θx(1− θ)1−x = exp (x ln θ + (1− x) ln(1− θ)) (27)

= exp

(
x ln

(
θ

1− θ

)
+ ln(1− θ)

)
(28)

Le modèle est donc exponentiel avec pour paramètre

λ(θ) = ln

(
θ

1− θ

)
(29)

et pour statistique naturelle T (x) = x et β(θ) = − ln(1− θ).
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Modèle exponentiel: exemples 4/7

• Échantillon de loi uniforme sur [0, θ].

Densité du n-échantillon par rapport à la mesure de Lebesgue sur Rn:

fθ(x1, ..., xn) =
1

θn
1[0,θ]n(x1, ..., xn) (30)

où l’indicatrice vaut 1 ssi 0 ≤ xi ≤ θ ∀ i = 1, ..., n.

Modèle non homogène donc non exponentiel.
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Modèle exponentiel: exemples 5/7

• Loi multinomiale.

X = (X1, ...,Xp) vecteur multinomial, de paramètres (n, θ) n fixe, θ

inconnu,

Θ =

{
θ = (θ1, ..., θp) ∈ [0, 1]p/

p∑
i=1

θi = 1

}
(31)

Modélise le tirage de n objets appartenant à p catégories différentes: θi
proportion d’objets de catégorie i , Xi nombre d’objets de catégorie i

parmi les n objets tirés.

Modèle exponentiel, dominé par la mesure de comptage sur Np,

homogène car le support de la loi est

supp(X ) = Bn =

{
x ∈ Np :

n∑
i=1

xi = n

}
= {x ∈ Np : s = n} (32)
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Modèle exponentiel: exemples 6/7

• Loi multinomiale - suite et fin. Densité (discrète) :

hθ(x) = Pθ [X1 = x1, ...,Xp = xp]

=
n!

x1!...xp!
1Bn(x)

n∏
i=1

θxii =
n!

x1!...xp!
1Bn(x) exp

(
p∑

i=1

xi ln θi

)

• On pourrait choisir comme paramètre (ln θ1, ..., ln θp) et pour

statistique X1, ...,Xp, ⇒ surparamétrage car
∑

Xi = n ⇒ (X1, ...,Xp)

liée. Elle est de rang p − 1.

• On préfèrera choisir comme statistique T (X ) = (X1, ...,Xp−1) et

paramètre λ(θ) = (ln(θ1/θp), ..., ln(θp−1/θp)) et β(θ) = −n ln θp. Ici,

k = p − 1.

• Représentation minimale si les Ti forment une famille libre. Ordre =

cardinal de la famille (Ti )i .
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Modèle exponentiel: exemples 7/7

• Échantillon gaussien.

X1, ...,Xn v.a.i.i.d. de loi N (m, σ2). θ = (m, σ2). Modèle exponentiel (en

exercice). Idem si σ2 est connu et θ = m, ou si m connu et θ = σ2 (en

exercice).

• Modèles binomial, de Poisson, gamma.

Un modèle binomial de paramètres (n, θ) est exponentiel et la statistique

X est le paramètre naturel (dans le modèle d’échantillonnage

correspondant, Sn =
∑

Xi est le paramètre naturel). Idem si modèle de

Poisson de paramètre θ.

Modèle gamma de paramètres (α, β), de densité:

βα

Γ(α)
xα−1e−βx1R+(x) (33)

le paramètre naturel est donné par la statistique (X , lnX ) (le prouver). 28



Modèle bayésien: définitions 1/5

Soit O une tribu sur l’ensemble Θ des paramètres.

Definition

Un modèle bayésien est un modèle statistique (X,F, {Pθ; θ ∈ Θ}) muni

d’une loi de probabilité Π sur l’espace (Θ,O)

• Π s’appelle la loi a priori. Dans un tel modèle, une valeur θ du

paramètre est la réalisation d’une variable aléatoire T de loi Π.

On dispose de 3 lois: la loi a priori Π, la vraisemblance L(x |θ) qui est
également la loi conditionnelle de X sachant θ (loi conditionnelle des

effets sachant les causes) et la loi a posteriori notée L(θ|x) (loi des causes
sachant les effets).
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Modèle bayésien: lien a priori, a posteriori, vraisemblance 2/5

T une v.a. de loi Π. La formule de Bayes donne

fT/X (θ, x) =
fX/T (x , θ)fT (θ)

fX (x)
⇒ L(θ|x) = L(x |θ)Π(θ)

f (x)

Theorem

La vraisemblance a posteriori L(θ|x) est proportionnelle à L(x |θ)× Π(θ)

P(B)

P(A|B)
P(A|B)

Bayes:

P(B|A)

+

30



Modèle bayésien: exemple échantillon de Bernoulli 3/5

• X = (X1, ...,Xn) n-échantillon de Bernoulli de paramètre θ inconnu.

• Modélise lancer de n tirages à pile ou face; on souhaite déterminer θ.

On pense que la pièce est truquée et des observations passées amènent à

définir la loi a priori de θ comme une loi béta de paramètres (a, b).

Vraisemblance de l’échantillon:

L(x , θ) =
n∏

i=1

L(xi , θ) = θs(1− θ)n−s (34)

avec s =
∑n

i=1 xi . D’après la formule de Bayes, la vraisemblance a

posteriori sera proportionnelle à

L(θ|x) ∝ θs(1− θ)n−s 1

B(a, b)
θa−1(1− θ)b−11[0,1](θ) (35)

À une constante multiplicative près, il s’agit de la densité d’une loi béta

de paramètres (s + a, n − s + b).
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Modèle bayésien: exemple échantillon gaussien 4/5

X = (X1, ...,Xn) n-échantillon gaussien N (θ, σ2). θ inconnu, σ2 connue.

Loi a priori gaussienne N (a, b2) (a, b2 hyperparamètres):

Π(θ) =
(
2πb2

)−1/2
exp

(
− 1

2b2
(θ − a)2

)
(36)

Vraisemblance de l’échantillon:

L(x |θ) =
(
2πσ2

)−n/2
exp

(
− 1

2σ2

n∑
i=1

(xi − θ)2

)
(37)

Loi jointe de (X ,T ):

f(X ,T )(x , θ) =
(
2πb2

)−1/2 (
2πσ2

)−n/2
e
− θ2

2 (
1
b2

+ n
σ2 )+θ( a

b2
+n x

σ2 )−
(

a2

2b2
+ nx2

2σ2

)

où x = (
∑

xi )/n et x2 = (
∑

x2i )/n.
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Modèle bayésien: échantillon gaussien 5/5

Posons τ et m tels que:
1

τ 2
=

1

b2
+

n

σ2

m

τ 2
=

a

b2
+

nx

σ2

⇒ f(X ,T )(x , θ) = γ exp (−Λ/2)

avec

{
γ =

(
2πb2

)−1/2 (
2πσ2

)−n/2

Λ = 1
τ 2

(
θ2 − 2mθ

)
+ a2

b2 +
nx2

σ2

f(X ,T )(x , θ) = γ × exp

(
m2

2τ 2
− a

2b2
− nx2

2σ2

)
× exp

(
− 1

2τ 2
(θ −m)2

)
= constante× C (x)×N (m, τ 2)

C (x) ne dépend pas de θ. Densité de X de la forme C (x)× (2πτ 2)−1/2

⇒ vraisemblance a posteriori ∼ N (m, τ 2).

n ↑ ⇒ observations de + en + importantes / à l’a priori.
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Fin du chapitre 1

P(A |B) =
P(B |A) ·P(A)

P(B)

a posteriori

vraisemblance a prioria priori

marginaleÀ retenir : ce qu’est

� un modèle aléatoire.

� une statistique.

� le théorème de Radon-Nikodym.

� la vraisemblance.

� un modèle d’échantilonnage, dominé, homogène, paramètrique,

exponentiel, bayésien.
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