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1. Exhaustivité, minimalité,
complétude



Exhaustivité : un premier exemple

X = (X1, ..., Xn) n-échantillon de bernoulli de parameétre 6 €]0, 1].
S=Xi+Xo+ ...+ X,. S~ B(n,0), loi binomiale.
X={x=(x1,....,.xn) : x; = 0,1}, de cardinal 2". Partition de X:

X=Jis=1]
i=0
P[X, = X,-] = QX"(]. — 9)1_X"IL{0,1}(X,-)

P(X=xn[S=s) [l (01 -06)'")

R Er R <n>9(1 oy

avec By = {(x1, ..., Xn) : D1y Xi = s}. Ne dépend pas de 6 !

1g,(x)



Exhaustivité : illustration

Cette expression ne dépend pas de 0: le fait de savoir la valeur de
I'observation x lorsque I'on connaft la somme n’apporte pas plus
d'information sur # = S condense |'information apportée par le vecteur
(Xi,...,X,) sans la dégrader. Les données originelles de I'échantillon ne
contiennent pas d'information supplémentaire sur la loi de X et peuvent
étre écartées. S suffit pour apporter toute I'information (en anglais,
exhaustif = sufficient).

[S=+]
/' S(x)=S(x")=>x=s

2" éléments n+ 1 éléments

Figure 1: Exhaustivité et tribu engendrée



Exhaustivité : définition

Definition
Une statistique S est exhaustive pour X si la loi conditionnelle de X
sachant [S = s] ne dépend pas de 6.

Si la valeur prise par une statistique exhaustive S est connue, égale a s,
|"échantillon X ne fournit plus d'information sur 6 car sa loi ne dépend
plus de 6.

= S condense parfaitement la totalité de I'information relative a 0. Elle
contient toute I'information sur le parametre, sans la dégrader.

Considérons une observation x au travers de la statistique S(x).
L'information sur 6 sera la méme pour une autre observation y si S est
exhaustive et S(x) = S(y).

= La connaissance de S suffit a obtenir toute I'information sur 6.



Critéere de factorisation de Neyman

Theorem (Critére de factorisation de Neyman)

T est exhaustive si, et seulement si, la vraisemblance du modéle s'écrit

L(x,0) = h(x) x g(5(x),0) (2)
e Exemple : modele d’'échantillonnage de Bernoulli de vraisemblance
L(x,0) = 0°0)(1 — 0)"50) = h(x) x g(s,0) (3)

On a la décomposition avec h(x) =1, S(x) =Y/, x; et
g(s,0) =0°(1 —0)"°. = S est exhaustive.



Exhaustivité : exemples -1-

e X = (Xy,...,, X,) n-échantillon de loi uniforme sur [ —1/2,0 4+ 1/2].
Modele dominé (mesure de Lebesgue), pas homogene, vraisemblance :

L0 0) = T T Bo-1/2.00/206) = g~ 1/2 < xy) < xy < 0+ 1/2]%)
i=1

= 1 9)(x)

de la forme g((x(1); X(n)), ) x 1 = (X(1), X(n)) exhaustive. L'une de ces
deux statistiques seule ne serait pas exhaustive.

e Pour un n-échantillon X = (Xi, ..., X;,) quelconque de vraisemblance
L(x,0) = [T () = T FOxiy) (4)
i=1 i=1

La statistique d'ordre X = (X(y), ..., X(n)) est exhaustive. Elle ne
condense par contre pas du tout I'information...



Exhaustivité : exemples -2-
Dans un modele exponentiel, la vraisemblance s'écrit
L(x,0) = h(x) x g(t,0) = h(x) exp ((T(x), A(0)) — B(F))  (5)

= la statistique naturelle (canonique) est exhaustive.

e Exemple : n-échantillon gaussien N'(m, o2) avec 6 = (m, o).
T(X) = (T1(X), T2(X)) = (X, S?) est exhaustive pour 0 et

L(x,0) = (2m) " exp (=55 [(tn = m? + 2] = Zin(0?))  (6)

avec h(x) = (2m)~"/2, t = (t1, &) = (X, s?).

Dans cet exemple, c'est le théoréme de factorisation qui permet de
conclure (en I'état, pas de produit scalaire entre les (.)).



Exhaustivité : propriétés -1-

Theorem

Soit T une statistique exhaustive et ¢ une fonction mesurable. Alors la
statistique S vérifiant T = ¢(S) est exhaustive.

Si ¢ est bijective, S et T sont alors équivalentes et T exhaustive <= S
exhaustive.

Autrement dit, I'image réciproque d'une statistique exhaustive est
exhaustive. L'existence d'une fonction ¢ telle que T = ¢(S) induit une
relation d'ordre partiel sur les statistiques. On notera T < S. T < S et
T exhaustive entraine S exhaustive, car S est plus fine que T.



Exhaustivité : propriétés -2-
e Si ¢ n'est pas bijective, alors la tribu induite va étre plus grossiére :
o(T) C o(S) et I'information va étre plus condensée.

e On peut se demander s'il existe une statistique qui condense
I'information de fagon maximale sans la dégrader.

5(X) T(X) tribu moins fine

T exhaustive = S exhaustive

—y] S0 1 L eoS(x)=T()=TK) [T=
[5*”.5() ®oS(x)=T()=T() [T=t]

¢ non injective

Figure 2: lllustration de I'exhaustivité qui condense |'information.



Minimalité et rapport de vraisemblance : définition

Definition
Une statistique exhaustive S est minimale si elle est fonction de toute
autre statistique exhaustive. Autrement dit, V0 € ©,

T exhaustive minimale <= VS exhaustive , 3 ¢: T = ¢(S),Py — p.s.
e T est fonction d'une statistique S ssi S(x) = S(x’) = T(x) = T(x').
Autrement dit, les événements de la forme [S(x) = y’] sont chacun inclus

dans un événement de la forme [T(x) = y].

e La partition associée a une statistique exhaustive minimale est la plus

grossiere possible et la réduction est maximale.

e Le rapport de vraisemblance (likelihood ratio) est, pour x, y fixés:
L(x,0)

0 — LR(x,y,0) = L(y.0) (7)

10



Critere de minimalité

Theorem (Critére de minimalité)

S statistique d’'un modéle dominé, telle que
LR(x,y,0) ne dépend pas de § <= S(x) = S(y) (8)
Alors S est exhaustive et minimale.

e Exemple : reprenons |I'exemple du début de chapitre:

5\ S0-50)
) (9)

LR(x, y,0) = 8500-S0)(1 — g)S0)-S() _ (19

qui est constant ssi S(x) = S(y). Donc S(X) = "7, X; statistique
exhaustive minimale.

e Exemple : échantillon uniforme sur [# —1/2,0 4+ 1/2]. En calculant LR,
on voit (a faire) que (X(1), X(n)) est une statistique exhaustive minimale.

11



Exemple du modéle exponentiel

Theorem
Si le modéle est exponentiel, alors:

e [ a statistique canonique S est exhaustive.
e Si 'espace \ des paramétres canoniques contient un ouvert de R¥ ou
un repére affine de R¥, alors T est minimale

LR(x,y,0) = g(0) = mexp(@\(@),S(X) =S(»)) (10)
e Exemple: (Xi, ..., X,) n-échantillon N(6,6?). Modele exponentiel avec

parametre (1/6, —1/62) et statistique (nX, —nx2/2).

Espace canonique A formé par une courbe d'équation u = —\? fermée
dans R? (ne peut contenir aucun ouvert de R2). Mais on peut trouver
trois points non alignés sur cette courbe. = statistique exhaustive
minimale.

A:{(é,—é) ;9>O}:{(/\,—>\2);/\>0}CR2 (11)



Statistique libre et compléete

Une statistique exhaustive apporte toute |'information sur 6 contenue
dans X. Une statistique dont la loi ne dépend pas de 6 n'apporte aucune
information sur 6.

Definition

e Une statistique S est libre vis a vis de 0 si sa loi ne dépend pas de 6.

e Elle est libre du premier ordre si la fonction (de 6) Eg[S] est constante.
e Une statistique U est ignorable s'il existe une statistique exhaustive S
indépendante de U. S apporte alors toute I'information sur 6 et U
apporte une information complémentaire a S.

Si deux statistiques sont dépendantes, alors les informations qu’elles
apportent sur un parametre sont redondantes.

13



Les différents types d’information

Information sur 6 contenue dans X
N

e I

| | Information relative a 6 | Autre information S quelconque

| Information relative a 6 | | S exhaustive

| Information relative a 6 | | S exhaustive minimale
| Information relative a 6 | S exhaustive compléte

Figure 3: Information, exhaustivité, minimalité, complétude.

e Exemple: modele d’échantillonnage gaussien A/(0,1)®". La statistique
S2=3", (Xi— Y)z /n est libre, car sa loi ne dépend pas de 6 (poser
Yi=Xi—0). Y ~N(0,I,) et

$2=3 (Y= Y)’/n

i=1

14



Liberté : exemples

e Exemple : X échantillon de loi uniforme sur [0 —1/2,6 + 1/2].
= S = (51, 5) = (Xu), X(n)) exhaustive minimale de densité

g(s,t) = n(n—1)(t = 5)" *Lg_1/p<s<e<o41/2] (12)
U = X(n) — X() statistique libre de 6 de densité (exercice @)
h(u) = n(n— 1)u"*2]l[071](u) (13)

Pourtant, U non indépendante de S. S apporte donc une information
inutile U sur 6.

e Exemple : X = (Xy,..., X;;) n-échantillon dont la loi a pour densité

F(3) = 21y o () (14)

Ina x

a>1, 0 >0 inconnu. (X(1), X(n)) exhaustive minimale. Idem pour
S(X) = (X(,,)/X(l),X(l)X(n)) U(X) = X(n)/X(l) est libre et il est clair
que S et U ne sont pas indépendantes.

15



Statistique compléte : motivation

e Une statistique exhaustive minimale réduit au maximum les données
sans perdre d'information sur 6.

e Mais une telle statistique n'est pas nécessairement indépendante de
toute statistique libre, car une statistique libre peut compléter
I'information apportée par une statistique minimale.

e La complétude assure que la statistique est bien indépendante de toute
statistique libre: toute la liberté résiduelle a été extraite de la statistique
et toute transformation la rend non libre.

e On cherche des statistiques exhaustives S ne contenant aucune
composante libre, c'est a dire que pour toute fonction g non constante,
g(S) ne sera pas libre au premier ordre. Ou encore, si I'espérance est
constante, alors g est constante. Ces statistiques ne doivent contenir
aucun matériel (c.-a-d. aucune fonction de S) libre, méme du premier

ordre. @

= Cette notion est apportée par la complétude.

16



Statistique complete : définition

Definition
Une statistique S est complete s'il n’existe pas de fonction g non
constante, intégrable, a valeurs dans R qui soit libre. Autrement dit,

V0, Eo[g(S)] = constante = g = constante Py — p.s. (15)

Theorem (Lehmann & Scheffé (1950), Bahadur (1957))

S exhaustive compléte = S exhaustive minimale.

17



Statistique compléte : exemples -1-

e Exemple : on considére (encore) un n-échantillon de loi de Bernoulli de
parameétre 6 inconnu et I'on pose S(X) =Y, X; dont on a vu qu’elle
est une statistique exhaustive minimale. Est-elle complete 7 Considérons
g :{0,...,n} — R telle que Ey[g(S)] =0. Comme la loi de T est une
loi binomiale, on a

(o) = Eale(S)] = 3" &(s) ( ’ ) (-0 =0  (16)

h est donc un polynéme de degré n avec une infinité de zéros: il est nul
et par suite S est compléte.

e Exemple : on considére un n-échantillon de loi uniforme sur

-1/2,0+ et S = (X, X(n)). S n'est pas complete a faire
6—1/2,0+1/2] et S = (Xay, X(m)- S 1’ jote B8 (3 fai
en exercice).

18



Statistique compléte : exemples -2-

(X1, ..., Xn) n-échantillon de densité f(x) = e*~1)_. ().

X(ny = maxi_; X; statistique exhaustive pour ¢ de densité

h(u) = ne"(u_e)]l],oo’e](u)

Soit g fonction d'intégrale nulle par rapport a cette densité, V6.

0

V0 € R, / g(u)ne"“=duy =0
B [4

=V e R, / g(u)e™du=0

— o0

Ainsi, sur tout intervalle [0, 6],
0/
/ g(u)e™du=0
)

La fonction g est donc nulle presque partout (pourquoi ?).

(18)

(19)

(20)

19



Statistique compléte : exemples -3-

On considere le modele exponentiel de vraisemblance
L(x,0) = h(x) exp ({(A(0), S(x)) — B(0)) (21)

Avec A = {A(6); 0 € O} espace canonique des paramétres. Si A contient
un ouvert non vide, alors S est exhaustive compléte. En effet, Vg,

Eale(S)] = | e(s)e™ dus) (22)

Transformée de Laplace de g. Ses propriétés (dans C) = g = 0 (principe
des zéros isolés).

e Exemple : échantillon de Bernoulli ; statistique canonique
S(x) = >_; X, paramétre canonique () = In(6/(1 — 6)).
N =A{A(0) = In(6/(1 - 9)),0 €]0,1[}.

Etude de fonction = A(©) = R ouvert de R. = S compléte.

20



Statistique compléte : exemples -4-

e Exemple : (Xi, ..., X,) n-échantillon de loi N'(m, o?) avec 6 = (m,o?).
On pose 5 = EX,‘, S = ZXz, (51752) et

m 1
A= — —— 23
((727 202) (23)
Le modele est celui d'une famille exponentielle de rang plein.

= S est compléte pour A et également pour 0 par bijectivité de A(6).
Ainsi, (X, S?) est une statistique compléte pour 6 = (m, o?).

e Exercice : trouver une statistique exhaustive minimale compléte pour
modele le multinomial.

21



Théoreme de Basu

Theorem (de Basu)

Soit S une statistique exhaustive compléte et U une statistique libre.
Alors S I U.

Le théoreme de Basu donne un moyen rapide de démontrer que la
moyenne et la variance empirique d'un échantillon gaussien sont
indépendantes:

X est exhaustive et compléte pour la moyenne 6 (c'est un modele
exponentiel). Par ailleurs 52 est libre. D'apres le théoréme de Basu, les
deux statistiques sont donc indépendantes.

22



Exhaustivité, minimalité, liberté, complétude : conclusion

e Ce sont des notions difficiles a bien comprendre.
e En anglais, exhaustif = sufficient, libre = ancillary.
e A voir :

e Minimalité : https://www.youtube.com/watch?v=IsgteDaNTFk
e Complétude : https://www.youtube.com/watch?v=GF8nFqEbgkl

23
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2. Information de Fisher




Information de Fisher : introduction et notations

Probleme : quantitier la quantité d'information sur 6 contenu dans un
échantillon. Plusieurs définitions différentes de la notion de quantité
d'information.

e Information au sens de Shannon (1948).

e Entropie de Boltzmann en thermodynamique.

e Information au sens de Kullback-Leibler.

e lIci : information au sens de Fisher.
Intérét de I'information de Fisher :

e Notion locale.

e Pouvoir de discrimination du modele entre deux valeurs proches de 6.

24



Score d’'un modéele statistique

o 0= (b,..,0,) € © CRP ouvert.

e g : © — R fonction 2x différentiable.

e Vg(0) gradient de g en 0

e Hg(0) ou V2g(#) matrice hessienne.

e V(S) matrice de covariance d'un vecteur S = (51, ...,S,)" € RP.
cov(S51,51) ... cov(S1,Sp)
V(S) =E[(S—E[S]) x (S - E[S])T] = : :
cov(Sp, S1) ... cov(Sp, Sp)
o /(X,0) =InL(X,0) log-vraisemblance.

Le score du modele est (sous réserve d'existence),
S(X,0) = % InL(X, 6) = VI(6) (24)

Fonction de X donc v.a. mais dépend de 6 : pas une statistique ! -



Notion de modéele régulier

Definition

Un modele paramétrique est régulier si, et seulement si,

e |l est dominé, homogene et © C IRP est un ouvert.

o L(x,0) >0VxeX,VeO.

o 0 — L(x,0) est de classe C? pour presque tout x.

e VB e X, 0 — [, L(x]|0)du(x) est 2x différentiable sous le signe [.
e Le score S(X,0) € L2(Py).

Les modeles gaussiens ou de Poisson sont réguliers, mais pas le modéle
uniforme sur [0, 4].

26



Information de Fisher : définition

Definition

L'information de Fisher I(#) du modele est la variance du score:

I(0) = Vo(S) (25)

Theorem (Information d’un modéle régulier)
(] Ea [S] =0

e [(0) =Eo[SST] = —Ey [2;] = —Eq [H]

En dimension 1, [(¢) = E [S?| = —E[/"(0)]

Les modeles gaussiens ou de Poisson sont réguliers, mais pas le modele
uniforme sur [0, 4].

27



Information de Fisher : illustration -1-

Population Distribution

; High Entropy l

Low Entropy
I [
Low

High v
Surprise Surprise

B Likelihood
Function

Fisher Information

Figure 4: Information de Fisher et de Shannon. A: I'entropie de Shannon capture I'étalement

(en rouge et bleu) de la statistique en terme de vraisemblance. B: I'information de Fisher capture

la quantité d'information que la vraisemblance apporte sur la vraie valeur du paramétre, grace a la
variation de la fonction de vraisemblance. 1(6) = —E [/ (0)] (R. Grzywacz, H. Aleem). 28



Information de Fisher : illustration -2-

Log-vraisemblance /(x, 6)

1(6) o — 2 log L(6)

Variance forte : I(#) faible
Variance faible : 1(6) forte

N\

Figure 5: Information de Fisher : 1(0) = —E [/ (0)]. En rouge : grande variance donc peu
d’information en 6, en bleu : variance faible, donc forte information sur 6 au voisinage du
maximum de /(9).
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Information de Fisher : exemple

Considérons un n-échantillon X = (X, ..., X,) de loi de Benoulli de
paramétre 6 et considérons la statistique T(X) =", X;. La
vraisemblance du modele est

L(X,0) =exp(T(X)In0+ (n— T(X)In(1—19)) (26)
Considérons une observation x € R". x vecteur de dimension n et

0 €]0, 1] parametre scalaire. Le score du modele est

_0l(x,0)  T(x) n—T(x)  T(x) n
SO =g =9 " 1=¢ “aa-g 1-8

On en déduit I'information du modéle :

1(0) =V (S(X.0) = 57—

30



Propriétés de I'information de Fisher -1-

e Information de Fisher apportée par une statistique.

Soient (X, §, (Pg, 0 € ©)) un modele régulier et T une statistique pour
laquelle le modele image est également régulier.

Soit g(t, ) la densité de T.

L'information de Fisher apportée par T est I'information de Fisher du
modele image:

I+(0) =V (5(T,9)) (29)

Le score du modéle image par T est :

d
70 Ing(T,0) (30)

Conséquence directe du théoreme de transfert.

31



Propriétés de I'information de Fisher -2-

o Additivité de I'information.

Si Ty et T, sont deux statistiques indépendantes alors
/(TlaTZ)(e) = ITI(Q) + ITZ(Q) (31)
Dans un modele d’échantillonnage régulier X = (X1, ..., X5),

Hx(e) = H.Hxl(e) (32)

Résultat fondamental ! L'information a été construite sur la base de
cette propriété : 2 phénomenes aléatoires indépendants doivent apporter
une quantité d'information totale égale a la somme de leur quantité
d’information respective.

32



Propriétés de I'information de Fisher -3-

e Information conditionnelle.

Soit T statistique de densité. Alors

1(0) = I7(0) + Ix7(0) (33)
ol Ix|7 est I'information de Fisher de X sachant T.
[llustre également la dégradation de la quantité d'information :

1(6) > I1(6). Si 6 € R, Ixr(0) > 0. Si 6 € RP, Ix7(0) € Sym™ (RP).
Pour des matrices, A> B <= VO € RP, 8T A9 > 67 B6.

T statistique exhaustive = Ix(0) = I7(6).

C'est méme une équivalence, sous hypothése de régularité:
T exhaustive <= Ix(0) = I+(0)

Pour une statistique T libre de 6, I7(8) = 0 (c'est aussi une <= ).

33



Exemple d’un échantillon gaussien -1-

e (X1, ..., X;) n-échantillon gaussien d'une v.a. X ~ N(m,o?).
e 0 = (m,0?) paramétre vectoriel.

e Modele régulier de log-vraisemblance d'une observation x

_ 1 1 2 1 JRSRY
0?1 1
om0 =52
0?1 1 (x — m)?
E A= S (35)
| X—m
omd(o?) (x.0) = o?

34



Exemple d’un échantillon gaussien -2-

Ainsi Tix (6)
i oI
ZLx0) —2l (X0

. om0 e X0) (e o
021 &2 0 1/

8m8(02)(X’9) 8(02)2(

et I'information de Fisher associée au n-échantillon sera donc

1(0) = ( o ) (30)

35



Propriétés de I'information de Fisher -4-

e Information de Fisher et reparamétrisation.

Considérons un nouveau parametre A = ¢(6). On peut calculer
I'information de Fisher du modeéle relativement a ce nouveau parameétre
via la formule suivante :

Tx(A\) = JTIx(8)J = (Vo (N) | x Ix(8) x (Vo (V) (37)

ol J matrice jacobienne de I'application inverse de ¢.

Pour exprimer cette nouvelle information en fonction de ), il faut pouvoir
exprimer # en fonction de A en inversant ¢.

En dimension 1, si 8, A € R, la formule devient:

Ix(\) = —7 (38)

36



Information de Kullback

Definition

K (6o, 61) = Eg, {m igﬁgz;] :/Rn In ig’g?;L(x,Oo)dx (39)

In (L(X,60)/L(X,01)) est le pouvoir discriminant de 6y contre 6.

Theorem
82K(90, 0)

| =100 (40)

e Exemple:

si X suit une loi de Poisson P(#), alors K (6o, 01) = 01 — 0+ 6 In(6/61).

37



Reverse-KL la

Figure 6: Information de Kullabck-Leibler.
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3. Estimateurs optimaux




Fonction de coiit et risque moyen

Une fonction de colit mesure I'écart (la perte) entre deux quantités.
Qualité d'un estimateur S appréciée en fonction de I'écart entre S et 6.

Une fonction de colit ¢ doit étre positive et vérifier 0 = ¢’ = c(0,6’) = 0.

Exemples : toute distance sur ©, coiit quadratique ¢, absolu ¢; ou 0-1
noté ¢p:

Q0,0)=(0-0)?  a(®.0)=10-0] a0 0)="Tj-05

Definition
Le risque moyen d'un estimateur T de 6 est

R(T,0) =E[c(T,0)]

39



Estimateur préférable et admissible

Un estimateur est préférable a un autre (a 6 fixé) si son risque moyen est
inférieur.

Il est uniformément préférable si le risque est inférieur quelque soit § € ©.

Definition
Etant donné une classe 7 d’estimateurs de 6, T € T est admissible dans
T pour 6 s'il est uniformément préférable a tout autre estimateur de 7:

VT € T,¥9 €O, R(T,0) < R(T",0) (41)

40



Estimateur VUMSB

Objectif : déterminer |'estimateur admissible pour la classe des
estimateurs sans biais.

La formule reliant le biais et la variance nous donne
R(T,0) = Vo(T) + (Eg[T] — 0)? (42)

Definition

Un estimateur T* est de variance uniformément minimale parmi les
estimateurs sans biais de € (on dira VUMSB) si T* est admissible pour le
risque quadratique, dans la classe des estimateurs sans biais :

e E[T*] =0 (43)
e 7 T sans biais , V(T*) < V(T) (44)

Lorsqu'il existe, I'estimateur VUMSB est unique Pyp-p.s. pour tout 6.
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Théoremes de Rao-Blackwell et Lehmann-Scheffé

Theorem (de Rao-Blackwell)

Soit T un estimateur sans biais et S une statistique exhaustive. Alors
T =Ey[T|S]

estimateur sans biais de 0 préférable a T pour le risque quadratique.

Lorsque T VUMSB et S exhaustive, T* uniformément préférable a T et

T* est aussi VUMSB. = T = T*.
Theorem (de Lehmann-Scheffé)

T estimateur sans biais et S statistique compléte.
Alors T* =Ey[T|S] est VUMSB.
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Estimateur VUMSB : exemple gaussien

(X1, ..., Xn) n-échantillon gaussien ~ N'(m,c?), 6 = (m,c?).

B —n/2 n— nm_ nm* n
L(x,0) = (2m) "2 exp —Exz—kﬁx 297 " 3

)

Modele exponentiel (homogene), statistique naturelle : (ﬁ 7).
Paramétre canonique : (—n/(202), nm/o?).
Espace des paramétres canoniques : A =] — 0o, 0[xR.

Ouvert = statistique canonique exhaustive et compleéte.
T = (Y,ﬁ). Estimateur sans biais : <Y, §2)
S2=n/(n—1) x (ﬁ - Yz). Théoreme de Lehmann-Scheffé :

= (Eo [XIT] o [$?T]) VUMSE

Mais X et S? fonctions de T, = (Y, §2) VUMSB pour 6.
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Borne de Fréchet, Darmois, Cramer, Rao

Risque quadratique + classe estimateurs sans biais = borne inférieure
pour la variance.
Theorem (Borne FDCR)

X ~ Py modéle régulier avec 1(0) inversible V6 € ©.
T estimateur sans biais de ¢(0) € RY tel que :

o §(0) =Ey[T] est #tiable en 0.

o E[T] est #tiable en 6 sous le signe |.

= Vo(T) > Vo(0) x I(6) ™! x Ve (6) (46)

Si T sans biais, Eg[T] =0 (¢ = Id) et FDCR : Vy(T) > 1(0)*

Definition
T estimateur de ¢(0) efficace si sans biais et atteint FDCR.
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Borne FDCR : exemple gaussien

e Pour # = (m,0?). La borne de Cramer-Rao est donnée par

2 0
16yt =( /" 47
() < 0 20%/n (47)
e Rappel : matrice de covariance de I'estimateur T = (X, 52) :
a?/n 0
Vo(T) = 48
o(T) ( 0 20%/(n—1) (48)

. le calcul de la variance de la variance empirique est lourd....
L'e.m.v. n’est donc pas efficace pour 6.

Par contre X efficace pour m = $(6) avec ¢ projection sur (Ox). Mais
52 non efficace pour 02 = 1)(#) avec 1 projection sur (Oy).
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Efficacité asymptotique de I'e.m.v.

Theorem (Efficacité asymptotique de I’'e.m.v.)

Soit Xi, ..., X, n-échantillon de X ~ Py, 6 € O,
f(x,0) densité de Py par rapport a . On suppose que:

e Le modéle est homogene et identifiable.

e Inf(x,0) de classe C? en 0 et de #tielle 2¢ localement holdérienne :
VO € ©,3 V voisinage de 6 et M : X — R, tel que

d2
V91,92 eV: ‘ W In f(X,el) — ﬁ In f(X792)

’ < M(x)|| 61 — 63|, Pop.s.

e © ouvert de RP et I(0) inversible V0 € ©
ALORS I'e.m.v. 0, de 0 est \/n-consistant et A.N. :

Jn (92 - 9) 4 N(0,1(0) 1) (49)

En particulier 5,, asymptotiquement sans biais et efficace. 46



Estimateur bayésiens optimaux -1-

Si cadre bayésien, comparaison de 2 estimateurs en intégrant le risque sur
|'espace des paramétres. On parle de risque intégré.

Definition
Le risque moyen a posteriori de I'estimateur T associé a la loi a priori I

et a |'observation x est

R(M, T, x) = E[c(H, T(x))|X = x] = /@ (0, TG)L(O, )d0  (50)

Définit un ordre total sur tous les estimateurs (# cas fréquentiste).
Definition

Le risque intégré de |'estimateur T associé a la loi a priori I est

R(N, T)=E[c(H, T)] = /X/ec(e, T(x))L(0, x)dOdu(x) (51)

o~

Si O(x) minimise le risque moyen a posteriori, @ minimise le risque intégré.
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Estimateur bayésiens optimaux -2-

Definition

Soit T une classe d'estimateurs de 6. Le risque de Bayes est:
R(M) = inf R(MN, T 52
(M) = inf R(N,T) (52)
L'estimateur de Bayes én associé a la loi a priori 1 est I'estimateur qui
minimise le risque intégré :

o R(IM, 9) R(IT) (53)

e 0 = argminR(N, T) (54)
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Estimateur bayésiens optimaux -3-

e Si colit quadratique, estimateur bayésien = moyenne a posteriori:
0(x) = E[H|X = x] (55)
En effet, si t = T(x) et on veut minimiser en t

g(t) = R(M, T|x) = E[(H — t)?|X = x] = E[H?|X = x] — 2tE[H|X = x] + t*

~

g'(t)=0=t=10(x).

e Si risque absolu, estimateur bayésien =médiane a posteriori:

o~ ~

0(x) vérifie P[H < 6(x)|X =x] =1/2 (56)
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Second principe fondamental de la statistique

Pour terminer la legon :

Theorem (Second principe fondamental de la statistique)

Mieux vaut un petit biais qu’une grosse variance.
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Fin du chapitre 3

A retenir : ce qu'est....

un estimateur exhaustif, minimum, libre, complet.
I'information de Fischer et comment la calculer.
un modele régulier.

une fonction de colit et un risque moyen.

un estimateur VUMSB, efficace.

la borne FDCR.

un estimateur bayésien optimal.

La notion de risque de Bayes optimal est fondamentale en Machine

Learning et dans les techniques d'intelligence artificielle actuelles.
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