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1. Exhaustivité, minimalité,

complétude



Exhaustivité : un premier exemple

X = (X1, ...,Xn) n-échantillon de bernoulli de paramètre θ ∈]0, 1[.
S = X1 + X2 + ...+ Xn. S ∼ B(n, θ), loi binomiale.

X = {x = (x1, ..., xn) : xi = 0, 1}, de cardinal 2n. Partition de X:

X =
n⋃

i=0

[S = i ] (1)

P[Xi = xi ] = θxi (1− θ)1−xi1{0,1}(xi )

P[X = x |S = s] =
P ([X = x ] ∩ [S = s])

P[S = s]
=

∏n
i=1

(
θxi (1− θ)1−xi

)(
n

s

)
θs(1− θ)n−s

1Bs (x)

=
1(
n

s

)1Bs (x)

avec Bs = {(x1, ..., xn) :
∑n

i=1 xi = s}. Ne dépend pas de θ !
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Exhaustivité : illustration

Cette expression ne dépend pas de θ: le fait de savoir la valeur de

l’observation x lorsque l’on connâıt la somme n’apporte pas plus

d’information sur θ ⇒ S condense l’information apportée par le vecteur

(X1, ...,Xn) sans la dégrader. Les données originelles de l’échantillon ne

contiennent pas d’information supplémentaire sur la loi de X et peuvent

être écartées. S suffit pour apporter toute l’information (en anglais,

exhaustif = sufficient).

S

S(x) = S(x′) =
∑

xi = s

xx′

S(X) = YX
2n éléments n + 1 éléments

[S = 0]
[S = 1] . . .

[S = n]

[S = s]

Figure 1: Exhaustivité et tribu engendrée
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Exhaustivité : définition

Definition

Une statistique S est exhaustive pour X si la loi conditionnelle de X

sachant [S = s] ne dépend pas de θ.

Si la valeur prise par une statistique exhaustive S est connue, égale à s,

l’échantillon X ne fournit plus d’information sur θ car sa loi ne dépend

plus de θ.

⇒ S condense parfaitement la totalité de l’information relative à θ. Elle

contient toute l’information sur le paramètre, sans la dégrader.

Considérons une observation x au travers de la statistique S(x).

L’information sur θ sera la même pour une autre observation y si S est

exhaustive et S(x) = S(y).

⇒ La connaissance de S suffit à obtenir toute l’information sur θ.
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Critère de factorisation de Neyman

Theorem (Critère de factorisation de Neyman)

T est exhaustive si, et seulement si, la vraisemblance du modèle s’écrit

L(x , θ) = h(x)× g(S(x), θ) (2)

• Exemple : modèle d’échantillonnage de Bernoulli de vraisemblance

L(x , θ) = θS(x)(1− θ)n−S(x) = h(x)× g(s, θ) (3)

On a la décomposition avec h(x) = 1, S(x) =
∑n

i=1 xi et

g(s, θ) = θs(1− θ)n−s . ⇒ S est exhaustive.
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Exhaustivité : exemples -1-

• X = (X1, ...,Xn) n-échantillon de loi uniforme sur [θ − 1/2, θ + 1/2].

Modèle dominé (mesure de Lebesgue), pas homogène, vraisemblance :

L(x , θ) =
n∏

i=1

1[θ−1/2,θ+1/2](xi ) = 1[θ − 1/2 ≤ x(1) ≤ x(n) ≤ θ + 1/2](x)

= 1J(θ)(x)

de la forme g((x(1), x(n)), θ)× 1 ⇒ (X(1),X(n)) exhaustive. L’une de ces

deux statistiques seule ne serait pas exhaustive.

• Pour un n-échantillon X = (X1, ...,Xn) quelconque de vraisemblance

L(x , θ) =
n∏

i=1

f (xi ) =
n∏

i=1

f (x(i)) (4)

La statistique d’ordre X = (X(1), ...,X(n)) est exhaustive. Elle ne

condense par contre pas du tout l’information...
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Exhaustivité : exemples -2-

Dans un modèle exponentiel, la vraisemblance s’écrit

L(x , θ) = h(x)× g(t, θ) = h(x) exp (⟨T (x), λ(θ)⟩ − β(θ)) (5)

⇒ la statistique naturelle (canonique) est exhaustive.

• Exemple : n-échantillon gaussien N (m, σ2) avec θ = (m, σ2).

T (X ) = (T1(X ),T2(X )) = (X ,S2) est exhaustive pour θ et

L(x , θ) = (2π)−n/2 exp
(
− n

2σ2

[
(t1 −m)2 + t2

]
− n

2
ln
(
σ2
))

(6)

avec h(x) = (2π)−n/2, t = (t1, t2) = (x , s2).

Dans cet exemple, c’est le théorème de factorisation qui permet de

conclure (en l’état, pas de produit scalaire entre les (.)).
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Exhaustivité : propriétés -1-

Theorem

Soit T une statistique exhaustive et ϕ une fonction mesurable. Alors la

statistique S vérifiant T = ϕ(S) est exhaustive.

Si ϕ est bijective, S et T sont alors équivalentes et T exhaustive ⇐⇒ S

exhaustive.

Autrement dit, l’image réciproque d’une statistique exhaustive est

exhaustive. L’existence d’une fonction ϕ telle que T = ϕ(S) induit une

relation d’ordre partiel sur les statistiques. On notera T < S . T < S et

T exhaustive entrâıne S exhaustive, car S est plus fine que T .
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Exhaustivité : propriétés -2-

• Si ϕ n’est pas bijective, alors la tribu induite va être plus grossière :

σ(T ) ⊂ σ(S) et l’information va être plus condensée.

• On peut se demander s’il existe une statistique qui condense

l’information de façon maximale sans la dégrader.

S(X)

[S = y ]

T (X) tribu moins fine

[T = t]

ϕ non injective

ϕ

• S(x ′)

• S(x)

T exhaustive ⇒ S exhaustive

• Φ ◦ S(x) = T (x) = T (x ′)

Figure 2: Illustration de l’exhaustivité qui condense l’information.

9



Minimalité et rapport de vraisemblance : définition

Definition

Une statistique exhaustive S est minimale si elle est fonction de toute

autre statistique exhaustive. Autrement dit, ∀θ ∈ Θ,

T exhaustive minimale ⇐⇒ ∀S exhaustive , ∃ ϕ : T = ϕ(S),Pθ − p.s.

• T est fonction d’une statistique S ssi S(x) = S(x ′) ⇒ T (x) = T (x ′).

Autrement dit, les évènements de la forme [S(x) = y ′] sont chacun inclus

dans un évènement de la forme [T (x) = y ].

• La partition associée à une statistique exhaustive minimale est la plus

grossière possible et la réduction est maximale.

• Le rapport de vraisemblance (likelihood ratio) est, pour x , y fixés:

θ −→ LR(x , y , θ) =
L(x , θ)

L(y , θ)
(7)
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Critère de minimalité

Theorem (Critère de minimalité)

S statistique d’un modèle dominé, telle que

LR(x , y , θ) ne dépend pas de θ ⇐⇒ S(x) = S(y) (8)

Alors S est exhaustive et minimale.

• Exemple : reprenons l’exemple du début de chapitre:

LR(x , y , θ) = θS(x)−S(y)(1− θ)S(y)−S(x) =

(
θ

1− θ

)S(x)−S(y)

(9)

qui est constant ssi S(x) = S(y). Donc S(X ) =
∑n

i=1 Xi statistique

exhaustive minimale.

• Exemple : échantillon uniforme sur [θ− 1/2, θ+ 1/2]. En calculant LR,

on voit (à faire) que (X(1),X(n)) est une statistique exhaustive minimale.
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Exemple du modèle exponentiel

Theorem

Si le modèle est exponentiel, alors:

• La statistique canonique S est exhaustive.

• Si l’espace Λ des paramètres canoniques contient un ouvert de Rk ou

un repère affine de Rk , alors T est minimale

LR(x , y , θ) = g(θ) =
h(x)

h(y)
exp (⟨λ(θ), S(x)− S(y)⟩) (10)

• Exemple: (X1, ...,Xn) n-échantillon N (θ, θ2). Modèle exponentiel avec

paramètre (1/θ,−1/θ2) et statistique (nx ,−nx2/2).

Espace canonique Λ formé par une courbe d’équation u = −λ2 fermée

dans R2 (ne peut contenir aucun ouvert de R2). Mais on peut trouver

trois points non alignés sur cette courbe. ⇒ statistique exhaustive

minimale.

Λ =

{(
1

θ
,− 1

θ2

)
; θ > 0

}
= {(λ,−λ2);λ > 0} ⊂ R2 (11)
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Statistique libre et complète

Une statistique exhaustive apporte toute l’information sur θ contenue

dans X . Une statistique dont la loi ne dépend pas de θ n’apporte aucune

information sur θ.

Definition

• Une statistique S est libre vis à vis de θ si sa loi ne dépend pas de θ.

• Elle est libre du premier ordre si la fonction (de θ) Eθ[S ] est constante.

• Une statistique U est ignorable s’il existe une statistique exhaustive S

indépendante de U. S apporte alors toute l’information sur θ et U

apporte une information complémentaire à S .

Si deux statistiques sont dépendantes, alors les informations qu’elles

apportent sur un paramètre sont redondantes.
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Les différents types d’information

Information sur θ contenue dans X

Information relative à θ

Information relative à θ

Information relative à θ

Information relative à θ Autre information S quelconque

S exhaustive

S exhaustive minimale

S exhaustive complète

Figure 3: Information, exhaustivité, minimalité, complétude.

• Exemple: modèle d’échantillonnage gaussien N (θ, 1)⊗n. La statistique

S2 =
∑n

i=1

(
Xi − X

)2
/n est libre, car sa loi ne dépend pas de θ (poser

Yi = Xi − θ). Y ∼ N (0, In) et

S2 =
n∑

i=1

(
Yi − Y

)2
/n

De même, l’étendue empirique T = X(n) − X(1) est libre .
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Liberté : exemples

• Exemple : X échantillon de loi uniforme sur [θ − 1/2, θ + 1/2].

⇒ S = (S1, S2) = (X(1),X(n)) exhaustive minimale de densité

g(s, t) = n(n − 1)(t − s)n−21[θ−1/2≤s≤t≤θ+1/2] (12)

U = X(n) − X(1) statistique libre de θ de densité (exercice )

h(u) = n(n − 1)un−21[0,1](u) (13)

Pourtant, U non indépendante de S . S apporte donc une information

inutile U sur θ.

• Exemple : X = (X1, ...,Xn) n-échantillon dont la loi a pour densité

f (x) =
1

lnα

1

x
1]θ,αθ[(x) (14)

α > 1, θ > 0 inconnu. (X(1),X(n)) exhaustive minimale. Idem pour

S(X ) = (X(n)/X(1),X(1)X(n)). U(X ) = X(n)/X(1) est libre et il est clair

que S et U ne sont pas indépendantes. 15



Statistique complète : motivation

• Une statistique exhaustive minimale réduit au maximum les données

sans perdre d’information sur θ.

• Mais une telle statistique n’est pas nécessairement indépendante de

toute statistique libre, car une statistique libre peut compléter

l’information apportée par une statistique minimale.

• La complétude assure que la statistique est bien indépendante de toute

statistique libre: toute la liberté résiduelle a été extraite de la statistique

et toute transformation la rend non libre.

• On cherche des statistiques exhaustives S ne contenant aucune

composante libre, c’est à dire que pour toute fonction g non constante,

g(S) ne sera pas libre au premier ordre. Ou encore, si l’espérance est

constante, alors g est constante. Ces statistiques ne doivent contenir

aucun matériel (c.-à-d. aucune fonction de S) libre, même du premier

ordre.

⇒ Cette notion est apportée par la complétude. 16



Statistique complète : définition

Definition

Une statistique S est complète s’il n’existe pas de fonction g non

constante, intégrable, à valeurs dans R qui soit libre. Autrement dit,

∀θ, Eθ[g(S)] = constante ⇒ g = constante Pθ − p.s. (15)

Theorem (Lehmann & Scheffé (1950), Bahadur (1957))

S exhaustive complète ⇒ S exhaustive minimale.
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Statistique complète : exemples -1-

• Exemple : on considère (encore) un n-échantillon de loi de Bernoulli de

paramètre θ inconnu et l’on pose S(X ) =
∑n

i=1 Xi dont on a vu qu’elle

est une statistique exhaustive minimale. Est-elle complète ? Considérons

g : {0, ..., n} −→ R telle que Eθ[g(S)] = 0. Comme la loi de T est une

loi binomiale, on a

h(θ) = Eθ[g(S)] =
n∑

s=0

g(s)

(
n

s

)
θs(1− θ)n−s = 0 (16)

h est donc un polynôme de degré n avec une infinité de zéros: il est nul

et par suite S est complète.

• Exemple : on considère un n-échantillon de loi uniforme sur

[θ − 1/2, θ + 1/2] et S = (X(1),X(n)). S n’est pas complète (à faire

en exercice).
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Statistique complète : exemples -2-

(X1, ...,Xn) n-échantillon de densité f (x) = ex−θ1]−∞,θ](x).

X(n) = maxni=1 Xi statistique exhaustive pour θ de densité

h(u) = nen(u−θ)1]−∞,θ](u) (17)

Soit g fonction d’intégrale nulle par rapport à cette densité, ∀θ.

∀θ ∈ R,
∫ θ

−∞
g(u)nen(u−θ)du = 0 (18)

⇒ ∀θ ∈ R,
∫ θ

−∞
g(u)enudu = 0 (19)

Ainsi, sur tout intervalle [θ, θ′],∫ θ′

θ

g(u)enudu = 0 (20)

La fonction g est donc nulle presque partout (pourquoi ?).
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Statistique complète : exemples -3-

On considère le modèle exponentiel de vraisemblance

L(x , θ) = h(x) exp (⟨λ(θ), S(x)⟩ − β(θ)) (21)

Avec Λ = {λ(θ); θ ∈ Θ} espace canonique des paramètres. Si Λ contient

un ouvert non vide, alors S est exhaustive complète. En effet, ∀g ,

Eθ[g(S)] =

∫
Rk

g(s)e<λ,s>dµ(s) (22)

Transformée de Laplace de g . Ses propriétés (dans C) ⇒ g ≡ 0 (principe

des zéros isolés).

• Exemple : échantillon de Bernoulli ; statistique canonique

S(x) =
∑

i Xi , paramètre canonique λ(θ) = ln(θ/(1− θ)).

Λ = {λ(θ) = ln(θ/(1− θ)), θ ∈]0, 1[}.

Étude de fonction ⇒ Λ(Θ) = R ouvert de R. ⇒ S complète.
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Statistique complète : exemples -4-

• Exemple : (X1, ...,Xn) n-échantillon de loi N (m, σ2) avec θ = (m, σ2).

On pose S1 =
∑

Xi , S2 = −
∑

X 2
i , S = (S1, S2) et

λ =

(
m

σ2
,

1

2σ2

)
(23)

Le modèle est celui d’une famille exponentielle de rang plein.

⇒ S est complète pour λ et également pour θ par bijectivité de λ(θ).

Ainsi, (X ,S2) est une statistique complète pour θ = (m, σ2).

• Exercice : trouver une statistique exhaustive minimale complète pour

modèle le multinomial.
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Théorème de Basu

Theorem (de Basu)

Soit S une statistique exhaustive complète et U une statistique libre.

Alors S ⊥⊥ U.

Le théorème de Basu donne un moyen rapide de démontrer que la

moyenne et la variance empirique d’un échantillon gaussien sont

indépendantes:

X est exhaustive et complète pour la moyenne θ (c’est un modèle

exponentiel). Par ailleurs S2 est libre. D’après le théorème de Basu, les

deux statistiques sont donc indépendantes.
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Exhaustivité, minimalité, liberté, complétude : conclusion

• Ce sont des notions difficiles à bien comprendre.

• En anglais, exhaustif = sufficient, libre = ancillary.

• À voir :

� Minimalité : https://www.youtube.com/watch?v=IsgteDaNTFk

� Complétude : https://www.youtube.com/watch?v=GF8nFqEbqkI

23
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2. Information de Fisher



Information de Fisher : introduction et notations

Problème : quantitier la quantité d’information sur θ contenu dans un

échantillon. Plusieurs définitions différentes de la notion de quantité

d’information.

� Information au sens de Shannon (1948).

� Entropie de Boltzmann en thermodynamique.

� Information au sens de Kullback-Leibler.

� Ici : information au sens de Fisher.

Intérêt de l’information de Fisher :

� Notion locale.

� Pouvoir de discrimination du modèle entre deux valeurs proches de θ.
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Score d’un modèle statistique

• θ = (θ1, ..., θp) ∈ Θ ⊂ Rp ouvert.

• g : Θ −→ R fonction 2× différentiable.

• ∇g(θ) gradient de g en θ

• Hg (θ) ou ∇2g(θ) matrice hessienne.

• V(S) matrice de covariance d’un vecteur S = (S1, ...,Sp)
T ∈ Rp.

V(S) = E
[
(S − E[S ])× (S − E[S ])T

]
=

 cov(S1, S1) ... cov(S1, Sp)
...

...

cov(Sp, S1) ... cov(Sp, Sp)


• l(X , θ) = ln L(X , θ) log-vraisemblance.

Le score du modèle est (sous réserve d’existence),

S(X , θ) =
∂

∂θ
ln L(X , θ) = ∇l(θ) (24)

Fonction de X donc v.a. mais dépend de θ : pas une statistique !
25



Notion de modèle régulier

Definition

Un modèle paramétrique est régulier si, et seulement si,

• Il est dominé, homogène et Θ ⊂ Rp est un ouvert.

• L(x , θ) > 0 ∀x ∈ X,∀θ ∈ Θ.

• θ −→ L(x , θ) est de classe C 2 pour presque tout x .

• ∀B ∈ X, θ −→
∫
B
L(x |θ)dµ(x) est 2× différentiable sous le signe

∫
.

• Le score S(X , θ) ∈ L2(Pθ).

Les modèles gaussiens ou de Poisson sont réguliers, mais pas le modèle

uniforme sur [0, θ].
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Information de Fisher : définition

Definition

L’information de Fisher I(θ) du modèle est la variance du score:

I(θ) = Vθ(S) (25)

Theorem (Information d’un modèle régulier)

• Eθ[S ] = 0

• I(θ) = Eθ[SS
T ] = −Eθ

[
∂2l

∂θ2

]
= −Eθ [Hl ]

En dimension 1, I(θ) = E
[
S2
]
= −E [l ′′(θ)]

Les modèles gaussiens ou de Poisson sont réguliers, mais pas le modèle

uniforme sur [0, θ].
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Information de Fisher : illustration -1-

Figure 4: Information de Fisher et de Shannon. A: l’entropie de Shannon capture l’étalement

(en rouge et bleu) de la statistique en terme de vraisemblance. B: l’information de Fisher capture

la quantité d’information que la vraisemblance apporte sur la vraie valeur du paramètre, grâce à la

variation de la fonction de vraisemblance. I(θ) = −E
[
l′′(θ)

]
(R. Grzywacz, H. Aleem). 28



Information de Fisher : illustration -2-

θ

Log-vraisemblance l(x , θ)

I(θ) ∝ − d2

dθ2 log L(θ)

Variance faible : I(θ) forte
Variance forte : I(θ) faible

Figure 5: Information de Fisher : I(θ) = −E
[
l′′(θ)

]
. En rouge : grande variance donc peu

d’information en θ, en bleu : variance faible, donc forte information sur θ au voisinage du

maximum de l(θ).
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Information de Fisher : exemple

Considérons un n-échantillon X = (X1, ...,Xn) de loi de Benoulli de

paramètre θ et considérons la statistique T (X ) =
∑n

i=1 Xi . La

vraisemblance du modèle est

L(X , θ) = exp (T (X ) ln θ + (n − T (X ) ln(1− θ)) (26)

Considérons une observation x ∈ Rn. x vecteur de dimension n et

θ ∈]0, 1[ paramètre scalaire. Le score du modèle est

S(x , θ) =
∂l(x , θ)

∂θ
=

T (x)

θ
− n − T (x)

1− θ
=

T (x)

θ(1− θ)
− n

1− θ
(27)

On en déduit l’information du modèle :

I(θ) = V (S(X , θ)) =
n

θ(1− θ)
(28)
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Propriétés de l’information de Fisher -1-

• Information de Fisher apportée par une statistique.

Soient (X,F, (Pθ, θ ∈ Θ)) un modèle régulier et T une statistique pour

laquelle le modèle image est également régulier.

Soit g(t, θ) la densité de T .

L’information de Fisher apportée par T est l’information de Fisher du

modèle image:

IT (θ) = V (S(T , θ)) (29)

Le score du modèle image par T est :

d

dθ
ln g(T , θ) (30)

Conséquence directe du théorème de transfert.
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Propriétés de l’information de Fisher -2-

• Additivité de l’information.

Si T1 et T2 sont deux statistiques indépendantes alors

I(T1,T2)(θ) = IT1(θ) + IT2(θ) (31)

Dans un modèle d’échantillonnage régulier X = (X1, ...,Xn),

IX (θ) = n.IX1(θ) (32)

Résultat fondamental ! L’information a été construite sur la base de

cette propriété : 2 phénomènes aléatoires indépendants doivent apporter

une quantité d’information totale égale à la somme de leur quantité

d’information respective.
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Propriétés de l’information de Fisher -3-

• Information conditionnelle.

Soit T statistique de densité. Alors

I (θ) = IT (θ) + IX |T (θ) (33)

où IX |T est l’information de Fisher de X sachant T .

Illustre également la dégradation de la quantité d’information :

I(θ) ≥ IT (θ). Si θ ∈ R, IX |T (θ) > 0. Si θ ∈ Rp, IX |T (θ) ∈ Sym+(Rp).

Pour des matrices, A ≥ B ⇐⇒ ∀θ ∈ Rp, θTAθ ≥ θTBθ.

T statistique exhaustive ⇒ IX (θ) = IT (θ).

C’est même une équivalence, sous hypothèse de régularité:

T exhaustive ⇐⇒ IX (θ) = IT (θ)

Pour une statistique T libre de θ, IT (θ) = 0 (c’est aussi une ⇐⇒ ).
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Exemple d’un échantillon gaussien -1-

• (X1, ...,Xn) n-échantillon gaussien d’une v.a. X ∼ N (m, σ2).

• θ = (m, σ2) paramètre vectoriel.

• Modèle régulier de log-vraisemblance d’une observation x

l(x , θ) = −1

2
ln(2π)− 1

2
lnσ2 − 1

2σ2
(x −m)2 (34)



∂2l

∂m2
(x , θ) = − 1

σ2

∂2l

∂(σ2)2
(x , θ) =

1

2σ4
− (x −m)2

σ6

∂2l

∂m∂(σ2)
(x , θ) =

x −m

σ4

(35)
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Exemple d’un échantillon gaussien -2-

Ainsi IX (θ)

= −E




∂2l

∂m2
(X , θ)

∂2l

∂m∂(σ2)
(X , θ)

∂2l

∂m∂(σ2)
(X , θ)

∂2l

∂(σ2)2
(X , θ)


 =

(
1/σ2 0

0 1/(2σ4)

)

et l’information de Fisher associée au n-échantillon sera donc

I(θ) =

(
n/σ2 0

0 n/σ4

)
(36)
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Propriétés de l’information de Fisher -4-

• Information de Fisher et reparamétrisation.

Considérons un nouveau paramètre λ = ϕ(θ). On peut calculer

l’information de Fisher du modèle relativement à ce nouveau paramètre

via la formule suivante :

IX (λ) = JT IX (θ)J =
(
∇ϕ−1(λ)

)T × IX (θ)×
(
∇ϕ−1(λ)

)
(37)

où J matrice jacobienne de l’application inverse de ϕ.

Pour exprimer cette nouvelle information en fonction de λ, il faut pouvoir

exprimer θ en fonction de λ en inversant ϕ.

En dimension 1, si θ, λ ∈ R, la formule devient:

IX (λ) =
IX (θ)
ϕ′(θ)2

(38)
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Information de Kullback

Definition

K (θ0, θ1) = Eθ0

[
ln

L(X , θ0)

L(X , θ1)

]
=

∫
Rn

ln
L(x , θ0)

L(x , θ1)
L(x , θ0)dx (39)

ln (L(X , θ0)/L(X , θ1)) est le pouvoir discriminant de θ0 contre θ1.

Theorem

∂2K (θ0, θ)

∂θ2

⌋
θ=θ0

= I(θ0) (40)

• Exemple:

si X suit une loi de Poisson P(θ), alors K (θ0, θ1) = θ1− θ0+ θ0 ln(θ0/θ1).
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Information de Kullback : illustration

Forward-KL large Reverse-KL large

KL small KL small

Figure 6: Information de Kullabck-Leibler.
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3. Estimateurs optimaux



Fonction de coût et risque moyen

Une fonction de coût mesure l’écart (la perte) entre deux quantités.

Qualité d’un estimateur S appréciée en fonction de l’écart entre S et θ.

Une fonction de coût c doit être positive et vérifier θ = θ′ ⇒ c(θ, θ′) = 0.

Exemples : toute distance sur Θ, coût quadratique c2, absolu c1 ou 0-1

noté c0:

c2(θ, θ
′) = (θ − θ′)2 c1(θ, θ

′) = |θ − θ′| c0(θ, θ
′) = 1[|θ−θ′|>ϵ|]

Definition

Le risque moyen d’un estimateur T de θ est

R(T , θ) = E[c(T , θ)]
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Estimateur préférable et admissible

Un estimateur est préférable à un autre (à θ fixé) si son risque moyen est

inférieur.

Il est uniformément préférable si le risque est inférieur quelque soit θ ∈ Θ.

Definition

Étant donné une classe T d’estimateurs de θ, T ∈ T est admissible dans

T pour θ s’il est uniformément préférable à tout autre estimateur de T :

∀T ′ ∈ T , ∀θ ∈ Θ, R(T , θ) ≤ R(T ′, θ) (41)
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Estimateur VUMSB

Objectif : déterminer l’estimateur admissible pour la classe des

estimateurs sans biais.

La formule reliant le biais et la variance nous donne

R(T , θ) = Vθ(T ) + (Eθ[T ]− θ)2 (42)

Definition

Un estimateur T ∗ est de variance uniformément minimale parmi les

estimateurs sans biais de θ (on dira VUMSB) si T ∗ est admissible pour le

risque quadratique, dans la classe des estimateurs sans biais :

• E[T ∗] = θ (43)

• ∀ T sans biais ,V(T ∗) ≤ V(T ) (44)

Lorsqu’il existe, l’estimateur VUMSB est unique Pθ-p.s. pour tout θ.
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Théorèmes de Rao-Blackwell et Lehmann-Scheffé

Theorem (de Rao-Blackwell)

Soit T un estimateur sans biais et S une statistique exhaustive. Alors

T ∗ = Eθ[T |S ]

estimateur sans biais de θ préférable à T pour le risque quadratique.

Lorsque T VUMSB et S exhaustive, T ∗ uniformément préférable à T et

T ∗ est aussi VUMSB. ⇒ T = T ∗.

Theorem (de Lehmann-Scheffé)

T estimateur sans biais et S statistique complète.

Alors T ∗ = Eθ[T |S ] est VUMSB.
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Estimateur VUMSB : exemple gaussien

(X1, ...,Xn) n-échantillon gaussien ∼ N (m, σ2), θ = (m, σ2).

L(x , θ) = (2π)−n/2 exp

[
− n

2σ2
x2 +

nm

σ2
x − nm2

2σ2
− n

2
lnσ2

]
(45)

Modèle exponentiel (homogène), statistique naturelle :
(
X 2,X

)
.

Paramètre canonique : (−n/(2σ2), nm/σ2).

Espace des paramètres canoniques : Λ =]−∞, 0[×R.

Ouvert ⇒ statistique canonique exhaustive et complète.

T =
(
X ,X 2

)
. Estimateur sans biais :

(
X , S̃2

)
,

S̃2 = n/(n − 1)×
(
X 2 − X

2
)
. Théorème de Lehmann-Scheffé :

⇒
(
Eθ

[
X |T

]
,Eθ

[
S̃2|T

])
VUMSB

Mais X et S̃2 fonctions de T , ⇒
(
X , S̃2

)
VUMSB pour θ.
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Borne de Fréchet, Darmois, Cramer, Rao

Risque quadratique + classe estimateurs sans biais ⇒ borne inférieure

pour la variance.

Theorem (Borne FDCR)

X ∼ Pθ modèle régulier avec I(θ) inversible ∀θ ∈ Θ.

T estimateur sans biais de ϕ(θ) ∈ Rd tel que :

• ϕ(θ) = Eθ[T ] est ̸=tiable en θ.

• Eθ[T ] est ̸=tiable en θ sous le signe
∫
.

⇒ Vθ(T ) ≥ ∇ϕ(θ)× I(θ)−1 ×∇ϕ(θ)′ (46)

Si T sans biais, Eθ[T ] = θ (ϕ = Id) et FDCR : Vθ(T ) ≥ I(θ)−1

Definition

T estimateur de ϕ(θ) efficace si sans biais et atteint FDCR.
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Borne FDCR : exemple gaussien

• Pour θ = (m, σ2). La borne de Cramer-Rao est donnée par

I(θ)−1 =

(
σ2/n 0

0 2σ4/n

)
(47)

• Rappel : matrice de covariance de l’estimateur T = (X , S̃2) :

Vθ(T ) =

(
σ2/n 0

0 2σ4/(n − 1)

)
(48)

: le calcul de la variance de la variance empirique est lourd....

L’e.m.v. n’est donc pas efficace pour θ.

Par contre X efficace pour m = ϕ(θ) avec ϕ projection sur (Ox). Mais

S2 non efficace pour σ2 = ψ(θ) avec ψ projection sur (Oy).
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Efficacité asymptotique de l’e.m.v.

Theorem (Efficacité asymptotique de l’e.m.v.)

Soit X1, ...,Xn n-échantillon de X ∼ Pθ, θ ∈ Θ,

f (x , θ) densité de Pθ par rapport à µ. On suppose que:

• Le modèle est homogène et identifiable.

• ln f (x , θ) de classe C 2 en θ et de ̸=tielle 2e localement holdérienne :

∀θ ∈ Θ, ∃ V voisinage de θ et M : X → R+ tel que

∀θ1, θ2 ∈ V :

∣∣∣∣∣∣∣∣ d2

dθ2
ln f (x , θ1)−

d2

dθ2
ln f (x , θ2)

∣∣∣∣∣∣∣∣ ≤ M(x)|| θ1 − θ2||, Pθp.s.

• Θ ouvert de Rp et I(θ) inversible ∀θ ∈ Θ

ALORS l’e.m.v. θ̂n de θ est
√
n-consistant et A.N. :

√
n
(
θ̂n − θ

)
Pθ⇝ N (0, I(θ)−1) (49)

En particulier θ̂n asymptotiquement sans biais et efficace. 46



Estimateur bayésiens optimaux -1-

Si cadre bayésien, comparaison de 2 estimateurs en intégrant le risque sur

l’espace des paramètres. On parle de risque intégré.

Definition

Le risque moyen a posteriori de l’estimateur T associé à la loi a priori Π

et à l’observation x est

R(Π,T , x) = E[c(H,T (x))|X = x ] =

∫
Θ

c(θ,T (x))L(θ, x)dθ (50)

Définit un ordre total sur tous les estimateurs (̸= cas fréquentiste).

Definition

Le risque intégré de l’estimateur T associé à la loi a priori Π est

R(Π,T ) = E[c(H,T )] =

∫
X

∫
Θ

c(θ,T (x))L(θ, x)dθdµ(x) (51)

Si θ̂(x) minimise le risque moyen a posteriori, θ̂ minimise le risque intégré.
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Estimateur bayésiens optimaux -2-

Definition

Soit T une classe d’estimateurs de θ. Le risque de Bayes est:

R(Π) = inf
T∈T

R(Π,T ) (52)

L’estimateur de Bayes θ̂Π associé à la loi a priori Π est l’estimateur qui

minimise le risque intégré :

• R(Π, θ̂) = R(Π) (53)

• θ̂ = argminTR(Π,T ) (54)
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Estimateur bayésiens optimaux -3-

• Si coût quadratique, estimateur bayésien = moyenne a posteriori:

θ̂(x) = E[H|X = x ] (55)

En effet, si t = T (x) et on veut minimiser en t

g(t) = R(Π,T |x) = E[(H − t)2|X = x ] = E[H2|X = x ]− 2tE[H|X = x ] + t2

g ′(t) = 0 ⇒ t = θ̂(x).

• Si risque absolu, estimateur bayésien =médiane a posteriori:

θ̂(x) vérifie P[H ≤ θ̂(x)|X = x ] = 1/2 (56)
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Second principe fondamental de la statistique

Pour terminer la leçon :

Theorem (Second principe fondamental de la statistique)

Mieux vaut un petit biais qu’une grosse variance.

50



Fin du chapitre 3

À retenir : ce qu’est....

� un estimateur exhaustif, minimum, libre, complet.

� l’information de Fischer et comment la calculer.

� un modèle régulier.

� une fonction de coût et un risque moyen.

� un estimateur VUMSB, efficace.

� la borne FDCR.

� un estimateur bayésien optimal.

La notion de risque de Bayes optimal est fondamentale en Machine

Learning et dans les techniques d’intelligence artificielle actuelles.
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