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Durée de l’épreuve : 2 heures. Tous documents autorisés,
calculatrices interdites. Le barème est indicatif et sans
engagement (il sera tenu compte de la longueur du sujet).
La qualité de la rédaction entre pour une part importante
dans la notation.

I. 13 points

1°. Soit x = (x1, ..., xn) une réalisation de l’échantillon. En
posant s =∑n

i=1 xi , on a :

L(x,λ) =
n∏

i=1

(
e−λ

λxi

xi !

)
= e−nλ λs∏

(xi !)
(1)

1 point

Le modèle est régulier (homogène, dominé par la mesure
de comptage surNn , la vraisemblance est de classe C 2 en

λ). 0.5 point

2°. Si c désigne une constante ne dépendant pas de λ, on
a :

∂L(x,λ)

∂λ
= c × (−nλs e−nλ+e−nλsλs−1) (2)

qui est nul si, et seulement si, λ= s/n. Par ailleurs il s’agit
bien d’un maximum (c’est important de le vérifier) car

∂2L(s,λ)

∂λ2 < 0 (3)

Ainsi, λ̂= X = S/n est un estimateur du maximum de
vraisemblance de λ 1 point

Posons ψ(x) = xe−x . ψ est clairement une fonction de
classe C∞, en particulier elle est de classe C 2 et β=ψ(λ).

D’après le théorème de reparamétrisation 0.5 point , un

estimateur du maximum de vraisemblance est donc
donné par

β̂= X exp(−X ) (4)

1 point

Les Xi sont des v.a.i.i.d. intégrables car
E[|Xi |] = E[Xi ] =λ, on peut donc appliquer la loi forte des
grandes nombres 1 point et l’on a alors

λ̂
P−p.s.−→

n→+∞λ (5)

et le théorème de l’application continue assure alors que

β̂
P−p.s.−→

n→+∞β (6)

β̂ est donc fortement consistant. a fortiori, il est

également consistant. 0.5 point

Les Xi sont également de carré intégrable et l’on peut
donc appliquer le théorème de la limite centrale
1 point :

p
n (λ̂−λ)⇝N (0,λ) (7)

λ̂ est donc
p

n-consistant et asymptotiquement normal.
Par ailleurs, ψ est de classe C 1 et ψ′(x) = (1−x)e−x . En
appliquant la méthode delta, on en déduit que β̂ estp

n-consistant et asymptotiquement normal et que
p

n (β̂−β)⇝N
(
0,λ×ψ′(λ)2) (8)

1 point

3°. Un calcul facile (plusieurs fois fait en cours) donne

IX (λ) = n

λ
(9)

Le modèle (initial) est par ailleurs régulier et la variance
de l’échantillon vaut λ/n. La borne de Cramer Rao est
donc atteinte et l’on en déduit que l’estimateur est
efficace. Mais la question porte sur IX (β). En utilisant le
théorème de reparamétrisation, il vient :

IX (β) = IX (λ)

ψ′(λ)2 = n
e2λ

λ(1−λ)2 . (10)

β̂ n’est pas efficace car il est biaisé. En effet, un calcul fait
en cours donne :

E[β̂] = 1

n

∑
k≥1

ke−k/ne−nλ (nλ)k

k !
(11)

=λexp

(
− 1

n
−nλ(1−e−1/n)

)
̸=β. (12)

1.5 points

4°. Les (Yi )i sont clairement des v.a. de Bernoulli de
paramètre

P[Yi = 1] =P[Xi = 1] =β (13)

En posant Y = (
∑

Yi )/n nous obtenons un estimateur
plug-in de β, non biaisé. 1 point

Le modèle d’échantillonnage associé aux Yi est un
modèle exponentiel de statistique naturelle Y . L’espace
des paramètres est

Λ(β) = {ln
β

1−β ; β ∈ [0,1]} (14)

qui est égal à R et est donc un ouvert de R. Par suite, Y est

une statistique exhaustive complète pour β. 1 point

D’après le théorème de Lehmann-Scheffé, comme Y est
également un estimateur sans biais de β, on en déduit

que Y = E[Y |Y ] est un estimateur VUMSB. 1 point

5°. D’après la formule de Bayes, la vraisemblance a
posteriori est proportionnelle à



λa−1bae−bλe−nλ λs∏n
i=1 xi

(15)

∝λa+s−1e−(n+b)λ (16)

avec s =∑n
i=1 xi .

Il s’agit donc d’une loi γ(a +S,n +b) 1 point dont la
moyenne vaut

E[H |X ] =λ⋆ = a +S

n +b
(17)

λ⋆ est donc biaisé, mais asymptotiquement sans biais.

0.5 point

II. 14 points

1°. Soit x = (x1, ..., xn) une réalisation de l’échantillon. La
vraisemblance est

L(x,θ) = (2θ2)−n
n∏

i=1
xi ×1[0,2θ]n (x) (18)

1 point

2°. Le modèle n’est pas homogène car le support dépend
de θ : il n’est pas régulier. Si x(n) ≥ 2θ, alors L(x,θ) = 0 et
sinon la vraisemblance est une fonction décroissante de
θ. 1 point On en déduit donc que (attention au facteur
1/2)

θ̂1 = 1

2

n
sup
i=1

Xi = 1

2
X(n) (19)

0.5 point

3°. Commençons par déterminer la fonction de
répartition F ; pour x ∈ [0,2θ],

F (x) =
∫ x

0

t

2θ2 d t =
( x

2θ

)2
(20)

Par ailleurs F (x) = 0 si x ≤ 0 et F (x) = 1 si x ≥ 2θ.

Soit Gn(x) la fonction de répartition de θ̂1. Pour x ∈ [0,θ],
on a :

Gn(x) =P[X(n) ≤ 2x] = F (2x)n =
( x

θ

)2n
(21)

et Gn(x) est nulle avant 0 et vaut 1 après θ (attention aux
indicatrices !). 1 point

En dérivant, on obtient alors la densité gn(x) de θ̂1 (qui
est portée par l’intervalle [0,θ]) :

gn(x) = 2n

θ

( x

θ

)2n−1
1[0,θ](x) (22)

0.5 point

On peut alors calculer espérance, variance et erreur
quadratique :

E[θ̂1] = 2n

θ2n

∫ θ

0
x2nd x = 2n

2n +1
θ (23)

On en déduit alors que l’estimateur est biaisé, mais
asymptotiquement sans biais. 1 point

E[θ̂2
1] = 2n

θ2n

∫ θ

0
x2n+1d x = n

n +1
θ2 (24)

et par suite,

V[θ̂1] = n

(n +1)(2n +1)2 θ
2 (25)

1 point

On en déduit alors (sans même avoir besoin de calculer
l’erreur quadratique) que l’estimateur converge en
norme L2 (car il est asymptotiquement sans biais et que
sa variance tend vers 0) et également qu’il est consistant
car la convergence en moyenne quadratique implique la

convergence en probabilité. 0.5 point

4°. Soit 0 ≤ x ≤ θ (attention à l’ordre donné par l’énoncé
et au signe de x),

P
[
n

(
θ− θ̂1

)≤ x
]=P[

θ̂1 ≥ θ− x

n

]
(26)

= 1−
(
1− x

nθ

)2n
(27)

= 1−exp
(
2n ln

(
1− x

nθ

))
(28)

= 1−exp

(
−2x

θ
+o(1)

)
(29)

Ainsi, pour x ≥ 0,

lim
n→+∞P

[
n

(
θ− θ̂1

)≤ x
]= 1−exp

(
−2x

θ

)
(30)

qui est la fonction de répartition d’une loi exponentielle
de paramètre 2/θ. On en déduit la convergence en loi de
n

(
θ− θ̂1

)
vers une loi exponentielle E (2/θ).

2 points

5°.

E[X ] =
∫ 2θ

0

x2

2θ2 f (x)d x = 4

3
θ (31)

En posant θ̂2 = 3X /4 on obtient donc un estimateur des
moments θ. Il est clairement sans biais et la loi forte des
grands nombres montre que θ̂2 converge presque
sûrement vers θ. On a donc consistance forte de
l’estimateur en appliquant le théorème de l’application
continue à φ(x) = 3x/4. 1 point

Ensuite, le théorème de la limite centrale (licite car les
v.a.i.i.d. de l’échantillon sont de carré intégrable) donne

p
n (X −4θ/3)⇝N

(
0,σ2) (32)

où σ2 =V(X ) = 2θ2/9

1 point

Puis en appliquant la méthode delta à φ(x), il vient :
p

n
(
θ̂2 −θ

)
⇝N (0,1/8) (33)



1 point

6°. Par définition de la médiane (théorique) M ,∫ M

0

x

2θ2 d x = 1

2
(34)

et l’on a donc M = θp2 1 point

Si n = 2m +1, la médiane empirique est la statistique
d’ordre X(m) ; l’estimateur plug-in associé à la médiane
est donc

θ̂3 =
X(m)p

2
(35)

0.5 point


