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I. 14 points

1°. La vraisemblance de l’échantillon s’écrit

L(x,θ) =
n∏

i=1
P[Xi = xi ] = θs (1−θ)n−s (1)

où s =∑n
i=1 xi . 0.5 point

On voit facilement que

L(x,θ) = exp

(
nx ln

(
θ

1−θ
)
−n ln(1−θ)

)
(2)

ce qui montre que le modèle est exponentiel et que X est
la statistique naturelle 0.5 point

2°. La log-vraisemblance l est bien définie et un calcul
immédiat déjà fait en cours et dans plusieurs exercices
donne

l (x,θ) = s lnθ+ (n − s) ln(1−θ) (3)

Cette fonction est de classe C 2 (et même C∞) sur ]0,∞[ et
par suite

∂l

∂θ
(x,θ) = s

θ
− n − s

1−θ = s

θ(1−θ)
− n

1−θ (4)

= s −nθ

θ(1−θ)
(5)

qui s’annule en θ = s/n et cette valeur est bien un
maximum car l (x,θ) change de signe en s/n (ou bien on
peut également constaté que la dérivée seconde de l est
négative).

Ainsi, θ̂ = X = S/n est l’estimateur du maximum de
vraisemblance. 1 point

Pour déterminer l’estimateur des moments, on égale le
moment théorique d’ordre un E[X ] = θ avec le moment
empirique X . L’estimateur des moments est la valeur de
θ qui égale ces deux quantités. On voit donc que X = θ̂n

est également l’estimateur des moments. 0.5 point

3°. Appliquons la loi forte des grands nombres à la suite
(Xn)n . Ceci est licite car les Xi sont des v.a.i.i.d.
intégrables (E[|X1|] = θ <∞). On a alors :

θ̂n = X −→
N→+∞

E[X1] = θ p.s. (6)

Ceci prouve que θ̂n est fortement consistant 1 point

θ̂n est également sans biais car E[X ] = n ×E[X1]/n = θ.

0.5 point

Nous pouvons également appliquer le théorème de la
limite centrale car la suite des (Xn)n est de carré
intégrable. On a alors

p
n

(
θ̂n −θ)

⇝N (0,σ2) (7)

où σ2 = θ(1−θ) et⇝ indique la convergence en loi.

Ainsi, θ̂n est asymptotiquement normal. 1 point

4°. De la question précédente et des propriétés de la
convergence en loi, on déduit que pour tout a,b dans R,

lim
n→+∞P

[
a ≤p

n

(
θ̂n −θ
σ

)
≤ b

]
=Π(b)−Π(a) (8)

oùΠ est la fonction de répartition d’une loi normale
standard et σ=p

θ(1−θ). Mais θ est inconnu donc σ
aussi. Nous appliquons donc la méthode de Wald en
estimant θ par (X (1−X ))1/2. Le lemme de Slutsky assure
que la limite précédente est toujours valable et nous
donne un IC asymptotique au niveau 1−α :

IC1−α(θ) =
[

X − qp
n

√
X (1−X ) ; X + qp

n

√
X (1−X )

]
où q = q1−α/2 est le quantile d’ordre 1−α/2 d’une loi

normale standard. 1.5 points .

5°. L’espace canonique des paramètres (c’est l’image de
la fonctionΛ(θ) = ln(θ/(1−θ))) est égal à R (quitte à faire
une petite étude de fonction) ; il contient donc un ouvert
(lui-même). Par suite, la statistique est minimale et
également complète. 1 point

6°. Oui ! Le modèle est régulier : il est dominé par la
mesure de comptage, homogène car à support sur {0,1}n ,
la vraisemblance est strictement positive et de classe C 2

en tant que fonction de θ. Enfin,la dérivée de la
log-vraisemblance est de carré intégrable. 0.5 point

7°. On a :

Eθ[X ] = Eθ[X ] = θ (9)

X est donc un estimateur sans biais de θ et est également
complet. D’après le théorème de Lehmann-Scheffé, on
en déduit que

T = Eθ[X |X ] = X (10)

est VUMSB. 1 point

8°. Nous avons vu que le modèle est régulier et que la
log-vraisemblance l est bien définie. L’information de
Fisher existe donc et l’on a :

l (x,θ) = s lnθ+ (n − s) ln(1−θ) (11)

Par suite

∂l

∂θ
(x,θ) = s

θ
− n − s

θ
= s

θ(1−θ)
− n

1−θ (12)

Ainsi,

IX (θ) =Vθ
(

S

θ(1−θ)

)
(13)

= 1

θ2(1−θ)2Vθ (S) = n

θ(1−θ)
(14)



1 point

Un calcul rapide montre que
Vθ(X ) = θ(1−θ)/n = IX (θ)−1. X atteint donc la borne de
Cramer Rao. Par suite il est efficace pour θ. 1 point

9°. La loi a posteriori est proportionnelle à

L(θ|s) = θs (1−θ)n−sθa−1(1−θ)b−11[0,1](θ) (15)

= θs+a−1(1−θ)n−s+b−11[0,1](θ) (16)

et suit donc une loi bêta de paramètres B(s +a,n− s +b),
dont l’espérance (a posteriori) est

∆(x) = E[H |X = x] = s +a

a +b +n
(17)

et donc

∆= E[H |X ] = Sn +a

a +b +n
(18)

1 point

E[∆] = nθ+a

a +b +n
n→+∞→ θ (19)

0.5 point

10°. On a :

Eθ[Y ] = Eθ[Xi ]2 = θ2. (20)

0.5 point

Sn est une statistique complète de θ (mais pas forcément
de θ2 !) d’après les questions précédentes et Y un
estimateur sans biais de θ2. En appliquant à nouveau le
théorème de Lehmann-Scheffé, on en déduit que

Tn = E [Y |Sn] (21)

est l’estimateur VUMSB de θ2. 1 point

En effet, l’estimateur VUMSB est une fonction h(S) de S
(car S est complete pour θ) qui doit vérifier

E[h(S)] = θ2 = E[
E
[
Y |ψ(S)

]]
(22)

Il s’avère que E[Y |Sn] convient (et donc finalement
ψ= Id) d’après le calcul qui suit.

11°. Si s = 0,1, alors Sn = s =∑n
i=1 xi implique qu’au plus

l’un des xi est non nul. En ce cas le produit est nul et

Tn(x) = E[Y |Sn = s] = 0 (23)

Si s ≥ 2, Y est non nul seulement si les deux premiers Xi

sont non nuls. Les Xi valent 0 ou 1 donc leur produit
également : Y = 0 ou 1 et son espérance conditionnelle
sachant [S = s] est donc égale à P[Y = 1|Sn = s].

P[Y = 1|Sn = s] = P
(
[X1 = 1]∩ [X2 = 1]∩ [

∑n
i=3 Xi = s −2]

)
P[S = s]

,

et par indépendance et identique distribution des Xi ,

P[Y = 1|Sn = s] =
θ2

(
n −2
s −2

)
θs−2(1−θ)n−s

(
n
s

)
θs (1−θ)n−s

(24)

=
(

n −2
s −2

)
/

(
n
s

)
= s(s −1)

n(n −1)
(25)

Ainsi,

Tn = E[Y |Sn] = Sn(Sn −1)

n(n −1)
1[Sn≥2] (26)

2 points

II. 8 points

1°. Y1 est une variable aléatoire de Bernoulli de
paramètre P[X1 > 2]. nY n est la somme de n variables de
Bernoulli indépendantes et identiquement distribuées,
elle suit donc une loi binomiale de paramètres n et
p =P[X1 > 2] 1 point . On a alors immédiatement

E[Y1] =P[X1 > 2] =
∫ +∞

2
θe−θx d x = e−2θ =λ. (27)

1 point

2°.

P[Y n ̸= 0] = 1−P[Y n = 0] = 1− (1−λ)n . (28)

Comme λ ∈]0,1[, (1−λ)n tend vers 0 avec n et la
probabilité recherchée tend vers 1 1 point .

3°. Nous appliquons la loi forte des grands nombres aux
Yi , qui sont des v.a.i.i.d. ayant un moment d’ordre 1
(E[|Y1|] = E[Y1] <∞) : Y n converge presque sûrement

vers E[Y1] =λ lorsque n tend vers l’infini 1 point . En

appliquant le théorème de la limite centrale (les Yi ont
une variance finie), il vient également

p
n

(
Y n −λ

)
⇝N (0,σ2) (29)

avec σ2 =λ(λ−1) = e−2θ(1−e−2θ) 1 point .

4°. Y n converge presque sûrement vers un nombre
strictement positif. Par définition de la limite, cette
quantité est donc aussi proche que l’on veut de λ> 0
pour n assez grand, elle est donc strictement positive

pour n assez grand 1 point .

5°. Il suffit d’appliquer aux résultats de la question 3° le
théorème de l’application continue et la méthode delta à
la fonction ψ(x) =− ln x/2 qui est continue et dérivable
pour x > 0. La loi forte des grands nombres assure alors
que θ̂n converge presque sûrement vers θ et

p
n

(
θ̂n −θ)

⇝N (0, σ̃2) (30)

avec σ̃2 =ψ′2(θ)σ2 = e−2θ(1−e−2θ)/(4θ2) 2 points .


