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1. Définition du Machine
Learning



Définition 1/2 : apprendre à partir des données

Beaucoup de noms différents : apprentissage statistique, apprentissage
automatique, Machine Learning (ML), Statistical Learning.

Wikipedia : champ d’études de l’intelligence artificielle (IA) qui se fonde
sur des approches mathématiques et statistiques pour donner aux
ordinateurs la capacité d’apprendre à partir des données.

ChatGPT : c’est une sous-discipline de l’IA qui permet aux ordinateurs
d’apprendre à partir de données et de prendre des décisions sans être
explicitement programmés pour accomplir ces tâches.

• Imiter (un peu) le comportement inductif du cerveau pour prendre
des décisions de façon autonome, en fonction des données.

• Domaine à l’intersection de l’informatique et des mathématiques.
• Différence avec les statistiques via l’outil de base: le modèle en

statistique et l’algorithme en ML.

En bref: le ML, ce sont les mathématiques de l’IA.
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Définition 2/2 : c’est l’une des branches de l’IA

Fausses branches de l’IA : apprentissage automatique, traitement du
langage naturel, vision par ordinateur et robotique.

En fait, tout cela fait partie du ML.

Vraies branches de l’IA :

• Apprentissage statistique (approche connexionniste) : ML, réseaux
de neurones, apprentissage par renforcement, traitement du langage
naturel.

• Systèmes formels (approche cognitive) : programmation logique,
machines de Turing, calculabilité, théorie des langages (Chomsky).

• Méthodes faibles (approche pragmatique) : heuristiques, problèmes
de satisfaction de contraintes, systèmes experts, représentation de
connaissances.
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Sous domaines de l’IA
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supervisé
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Figure 1: Les différents sous domaines de l’IA.
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Les différentes approches du ML

L’apprentissage statistique peut être :

• Supervisé : données étiquetées. Deviner les étiquettes des nouvelles
données. Phase d’entrainement, puis de test. Ex : classification et
régression, kNN, arbres de décisions, SVM, réseaux de neurones.

• Non supervisé : données non étiquetées. Caractériser la loi de proba
ayant engendré ces observations. Ex : algorithmes de clustering,
estimation de densités, classifications hiérarchiques, DBScan,
MeanShift, ACP, ACM.

• Semi-supervisé : petite partie des données étiquetée. Ex : GNNs
(Graph Neural Networks), modèles génératifs bayésiens, TSVM,
régularisation de laplaciens.

• Par renforcement : Q-learning, SARSA, gradient de politique,
réseaux de neurones antagonistes (GAN).

• En ligne : perceptron, méthode de descente de gradient stochastique
(SGD), filtres de Kalman, algorithmes de Bandits.
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Quelques dates

• le ML date des années 50 (conf. de Darthmouth, été 1956), mais deux
étapes très importantes ensuite :

• Années 1980 : réseaux de neurones et algorithmes de
rétropropagation de gradient.

• Années 2000 : lien avec les statistiques par Vapnik (the nature of
Statistical Learning).

Les hivers de l’IA ( « Winter is coming ») :

• 1973-1980. Limite des perceptrons monocouches, manque
d’avancées en robotique et traitement automatique du langage
(TAL).

• 1987-1993. Échec commercial des machines LISP, abandon des
systèmes experts, réseaux de neurones peu efficaces.
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Quelques ouvrages

• The Elements of Statistical Learning, Hastie, Tibshirani, Friedman,
éd. Springer (trop gros).

• A probabilistic Theory of Pattern Recognition, Devroye, Lugosi (trop
gros).

• An Introduction to Statistical Learning with Application in Python,
James, Witten, Hastie, Tibshirani, Taylor, éd. Springer.

• Introduction à l’apprentissage automatique, de Frédéric Sur,
polycopié de l’école des Mines de Nancy (très bien).

• Mathematics for Machine Learning, de G. Thomzd, polycopié de
l’université de Berkeley.

• Algorithme, la bombe à retardement (Weapons of Math
Destruction), de Cathy O’Neil, éd. Les Arènes (trop bien).

• Contre-atlas de l’intelligence artificielle, de Kate Crawford, éd.
Zulma (trop bien).

• La guerre des intelligences, Laurent Alexandre, éd. J.C. Lattès (à lire
pour le critiquer en toute connaissance de cause).
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2. Le problème de la dimension



La réduction de dimension

• Réduction de dimension : transformer des données d’un espace de
grande dimension en un espace de dimension inférieure tout en préservant
des propriétés essentielles des données d’origine.

• Objectif : rendre possible ou plus rapide le traitement de ces données,
réduire la complexité des processus, économiser de l’espace, de l’énergie,
du temps, se prémunir contre le fléau de la dimension, améliorer
l’interprétabilité, visualiser des données.

• Méthodes : linéaires ou non linéaires, aléatoires ou déterministes.

Notre classification découle du paradigme du big data : 2 paramètres
fondamentaux décrivent les dimensions des données : n, taille de la
population (nombre d’éléments de la base de données) et d , dimension
des variables statistiques attachées à ces éléments.
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Les paramètres fondamentaux de la taille en statistique

Trois situations possibles :

• n grand, d petit : domaine des statistiques multivariées
traditionnelles (analyse de données « à la française »). Les outils
d’inférence statistique classiques fonctionnent bien, théorèmes
limites classiques (n tend vers l’infini avec d fixé).

• n petit, d grand : domaine des statistiques en grande dimension.
Les outils statistique usuels ne fonctionnent plus. Matrice de
covariance empirique singulière, estimateurs des moindres carrés non
consistants, etc. Hypothèses suppl. nécessaires pour traiter les
données : parcimonie, structure sous-jacente cachée ayant une petite
dimension, etc.

• n et d grands : autre aspect des statistiques en grande dimension,
domaine des matrices aléatoires. Aucun théorème limite classique ne
s’applique, hypothèses sur limite de n/d quand n et d tendent vers
l’infini, nécessaires pour appliquer des théorèmes spécifiques.
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Le fléau de la dimension -1

• « The Curse of Dimensionality » : expression de Richard Bellman
1950-1960.

• Problèmes en apprentissage dus aux propriétés des espaces de
grande dimension.

• Espaces en grande dimension : l’intuition par rapport à la dimension
1,2 ou 3 est parfois fausse.

• Lié au dilemne biais / variance.

Premier exemple : si d décision binaires doivent être effectuées pour
optimiser une fonction de perte, la recherche exhaustive de l’optimum
nécessite 2d évaluations, qui augmente de façon exponentielle avec d .
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Le fléau de la dimension -2 : taille des échantillons

Second exemple : On partitionne le cube unité de Rd en cubes de côté
1/n. nd nécessaires pour remplir le cube unité. Estimer loi de proba. à
partir d’un échantillon de taille n : précision 1/10 en dimension 1 (une
mesure par petit cube). Même finesse en dimension d = 10 : échantillon
de taille n = 1010 nécessaire.

0 1

d = 1, n = 10 points

d = 2, n = 100 points

Figure 2: Partition du cube unité et échantillonnage en dimension d = 1, 2, 3.
Taille de grille = 1/10. Le nombre de points nécessaires explose avec la
dimension. 11



Le fléau de la dimension -2 : taille des échantillons

0 1

d = 1, n = 10 points
d = 2, n = 100 points

d = 3, n = 100 points

Figure 3: Partition du cube unité et échantillonnage en dimension d = 1, 2, 3.
Taille de grille = 1/10. Le nombre de points nécessaires explose avec la
dimension. 12



Le fléau de la dimension -3 : volume de la boule unité

Troisième exemple : volume de la boule unité en dim. d :

Vd = πd/2Γ(d/2 + 1)−1

Γ fonction Gamma d’Euler. En utilisant la formule de Stirling,
Γ(x) ∼

√
2πx x−1/2e−x , on a :

Vd ∼ 1√
πd

(
2πe
d

)d/2
→ 0 si d → +∞

−1 1

Dim 1: segment [−1, 1]

Dim 2: cercle Dim 3: sphère unité

Figure 4: Volume de la boule unité en dimension d = 1, 2, 3. 13



Le fléau de la dimension -3 : hypercubes

Figure 5: À gauche : hypercubes pour d=2,3,4,5,6,7. À droite : représentation
« à plat » du graphe correspondant à l’hypercube de dimension 5. Crédit :
Tom Ruan, Wikipédia.
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Le fléau de la dimension -3 : hypercubes

Figure 6: hypercubes « à plat » pour d=6,9. Crédit : Tom Ruan, Wikipédia.
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Le fléau de la dimension -3 : le ratio Vd/2d

Le rapport Vd/2d tend vers 0 encore plus vite !
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Le fléau de la dimension - 4 : distance entre points et dimension

(1 − ϵ)dVd volume de la boule de
rayon 1 − ϵ et

Vd − (1 − ϵ)dVd
Vd

= 1 − (1 − ϵ)d

proportion de la boule unité dans
une couche d’épaisseur ϵ > 0 à
la surface de la boule. −→ 1 si
d → +∞ : en grande dim., tout
le volume est concentré à la sur-
face.
Conséquence : des points choi-
sis aléatoirement dans l’espace se
concentrent à la surface de la
boule ⇒ la distance n’est plus per-
tinente en grande dim. Tous les
points deviennent équidistants.

Figure 7: Points aléatoires générés
de façon uniforme dans l’espace, se
concentrant à la surface de la
sphère.
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Le fléau de la dimension - 4 : gaussiennes en grande dimension
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Figure 8: Gauche : échantillon gaussien standard en dimension d = 2. Droit :
Échantillon gaussien standard en dimension d = 100, projeté dans un
sous-espace de dimension 2.
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Le fléau de la dimension 5 : le phénomène de Hughes

À base d’apprentissage de taille fixée, les performances d’un classifieur
augmentent avec la dimension, atteignent un maximum, puis diminuent.

• Heuristique publiée par Hughes en 1968 : il existe un nombre de
« features » optimal à ne pas dépasser.

• En 1978, Van Campenhout montre que l’article contient des erreurs. Le
paradoxe demeure ( « On the Peaking of the Hughes Mean Recognition
Accuracy: The Resolution of an Apparent Paradox », J.V. Van
Campenhout. IEEE Transactions on Systems, 1978).
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Figure 9: Illustration du paradoxe de Hughes 19



Solutions pour contrer la malédiction de la dimension

• Compresser les données.
• Trouver un sous-espace de petite dimension qui contient (presque)

toute l’information.
• Réduire la dimension.

La malédiction de la dimension est liée au dilemne biais / variance et au
problème de sous et sur apprentissage. Nous verrons cela dès le prochain
chapitre.
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