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1. Définition du Machine

Learning



Définition 1/2 : apprendre a partir des données

Beaucoup de noms différents : apprentissage statistique, apprentissage
automatique, Machine Learning (ML), Statistical Learning.

Wikipedia : champ d’études de I'intelligence artificielle (1A) qui se fonde
sur des approches mathématiques et statistiques pour donner aux
ordinateurs la capacité d'apprendre a partir des données.

ChatGPT : c’est une sous-discipline de I'lA qui permet aux ordinateurs
d'apprendre a partir de données et de prendre des décisions sans étre
explicitement programmés pour accomplir ces taches.

e Imiter (un peu) le comportement inductif du cerveau pour prendre
des décisions de fagon autonome, en fonction des données.

e Domaine a l'intersection de I'informatique et des mathématiques.

e Différence avec les statistiques via I'outil de base: le modéle en
statistique et |'algorithme en ML.

En bref: le ML, ce sont les mathématiques de I'lA.



Définition 2/2 : c’est I'une des branches de I'lA

Fausses branches de I'lA : apprentissage automatique, traitement du
langage naturel, vision par ordinateur et robotique.

En fait, tout cela fait partie du ML.

Vraies branches de I'lA :

e Apprentissage statistique (approche connexionniste) : ML, réseaux
de neurones, apprentissage par renforcement, traitement du langage
naturel.

e Systémes formels (approche cognitive) : programmation logique,
machines de Turing, calculabilité, théorie des langages (Chomsky).

e Méthodes faibles (approche pragmatique) : heuristiques, problémes
de satisfaction de contraintes, systémes experts, représentation de

connaissances.



Machine Learning

Figure 1: Les différents sous domaines de I'lA.



Les différentes approches du ML

L'apprentissage statistique peut étre :

Supervisé : données étiquetées. Deviner les étiquettes des nouvelles
données. Phase d'entrainement, puis de test. Ex : classification et
régression, kNN, arbres de décisions, SVM, réseaux de neurones.
Non supervisé : données non étiquetées. Caractériser la loi de proba
ayant engendré ces observations. Ex : algorithmes de clustering,
estimation de densités, classifications hiérarchiques, DBScan,
MeanShift, ACP, ACM.

Semi-supervisé : petite partie des données étiquetée. Ex : GNNs
(Graph Neural Networks), modeéles génératifs bayésiens, TSVM,
régularisation de laplaciens.

Par renforcement : Q-learning, SARSA, gradient de politique,
réseaux de neurones antagonistes (GAN).

En ligne : perceptron, méthode de descente de gradient stochastique
(SGD), filtres de Kalman, algorithmes de Bandits.



Quelques dates

e le ML date des années 50 (conf. de Darthmouth, été 1956), mais deux
étapes trés importantes ensuite :

e Années 1980 : réseaux de neurones et algorithmes de
rétropropagation de gradient.

e Années 2000 : lien avec les statistiques par Vapnik (the nature of
Statistical Learning).

Les hivers de I'lA ( « Winter is coming ») :

e 1973-1980. Limite des perceptrons monocouches, manque
d'avancées en robotique et traitement automatique du langage
(TAL).

e 1987-1993. Echec commercial des machines LISP, abandon des
systémes experts, réseaux de neurones peu efficaces.



Quelques ouvrages

e The Elements of Statistical Learning, Hastie, Tibshirani, Friedman,
éd. Springer (trop gros).

e A probabilistic Theory of Pattern Recognition, Devroye, Lugosi (trop
gros).

e An Introduction to Statistical Learning with Application in Python,
James, Witten, Hastie, Tibshirani, Taylor, éd. Springer.

e Introduction a I'apprentissage automatique, de Frédéric Sur,
polycopié de I'école des Mines de Nancy (trés bien).

e Mathematics for Machine Learning, de G. Thomzd, polycopié de
I"université de Berkeley.

e Algorithme, la bombe a retardement (Weapons of Math
Destruction), de Cathy O'Neil, éd. Les Arénes (trop bien).

e Contre-atlas de l'intelligence artificielle, de Kate Crawford, éd.
Zulma (trop bien).

e La guerre des intelligences, Laurent Alexandre, éd. J.C. Lattés (a lire
pour le critiquer en toute connaissance de cause).


https://www.sas.upenn.edu/~fdiebold/NoHesitations/BookAdvanced.pdf
https://www.stat.berkeley.edu/~rabbee/s154/ISLR_First_Printing.pdf
https://members.loria.fr/FSur/enseignement/apprauto/poly_apprauto_FSur.pdf
https://gwthomas.github.io/docs/math4ml.pdf

2. Le probleme de la dimension




La réduction de dimension

e Réduction de dimension : transformer des données d’un espace de
grande dimension en un espace de dimension inférieure tout en préservant
des propriétés essentielles des données d’origine.

e Objectif : rendre possible ou plus rapide le traitement de ces données,
réduire la complexité des processus, économiser de I'espace, de I'énergie,
du temps, se prémunir contre le fléau de la dimension, améliorer
I'interprétabilité, visualiser des données.

o Méthodes : linéaires ou non linéaires, aléatoires ou déterministes.

Notre classification découle du paradigme du big data : 2 paramétres
fondamentaux décrivent les dimensions des données : n, taille de la
population (nombre d'éléments de la base de données) et d, dimension
des variables statistiques attachées a ces éléments.



Les parameétres fondamentaux de la taille en statistique

Trois situations possibles :

e n grand, d petit : domaine des statistiques multivariées
traditionnelles (analyse de données « a la francaise »). Les outils
d'inférence statistique classiques fonctionnent bien, théorémes
limites classiques (n tend vers I'infini avec d fixé).

e 1 petit, d grand : domaine des statistiques en grande dimension.
Les outils statistique usuels ne fonctionnent plus. Matrice de
covariance empirique singuliére, estimateurs des moindres carrés non
consistants, etc. Hypothéses suppl. nécessaires pour traiter les
données : parcimonie, structure sous-jacente cachée ayant une petite
dimension, etc.

e n et d grands : autre aspect des statistiques en grande dimension,
domaine des matrices aléatoires. Aucun théoréme limite classique ne
s'applique, hypothéses sur limite de n/d quand n et d tendent vers
I"infini, nécessaires pour appliquer des théorémes spécifiques.



Le fléau de la dimension -1

e « The Curse of Dimensionality » : expression de Richard Bellman
1950-1960.

e Problemes en apprentissage dus aux propriétés des espaces de
grande dimension.

e Espaces en grande dimension : ['intuition par rapport a la dimension
1,2 ou 3 est parfois fausse.

e Lié au dilemne biais / variance.

Premier exemple : si d décision binaires doivent étre effectuées pour
optimiser une fonction de perte, la recherche exhaustive de I'optimum
nécessite 29 évaluations, qui augmente de facon exponentielle avec d.
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Le fléau de la dimension -2 : taille des échantillons

Second exemple : On partitionne le cube unité de R en cubes de c6té
1/n. n? nécessaires pour remplir le cube unité. Estimer loi de proba. a
partir d'un échantillon de taille n : précision 1/10 en dimension 1 (une
mesure par petit cube). Méme finesse en dimension d = 10 : échantillon
de taille n = 10%° nécessaire.

d =1, n =10 points

0 1 d =2, n=100 points

Figure 2: Partition du cube unité et échantillonnage en dimension d = 1,2, 3.
Taille de grille = 1/10. Le nombre de points nécessaires explose avec la
dimension. 1



Le fléau de la dimension -2 : taille des échantillons

d =1, n= 10 points .
o 1 d =2, n =100 points

d =3, n =100 points

Figure 3: Partition du cube unité et échantillonnage en dimension d = 1,2, 3.
Taille de grille = 1/10. Le nombre de points nécessaires explose avec la
dimension.



Le fléau de la dimension -3 : volume de la boule unité

Troisieme exemple : volume de la boule unité en dim. d :

Vy=7%2r(d/2+1)7?

I fonction Gamma d'Euler. En utilisant la formule de Stirling,
M(x) ~ V2rx*"1/2e=% on a :
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Dim 3: sphére unité

Figure 4: Volume de la boule unité en dimension d = 1,2, 3.
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Le fléau de la dimension -3 : hypercubes

2amypercive e wamypercute

Figure 5: A gauche : hypercubes pour d=2,3,4,5,6,7. A droite : représentation
« a plat » du graphe correspondant a I'hypercube de dimension 5. Crédit :
Tom Ruan, Wikipédia.
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Le fléau de la dimension -3 : hypercubes
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Figure 6: hypercubes « a plat » pour d=6,9. Crédit : Tom Ruan, Wikipédia.
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Le fléau de la dimension -3 : le ratio V,/2¢

Le rapport Vy/29 tend vers 0 encore plus vite !
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Le fléau de la dimension - 4 : distance entre points et dimension

(1 — €)?V, volume de la boule de
rayon 1 — € et

Vg —(1—e€)9Vy _

o _\d
v, 1—(1—¢)

proportion de la boule unité dans
une couche d'épaisseur ¢ > 0 a
la surface de la boule. — 1 si
d = 400 :

le volume est concentré a la sur-

en grande dim., tout

face.

Conséquence : des points choi-
sis aléatoirement dans |'espace se
concentrent a la surface de la
boule = la distance n’est plus per-
tinente en grande dim. Tous les

points deviennent équidistants.
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Figure 7: Points aléatoires générés
de fagon uniforme dans |'espace, se
concentrant a la surface de la
sphere.
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Le fléau de la dimension - 4 : gaussiennes en grande dimension

—4-3-2-10 1 2 3 4 ~10 -5 0 5 10

Figure 8: Gauche : échantillon gaussien standard en dimension d = 2. Droit :
Echantillon gaussien standard en dimension d = 100, projeté dans un
sous-espace de dimension 2.
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Le fléau de la dimension 5 : le phénomeéne de Hughes

A base d'apprentissage de taille fixée, les performances d'un classifieur
augmentent avec la dimension, atteignent un maximum, puis diminuent.

e Heuristique publiée par Hughes en 1968 : il existe un nombre de
« features » optimal a ne pas dépasser.

e En 1978, Van Campenhout montre que I'article contient des erreurs. Le
paradoxe demeure ( « On the Peaking of the Hughes Mean Recognition
Accuracy: The Resolution of an Apparent Paradox », J.V. Van
Campenhout. |IEEE Transactions on Systems, 1978).
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Figure 9: lllustration du paradoxe de Hughes 19



Solutions pour contrer la malédiction de la dimension

e Compresser les données.

e Trouver un sous-espace de petite dimension qui contient (presque)

toute l'information.

e Réduire la dimension.

La malédiction de la dimension est liée au dilemne biais / variance et au
probléme de sous et sur apprentissage. Nous verrons cela dés le prochain

chapitre.
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