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1. Théorie de la décision statistique

2. Minimisation du risque empirique



1. Théorie de la décision
statistique



Prédicteur de Bayes en classification binaire 1

» D,={24,...,Z,} n-échantillon de v.a.i.id. Z; = (X, Y;).

= X; observations issues d’'une v.a. X : données, variables explicatives.

= Y issues d'une v.a. Y, catégories des X; : étiquettes ou labels.

= XeX Yev.

= P probasur £ =X x Y : loi (inconnue) de (X, Y) et des (X;, Y;).
Objectif de I'apprentissage supervisé : déterminer Y sachant X, a partir
des seules observations de 71, ...Z,,.

» g e F=F(X,Y) fonction de prédiction : g(x) =y.

» /:Y2 — R, fonction de perte pour mesurer la qualité de g.

» R(g) = Re(g) =E[I(Y,g(X))] risque de g : valeur moyenne de la
perte sur toutes les réalisations possibles.



Prédicteur de Bayes en classification binaire 2

Probléme de classification si Y fini, de régression si Y = R.

En classification binaire, Y = 0 ou 1. La fonction de perte associée est

(Y, Y") = Ty svn (1)
On note
n(x) =P[Y =1|X = x] = E[Y|X = X] (2)
et
8" (%) = Lpy>1/2 3)

Alors g* est le classifieur optimal de Bayes. |l minimise I'erreur de
classification binaire (démonstration en exercice), mais c’est une fonction
oracle inconnue.



Prédicteur optimal en régression

Toute fonction g*, si elle existe, minimisant R(g) est appelée oracle.

Minimiseur du risque de régression

Si pour tout x € X la borne inférieure sur y € Y de E[/(Y,y)|X = x] est
atteinte, alors toute fonction g* la minimisant est fonction oracle:

Vx € X, g* € argmm]E[l(Y y)|IX=x] =g c€argminR(g) (4)
gEF

Fonction oracle pour la régression

En régression au sens des moindres carrées, la fonction oracle est

- n*(x) = E[Y|X = x| (5)
et vérifie

¥n: X — R, R(n) = R(m*) +E [(n(X) — n*(X))?] (6)



Algorithme d’apprentissage

Algorithme d'apprentissage : fonction
+o00
g: |JEXxY) — FX,Y) (7)
n=1
qui a D, — g,. Estimateur de la meilleure fonction de prédiction.
gn(x) = gn(x, D,) dépend de |'échantillon !
8n = gn(~7Dn) S ]:(X7Y) (8)

D, fonction des (X;, Y;) = aléatoire, g,(x) = g,(x,D,) également
aléatoire, tout comme :

Re (gn) = E[I(Y', gn(X))] :/ Iy gn(x))P(dx; dy) (9)

XxY



Consistance d’un algorithme d’apprentissage

Algorithme consistant par rapport a P, si :
lim E[R ()] = R 5] (10)
car R(g,) est une variable aléatoire.

gn est doublement aléatoire : au travers de la loi de (X, Y), et au travers
de D, qui intervient dans sa construction.

Algorithme universellement consistant si consistant par rapport a toute
loi de probabilité P sur I'ensemble P des mesures de proba.
Universellement et uniformément consistant si uniformément consistant
par rapport a toute loi P

sup i lim (E[R(gn)]~Rlg]) =0 (11)



"No Free Lunch” Theorem

NFL Theorem, David Wolpert 1997
Si card(X) = 400, il n'existe pas d'algorithme d'apprentissage
uniformément et universellement consistant.

Objectif du ML : construire un algorithme ayant consistance universelle
sur une classe de proba. pertinente pour le probléme et une famille de
fonctions de prédiction assez grande.

‘P et D, étant donnés, on cherche un algo. d'apprentissage g, tel que

Jim sup (E[R(gn)] — R[g"]) =0, gng" €3 (12)

Doit décroitre vite vers 0 pour que peu de données soient nécessaires a
I"algo. pour bien prédire. P modélise notre a priori et entraine un a priori
sur la fonction cible.



Risque empirique

Re[I(Y, g(X)] inconnu. L'algo d’apprentissage doit trouver g de risque le
plus petit possible. On estime R par |'estimateur plug-in :

Relg) = = D 1(¥,8(X) (13)

R, défini pour une famille de fonctions de prédiction (sous-ensemble G de
F). La LFGN et le TLC donnent :

JNim Ri(g) = R(g) p-s. (14)
Vn(Ra(g) — R(g)) ~ N(0,0%) (15)

sia2=V(I(Y,g(X))) < oo

= R,(g) bonne approximation du de R(g) si n suffisamment grand.



2. Minimisation du risque
empirique




Minimisation du risque empirique 1 : capacité du modele

G étant fixé, on choisit comme fonction de prédiction un minimiseur g, g
du risque empirique défini par:

8nc = 8n(Dp,G) = argmin R,(g) (16)
g€eg

ou G C F est un sous-ensemble de toutes les fonctions de X dans Y.
C'est la classe de fonctions a laquelle on se restreint pour déterminer g,.
G = F = mauvaise idée :

= Souvent infinité de fonctions minimisantes.
= Tres loin d'étre universellement consistant.
= Sur-apprentissage assuré.

Taille de G = capacité ou complexité du modéle.

On doit prendre G assez grand pour bien approcher toute fonction, mais
pas trop pour éviter le sur-apprentissage.



Minimisation du risque empirique 2 : surapprentissage

Soit M = |G| la complexité du modéle.
Quand M augmente, R,(g) diminue tandis que R(g) diminue d'abord,
puis augmente a nouveau avec M.

An fixé, si G est suffisamment riche, on peut toujours trouver un
prédicteur g, g avec R,(gn,g) trés faible, méme si D, trés grand, mais
dont le risque moyen de prédiction R(g) est grand.

Ex : g défini par g(x;) = y; (et n'importe quelle valeur sinon). Apprend

par coeur la base d'apprentissage. R,(g) = 0, mais risque de prédiction
trés grand : sa capacité de généralisation est faible. On retient que :

Rn(8n(Dn, Gm)) = Ra(&n(Dn, Gurr)) si M < M’ (17)

Si Gu C Gwr.
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Minimisation du risque empirique 3 : démarche

Pour approcher R(g*), on utilise le risque empirique R,, mais limité a

une fonction g € G. Dans cet exces de risque, on fait donc deux erreurs :

= stochastique (ou d'estimation ou variance) : R(gng) — R(g%)
= systématique (ou d'approximation ou biais) : R(gg) — R(g™*)

R(&ng) — R(g") = [(R(&ng) — R(g5)] + [R(g5) — R(g")]

Quand G grand, |'erreur d'approximation est petite mais I'erreur
d'estimation grande. Il y a un compromis a trouver : c'est le dilemne

biais / variance.

11



Minimisation risque empirique 4 : dilemne biais / variance

Erreur

10 %

surapprentissage

sous-apprentissage

—— Erreur d'approximation / biais
—— Erreur d'estimation / variance
—— Excés de risque (prédiction)

1 2 3 4 5 6 7 8 9 10
Taille M du dictionnaire = complexité du modeéle 12



Minimisation du risque empirique 5 : erreur stochastique

e g7 prédicteur minimisant R(g) sur G : colit moyen des erreurs de
prédiction sur toutes les observations étiquetées. Mais g* inconnu.

e On se contente de g, g minimisant R, sur D, pour g € G.

Bornes sur I’erreur stochastique

0 < R(gng) — R(g5) <2 max |R(g) — Ra(&)I (18)

Démonstration en exercice.

e Le max dans I'inégalité précédente mesure les fluctuations entre |'écart
empirique et |'écart théorique sur le dictionnaire G.
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Remarques sur le sur-apprentissage et sous-apprentissage

On cherche un biais faible et un risque empirique proche du risque

théorique, pour une bonne capacité de généralisatiion du prédicteur g, :

antagonisme appelé dilemne biais-variance :

= Pour minimiser R(g) il faut avoir un modéle riche, c'est a dire un
dictionnaire de bonne taille.
= La fluctuation aléatoire augmente avec la taille du dictionnaire.
Mais le risque empirique est un estimateur sans biais et consistant de

R(g) : on a dans tous les cas intérét 3 utiliser une grande base
d’'apprentissage (n grand) pour diminuer la fluctuation sur G.

= Lorsqu'on augmente M, on doit augmenter également n.

14



Inégalité oracle pour un dictionnaire fini

Inégalité oracle pour un dictionnaire fini

Pour une fonction de perte / a valeurs dans [0, 1] et un dictionnaire fini G
contenant M fonctions, alors pour tout § €]0, 1], avec probabilité
supérieure a 1 — 6,

R(Ene) - Rlgs) <2 (%) (19)

Démonstration en exercice.

Quand n — 400, #— 0. T n =7 la qualité du prédicteur empirique.
G| 1= le terme de droite augmente. M petit =
risque théorique est grand. A rapprocher du dilemne biais variance:

Mais en méme temps,

quand |G| augmente, le biais diminue (erreur de modélisation due au
modeéle) mais la variance augmente (erreur statistique due a |'aléa des
données). Augmenter M augmente le risque de sur-apprentissage.

15



Utilisation de R,(g,) pour estimer R(g,)

n

Ralgn) = + 3 1Y (X)) (20)

i=1

gn dépend de D, donc de tous les (X;, Y;) en méme temps : les va

I(Y:, g,(X;)) ne sont pas indépendantes et on ne peut pas appliquer la
LFGN pour poruver une convergence.

R.(gn) conduit a sous-estimer R(g,).

Pour éviter cela, on utilise la validation croisée ou du bootstrap.

16



Dilemne biais/variance

La complexité des modeéles et la présentation du dilemme biais-variance
est exposée par Stéphane Mallat dans son cours du Colléege de France de
2018, dont les vidéos sont disponibles en ligne en suivant ce lien :

https://www.college-de-france.fr/site/stephane-mallat/
course-2017-2018.htm
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Validation croisée et sélection de modeéles -1-

e L'estimateur minimisant le risque empirique sur G est g, (dépend
évidemment de G).

e R(g,) possiblement éloigné de R,(g,) car non indépendants :
dépendent de D, au travers de g,.

e Ce sont donc des v.a. fonctions de (X, Y;). On ne peut donc pas
utiliser R, pour évaluer un estimateur qui a été construit a partir du
méme échantillon.

e Pour contourner ce probléeme, 3 méthodes : découpage simple des
données en un jeu d'entralnement et un jeu de test, validation « Hold-out
» ou méthode de validation croisée.
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Validation croisée et sélection de modeéles -2-

e Découpage basique de D, en un jeu d'entrainement et de test : on
entraine le modeéle sur le sous-échantillon d'entrainement et on évalue ses
performances sur I'échantillon de test, indépendant de |'estimateur.

o Méthode de validation « Hold-out » : utile si sélection de modeles avec
plusieurs jeux d'hyperparametres.

e Découpage en 2 ne suffit plus : les deux sous-échantillons sont
dépendants ; il est nécessaire de conserver une troisieme partie des
données indépendante pour valider I'ensemble des modéles.

e DE D], DY respectivement sous-échantillon d’entrainement, de test
et de validation.

19



Validation « Hold-out »

1 e Pour chaque jeu d'hyperparamétres, on entraine un estimateur
g1, - &m sur D avec g; = gi(., Dy).

2 e Pour chaque estimateur, on évalue le risque empirique
Rnpv(81); s Ry pv(8m) sur le sous-échantillon DY.

3 e On sélectionne celui qui minimise le risque empirique :

gn = arg min R,LD;/ (gi(DEa )) (21)

i=1,....m

4 o On évalue les performances finales du modele avec le risque calculé a
I"aide du sous-échantillon de test :

Ry = Ropy (&) (22)
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Validation croisée k-Fold -1-

e 2 inconvénients a cette méthode : découpage réduit les données
disponibles pour I'entrainement et performances fortement dépendantes
du choix du sous-échantillon.

e La validation croisée corrige ce probleme. Peut étre utilisée dans tous
les cas de figure (estimation unique ou sélection de modeles). Méthode a
privilégier.

e On découpe en 3 I'échantillon D, : un sous-échantillon de test, un 2e
de validation et un 3e d'entrainement.

e Sous-échantillon de test noté D/ représente traditionnellement 20%
des données. |l restera constant tout au long du traitement des données.

e Les deux autres sous-échantillons forment une partition du reste de
I"échantillon initial et vont varier durant le processus de validation croisée.

21



Validation croisée k-Fold -2-

Principe : diviser les données (hors échantillon de test) en sous-ensembles
(les plis, ou « folds ») et permuter leurs roles entre entrainement et
validation.

1 e Apres sélection du sous-échantillon de test, on divise les données
restantes en k sous-échantillons disjoints de taille égale : D, 1, ..., Dy «.

2 e Pouri=1,..,k D,; = ensemble de validation et les kK — 1 autres
sous-échantillons D,; = Uj4; D, ; = base d'entralnement.

3 e On sélectionne I'estimateur qui minimise le risque empirique :

gn» = argmin R, p,, (&(Dn.i,-)) (23)

i=1,....k
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Validation croisée k-Fold -3-

e On évalue la performance globale par moyenne des scores a chaque
itération. Scores = risques empiriques de chaque estimateurs, calculés
avec le sous-échantillon de test.

Rn kZR"DT gl nia')) (24)

En pratique, on effectue souvent une re-calibration en ré-entrainant le
modele correspondant au meilleur jeu d'hyperparamétres sur la totalité
des données (hors données de test).
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Validation croisée k-Fold -4-

Jeu de Test
| o7

Jeu d’entrainement

\

I'ensemble d’entrainement est découpé en k sous-échantillons égaux

sur k partitions #

‘ ‘ ‘ fonction exécutée

24
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