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Overview

1. Théorie de la décision statistique

2. Minimisation du risque empirique
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1. Théorie de la décision
statistique



Prédicteur de Bayes en classification binaire 1

• Dn = {Z1, ..., Zn} n-échantillon de v.a.i.i.d. Zi = (Xi , Yi).
• Xi observations issues d’une v.a. X : données, variables explicatives.
• Yi issues d’une v.a. Y , catégories des Xi : étiquettes ou labels.
• X ∈ X, Y ∈ Y.
• P proba sur E = X × Y : loi (inconnue) de (X , Y ) et des (Xi , Yi).

Objectif de l’apprentissage supervisé : déterminer Y sachant X , à partir
des seules observations de Z1, ...Zn.

• g ∈ F = F(X,Y) fonction de prédiction : g(x) = y .
• l : Y2 −→ R+ fonction de perte pour mesurer la qualité de g .
• R(g) = RP(g) = E [l(Y , g(X ))] risque de g : valeur moyenne de la

perte sur toutes les réalisations possibles.
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Prédicteur de Bayes en classification binaire 2

Problème de classification si Y fini, de régression si Y = R.

En classification binaire, Y = 0 ou 1. La fonction de perte associée est

l(Y , Y ′) = 1[Y ̸=Y ′] (1)

On note

η(x) = P[Y = 1|X = x ] = E[Y |X = x ] (2)

et

g⋆(x) = 1[η(x)>1/2] (3)

Alors g⋆ est le classifieur optimal de Bayes. Il minimise l’erreur de
classification binaire (démonstration en exercice), mais c’est une fonction
oracle inconnue.
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Prédicteur optimal en régression

Toute fonction g⋆, si elle existe, minimisant R(g) est appelée oracle.

Minimiseur du risque de régression
Si pour tout x ∈ X la borne inférieure sur y ∈ Y de E[l(Y , y)|X = x ] est
atteinte, alors toute fonction g⋆ la minimisant est fonction oracle:

∀x ∈ X, g⋆ ∈ arg min
y∈Y

E[l(Y , y)|X = x ] ⇒ g⋆ ∈ arg min
g∈F

R(g) (4)

Fonction oracle pour la régression
En régression au sens des moindres carrées, la fonction oracle est

η⋆(x) = E[Y |X = x ] (5)
et vérifie

∀η : X −→ R, R(η) = R(η⋆) + E
[
(η(X ) − η⋆(X ))2]

(6)
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Algorithme d’apprentissage

Algorithme d’apprentissage : fonction

g :
+∞⋃
n=1

(X × Y)n −→ F(X,Y) (7)

qui à Dn −→ gn. Estimateur de la meilleure fonction de prédiction.
gn(x) = gn(x , Dn) dépend de l’échantillon !

gn = gn(., Dn) ∈ F(X,Y) (8)

Dn fonction des (Xi , Yi) ⇒ aléatoire, gn(x) = gn(x , Dn) également
aléatoire, tout comme :

RP (gn) = E[l(Y , gn(X ))] =
∫
X×Y

l(y , gn(x))P(dx , dy) (9)
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Consistance d’un algorithme d’apprentissage

Algorithme consistant par rapport à P, si :

lim
n→+∞

E [R (gn)] = R [g⋆] (10)

car R(gn) est une variable aléatoire.

gn est doublement aléatoire : au travers de la loi de (X , Y ), et au travers
de Dn qui intervient dans sa construction.

Algorithme universellement consistant si consistant par rapport à toute
loi de probabilité P sur l’ensemble P des mesures de proba.
Universellement et uniformément consistant si uniformément consistant
par rapport à toute loi P :

sup
P∈P

lim
n→+∞

(E [R (gn)] − R [g⋆]) = 0 (11)
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”No Free Lunch” Theorem

NFL Theorem, David Wolpert 1997
Si card(X) = +∞, il n’existe pas d’algorithme d’apprentissage
uniformément et universellement consistant.

Objectif du ML : construire un algorithme ayant consistance universelle
sur une classe de proba. pertinente pour le problème et une famille de
fonctions de prédiction assez grande.

P et Dn étant donnés, on cherche un algo. d’apprentissage gn tel que

lim
n→+∞

sup
P∈P

(E [R (gn)] − R [g⋆]) = 0, gn, g⋆ ∈ G (12)

Doit décrôıtre vite vers 0 pour que peu de données soient nécessaires à
l’algo. pour bien prédire. P modélise notre a priori et entrâıne un a priori
sur la fonction cible.
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Risque empirique

RP[l(Y , g(X )] inconnu. L’algo d’apprentissage doit trouver g de risque le
plus petit possible. On estime R par l’estimateur plug-in :

Rn(g) = 1
n

n∑
i=1

l(Yi , g(Xi)) (13)

Rn défini pour une famille de fonctions de prédiction (sous-ensemble G de
F). La LFGN et le TLC donnent :

lim
n→+∞

Rn(g) = R(g) p.s. (14)

√
n (Rn(g) − R(g))⇝ N (0, σ2) (15)

si σ2 = V (l(Y , g(X ))) < ∞

⇒ Rn(g) bonne approximation du de R(g) si n suffisamment grand.
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2. Minimisation du risque
empirique



Minimisation du risque empirique 1 : capacité du modèle

G étant fixé, on choisit comme fonction de prédiction un minimiseur ĝn,G

du risque empirique défini par:

ĝn,G = ĝn(Dn, G) = arg min
g∈G

Rn(g) (16)

où G ⊂ F est un sous-ensemble de toutes les fonctions de X dans Y.
C’est la classe de fonctions à laquelle on se restreint pour déterminer gn.

G = F ⇒ mauvaise idée :

• Souvent infinité de fonctions minimisantes.
• Très loin d’être universellement consistant.
• Sur-apprentissage assuré.

Taille de G = capacité ou complexité du modèle.

On doit prendre G assez grand pour bien approcher toute fonction, mais
pas trop pour éviter le sur-apprentissage.
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Minimisation du risque empirique 2 : surapprentissage

Soit M = |G| la complexité du modèle.

Quand M augmente, Rn(g) diminue tandis que R(g) diminue d’abord,
puis augmente à nouveau avec M.

À n fixé, si G est suffisamment riche, on peut toujours trouver un
prédicteur gn,G avec Rn(gn,G) très faible, même si Dn très grand, mais
dont le risque moyen de prédiction R(g) est grand.

Ex : g défini par g(xi) = yi (et n’importe quelle valeur sinon). Apprend
par coeur la base d’apprentissage. Rn(g) = 0, mais risque de prédiction
très grand : sa capacité de généralisation est faible. On retient que :

Rn(ĝn(Dn, GM)) ≥ Rn(ĝn(Dn, GM′)) si M < M ′ (17)

Si GM ⊂ GM′ .
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Minimisation du risque empirique 3 : démarche

Pour approcher R(g⋆), on utilise le risque empirique Rn, mais limité à
une fonction g ∈ G. Dans cet excès de risque, on fait donc deux erreurs :

• stochastique (ou d’estimation ou variance) : R(ĝn,G) − R(g⋆
G)

• systématique (ou d’approximation ou biais) : R(g⋆
G) − R(g⋆)

R(ĝn,G) − R(g⋆) =
[
(R(ĝn,G) − R(g⋆

G)
]

+
[
R(g⋆

G) − R(g⋆)
]

Quand G grand, l’erreur d’approximation est petite mais l’erreur
d’estimation grande. Il y a un compromis à trouver : c’est le dilemne
biais / variance.
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Minimisation risque empirique 4 : dilemne biais / variance
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Figure 1: Un exemple de dilemne biais / variance. En bleu, l’erreur
d’approximation pour un dictionnaire de taille M. En rouge, l’erreur
d’estimation, en noir le risque théorique ou excès de risque. La zone de
sous-apprentissage caractérise un biais fort et une variance faible, tandis que la
zone de surapprentissage caractérise un biais faible et une variance forte. La
courbe bleue est typiquement obtenue avec l’ensemble d’apprentissage et la
courbe noir avec l’ensemble de test.
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Minimisation du risque empirique 5 : erreur stochastique

• g⋆
G prédicteur minimisant R(g) sur G : coût moyen des erreurs de

prédiction sur toutes les observations étiquetées. Mais g⋆ inconnu.

• On se contente de ĝn,G minimisant Rn sur Dn pour g ∈ G.

Bornes sur l’erreur stochastique

0 ≤ R(ĝn,G) − R(g⋆
G) ≤ 2 max

g∈G
|R(g) − Rn(g)| (18)

Démonstration en exercice.

• Le max dans l’inégalité précédente mesure les fluctuations entre l’écart
empirique et l’écart théorique sur le dictionnaire G.
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Remarques sur le sur-apprentissage et sous-apprentissage

On cherche un biais faible et un risque empirique proche du risque
théorique, pour une bonne capacité de généralisatiion du prédicteur ĝn :
antagonisme appelé dilemne biais-variance :

• Pour minimiser R(g) il faut avoir un modèle riche, c’est à dire un
dictionnaire de bonne taille.

• La fluctuation aléatoire augmente avec la taille du dictionnaire.

Mais le risque empirique est un estimateur sans biais et consistant de
R(g) : on a dans tous les cas intérêt à utiliser une grande base
d’apprentissage (n grand) pour diminuer la fluctuation sur G.

⇒ Lorsqu’on augmente M, on doit augmenter également n.
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Inégalité oracle pour un dictionnaire fini

Inégalité oracle pour un dictionnaire fini
Pour une fonction de perte l à valeurs dans [0, 1] et un dictionnaire fini G
contenant M fonctions, alors pour tout δ ∈]0, 1[, avec probabilité
supérieure à 1 − δ,

R(ĝn,G) − R(g⋆
G) ≤

√
2
n ln

(
2M
δ

)
(19)

Démonstration en exercice.

Quand n → +∞, ̸=→ 0. ↑ n ⇒↑ la qualité du prédicteur empirique.
Mais en même temps, |G| ↑⇒ le terme de droite augmente. M petit ⇒
risque théorique est grand. À rapprocher du dilemne biais variance:
quand |G| augmente, le biais diminue (erreur de modélisation due au
modèle) mais la variance augmente (erreur statistique due à l’aléa des
données). Augmenter M augmente le risque de sur-apprentissage.
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Utilisation de Rn(gn) pour estimer R(gn)

Rn(gn) = 1
n

n∑
i=1

l(Yi , gn(Xi)) (20)

gn dépend de Dn donc de tous les (Xi , Yi) en même temps : les va
l(Yi , gn(Xi)) ne sont pas indépendantes et on ne peut pas appliquer la
LFGN pour poruver une convergence.

Rn(gn) conduit à sous-estimer R(gn).

Pour éviter cela, on utilise la validation croisée ou du bootstrap.
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Dilemne biais/variance

La complexité des modèles et la présentation du dilemme biais-variance
est exposée par Stéphane Mallat dans son cours du Collège de France de
2018, dont les vidéos sont disponibles en ligne en suivant ce lien :

https://www.college-de-france.fr/site/stephane-mallat/
course-2017-2018.htm
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Validation croisée et sélection de modèles -1-

• L’estimateur minimisant le risque empirique sur G est ĝn (dépend
évidemment de G).

• R(ĝn) possiblement éloigné de Rn(ĝn) car non indépendants :
dépendent de Dn au travers de ĝn.

• Ce sont donc des v.a. fonctions de (Xi , Yi). On ne peut donc pas
utiliser Rn pour évaluer un estimateur qui a été construit à partir du
même échantillon.

• Pour contourner ce problème, 3 méthodes : découpage simple des
données en un jeu d’entrâınement et un jeu de test, validation « Hold-out
» ou méthode de validation croisée.
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Validation croisée et sélection de modèles -2-

• Découpage basique de Dn en un jeu d’entrâınement et de test : on
entrâıne le modèle sur le sous-échantillon d’entrâınement et on évalue ses
performances sur l’échantillon de test, indépendant de l’estimateur.

• Méthode de validation « Hold-out » : utile si sélection de modèles avec
plusieurs jeux d’hyperparamètres.

• Découpage en 2 ne suffit plus : les deux sous-échantillons sont
dépendants ; il est nécessaire de conserver une troisième partie des
données indépendante pour valider l’ensemble des modèles.

• DE
n , DT

n , DV
n respectivement sous-échantillon d’entrâınement, de test

et de validation.
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Validation « Hold-out »

1 • Pour chaque jeu d’hyperparamètres, on entrâıne un estimateur
g1, ..., gm sur DE

n avec gi = gi(., DE
n ).

2 • Pour chaque estimateur, on évalue le risque empirique
Rn,DV

n
(g1), ..., Rn,DV

n
(gm) sur le sous-échantillon DV

n .

3 • On sélectionne celui qui minimise le risque empirique :

ĝn = arg min
i=1,...,m

Rn,DV
n

(
gi(DE

n , .)
)

(21)

4 • On évalue les performances finales du modèle avec le risque calculé à
l’aide du sous-échantillon de test :

R̂n = Rn,DT
n

(ĝn) . (22)
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Validation croisée k-Fold -1-

• 2 inconvénients à cette méthode : découpage réduit les données
disponibles pour l’entrâınement et performances fortement dépendantes
du choix du sous-échantillon.

• La validation croisée corrige ce problème. Peut être utilisée dans tous
les cas de figure (estimation unique ou sélection de modèles). Méthode à
privilégier.

• On découpe en 3 l’échantillon Dn : un sous-échantillon de test, un 2e
de validation et un 3e d’entrâınement.

• Sous-échantillon de test noté DT
n représente traditionnellement 20%

des données. Il restera constant tout au long du traitement des données.

• Les deux autres sous-échantillons forment une partition du reste de
l’échantillon initial et vont varier durant le processus de validation croisée.
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Validation croisée k-Fold -2-

Principe : diviser les données (hors échantillon de test) en sous-ensembles
(les plis, ou « folds ») et permuter leurs rôles entre entrâınement et
validation.

1 • Après sélection du sous-échantillon de test, on divise les données
restantes en k sous-échantillons disjoints de taille égale : Dn,1, ..., Dn,k .

2 • Pour i = 1, ..., k, Dn,i = ensemble de validation et les k − 1 autres
sous-échantillons D•i = ∪j ̸=iDn,j = base d’entrâınement.

3 • On sélectionne l’estimateur qui minimise le risque empirique :

ĝn = arg min
i=1,...,k

Rn,D•i (gi(Dn,i , .)) (23)
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Validation croisée k-Fold -3-

• On évalue la performance globale par moyenne des scores à chaque
itération. Scores = risques empiriques de chaque estimateurs, calculés
avec le sous-échantillon de test.

R̂n = 1
k

k∑
i=1

Rn,DT
n

(gi(Dn,i , .)) (24)

En pratique, on effectue souvent une re-calibration en ré-entrâınant le
modèle correspondant au meilleur jeu d’hyperparamètres sur la totalité
des données (hors données de test).
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Validation croisée k-Fold -4-

Jeu d’entrâınement

Jeu de Test

DT
n

l’ensemble d’entrâınement est découpé en k sous-échantillons égaux

fonction exécutée
sur k partitions ̸=

Dn,i D•i

Figure 2: Illustration de la validation croisée k-Fold pour k = 5. La base
initiale est Dn, partitionnée en trois sous-échantillon : DT

n (en vert, fixe durant
tout le processus), Dn,i (en rose) et D•i qui varient à chaque itération.
Souvent, k = 5 ou k = 10. k = n est la méthode « leave-one-out ».
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