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1. Principe des algorithmes à
base de partition



Introduction -1-

• F ensemble des fonctions de X dans Y.
• G ⊂ F dictionnaire.

1 méthode d’apprentissage supervisé = 1 choix de dictionnaire G.

Choix populaire : fonction constante / morceaux sur 1 partition de X.

⇒ algorithme des plus proches voisins k-pp ou k-NN (pour k Nearest
Neighbors), arbres de décision et de régression avec l’algorithme CART
(ClAssification and Regression Tree).

A = (A1, ..., AM) partition de X :

X =
M⋃

m=1
Am (1)

G(A) ⊂ F(X,Y) ensemble des fonctions constantes sur chaque Am ∈ A.
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Introduction -2-

La partition peut être aléatoire, déterminée par Dn.

Soit ĝn = ĝn(., A) le minimiseur du risque empirique sur le dictionnaire
G(A) et Nm le nombre d’exemples appartenant à Am :

ĝn ∈ arg min
g∈G(A)

Rn(g) = arg min
g∈G(A)

1
n

n∑
i=1

l(Yi , g(Xi)) et Nm =
n∑

i=1
1Am (Xi)

Classifieur binaire optimal

∀m = 1..M, ∀x ∈ Am, ĝn(x , A) =


1 si Y Am > 1/2
am si Y Am = 1/2
0 si Y Am < 1/2

(2)

Minimiseur du risque empirique pour la régression MC

ĝn(x , A) =
M∑

m=1
Y Am1Am (x) =

M∑
m=1

(
1

Nm

n∑
i=1

Yi1Am (Xi)
)
1Am (x) (3)

Démonstration en exercice ! 3



Introduction -3-
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Méthodes à base de partition -1-

Soit A = (A1, ..., Am) une partition de X et G = G(A) classe des
fonctions constantes sur chaque élément de la partition :

G = {g : X −→ Y : ∀m = 1, ..., M, g constante sur Am} (4)

Le minimiseur du risque empirique associé à cette partition est la fonction

ĝn = ĝn(., A) = argmin
g∈G(A)

1
n

n∑
i=1

l(Yi , g(Xi)) (5)

Notons Nm le nombre d’observations Xi de l’échantillon qui se trouvent
dans l’élément Am de la partition :

Nm =
n∑

i=1
1Am (Xi) (6)
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Méthodes à base de partition -2-

et notons Y m la moyenne des étiquettes observées dans l’élément Am :

Y m =
n∑

i=1
Yi1Am (Xi) (7)

Alors le minimiseur du risque empirique pour la classification binaire est,
si x ∈ Am,

ĝn(x) = 1[Y m>1/2] (8)

∀m = 1, ..., M. Autrement dit :

ĝn(x) =
M∑

m=1
1[Y m>1/2]1Am (x) (9)

6



Méthodes à base de partition -3-

On généralise facilement de classifieur binaire à une situation multiclasses
avec Y = {1, ..., K}. ∀x ∈ X,

ĝn(x) = arg max
k=1,...,K

M∑
m=1

(
1

Nm

n∑
i=1

1[Yi =k]1Am (Xi)
)
1Am (x) (10)

= arg max
k=1,...,K

M∑
m=1

wm,k1Am (x) (11)

avec wm,k = Nm(k)/Nm proportion des observations dans Am pour
lesquelles Y = k.
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2. Algorithme des k plus proches
voisins



Méthode des k-ppv (k-NN)

Soit k ≤ n. ∀x ∈ Rd , ∀i = 1, ..., n, di(x) = ||Xi − x ||
Soient ri(x) indice du i ème ppv de x parmi X1, ..., Xn :

r1(x) = j ⇐⇒

 dj(x) = min
i=1,...,n

di(x)

dj(x) < min
1≤i<j

di(x)
(12)

(13)

et par récurrence sur k ≥ 1,

rk(x) = j ⇐⇒

 dj(x) = min
i=1..n;i ̸=r1,..,rk−1

di(x)

dj(x) < min
1≤i<j;i ̸=r1,..,rk−1

di(x)
(14)

(15)
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Partition définie par les rangs

∀k ∈ J1, .., nK, les di(x) définissent une partition Ak = (Am,k)m telle que,
∀m = 1, ..., M :

Am = {x ∈ X = Rd : Cm = (r1(x), ..., rk(x))} (16)

Cm combinaison de k éléments parmi n et M = ( n
k ). Les Am sont les

parties de X pour lesquelles x 7→ (r1(x), ..., rk(x)) est constante : la
partition forme des zones caractérisées par un choix de k observations
parmi n et les points de cette zone sont les plus près des k observations
caractérisant la zone. Pour x , x ′ ∈ Am, les k-ppv de x et x ′ parmi
X1, ..., Xn sont les mêmes. Si x ∈ Am et x ′ ∈ Am′ avec m ̸= m′, les k
-ppv de x sont ̸= des k-ppv de x ′.
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Diagrammes de Voronoi -1-

Ces partitions forment des diagrammes de Voronoi. Chaque zone est une
cellule de Voronoi. Les figures illustrent des partitions ppv pour k = 1.

Cellules de Voronoi pour k = 1.

https://strongriley.github.io/d3/ex/voronoi.html
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Diagrammes de Voronoi -2-
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Prédicteur et classifieur des k-ppv

Prédicteur k-NN pour la régression aux moindres carrés

η̂n,k(x) =
M∑

m=1
Y Am1Am (x) (17)

où (Am)m partition définie à partir des rangs.

Classifieur binaire k-NN

ĝn,k(x) = 1[η̂n,k (x)>1/2] =
M∑

m=1
1]1/2,1](Y Am )1Am (x) (18)

où (Am)m partition définie à partir des rangs.

• k-NN = k-ppv !
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Consistance de l’algorithme k-NN

Pour que k-NN soit consistant, il faut choisir k = kn fonction croissante
de la taille de l’échantillon (cf. point sur le sur-apprentissage évoqués
dans le chapitre précédent concernant la taille de G).

Théorème admis : consistance de k-NN
Si kn tend vers +∞ lorsque n → +∞ moins vite que n, c’est à dire
k/n → 0, alors le prédicteur k-NN est consistant. Il en est de même du
classifieur k-NN.

En exercice, nous démontrerons que k-NN pour k = 1 n’est pas
consistant. La démonstration générale de la consistance de k-NN est
assez difficile.
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Exemple des iris de Fisher -1-

• Exemple incontournable : classification des iris de Fisher.
• Utilisé par Ronald Fisher en 1936 (données d’Edgar Anderson).
• 50 échantillons des 3 espèces d’iris (setosa, virginica et versicolor). 4
variables statistiques : longueur et largeur des sépales et des pétales.

Figure 1 – Les 3 espèces d’Iris (de gauche à droite versicolor, setosa, virginica),
Crédit photo : Frank Mayfield et Kosaciec Szczecinkowaty, Wikipédia.
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Exemple des iris de Fisher -2-

Figure 2 – À gauche, nuage de points représentant les iris de Fisher (une
espèce par couleur) en fonction de la longueur et de la largeur de leur sépale. À
droite, une courbe indiquant les performances de k-ppv sur la tâche de
classification des iris, en fonction du nombre k.
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Exemple des iris de Fisher -3-

Figure 3 – Illustration d’un classifieur k-ppv pour k = 11, avec deux types de
poids différents. Les zones de couleur représentent l’espèce qui sera affectée à
une nouvelle observation selon la longueur et la largeur de son sépale.
Simulations effectuées sous Python.
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k-NN en régression

Figure 4 – Régression à l’aide de la méthode k-ppv. Un nuage de points
(rouges) bruité est généré en perturbant aléatoirement les points d’une
sinusöıde. La courbe bleue, issue de la méthode des k-ppv, doit reconstituer au
mieux cette sinusöıde. Les deux courbes à gauche correspondent à k = 5 pour
deux types de poids différents. Les 4 courbes de droite représentent la
régression pour des valeurs différentes de k = 1, 3, 5, 7. Simulations effectuées
sous Python.
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3. Arbres de décision et
algorithme CART



Arbre de décision -1-

Un graphe est un ensemble de nœuds reliés par des arêtes. Un arbre est
un graphe sans cycle.

Dans un arbre de décision, chaque nœud correspond à un sous-ensemble
A ⊂ X et un test statistique T (critère de segmentation, d’impureté) est
appliqué sur les variables explicatives x ∈ X. Si le test peut donner K
résultats 1, ..., K , alors le nœud (A, T ) donne naissance à k nœuds fils,
tel que l’ensemble Ak associé au ke fils est Ak = {x ∈ A : T (x) = k}.

L’algorithme est initialisé à la racine correspondant à A = X, puis on
itère le procédé. Des branches sont élaguées si elles ne dégradent pas trop
le taux d’erreur de l’arbre.

Différentes implémentations possibles selon :

• Les critères de segmentation choisis.
• Le critère d’arrêt.
• Le critère d’élagage. 18



Arbre de décision -2-

(A, T )

Nj

Nj,1

[Tj = 1] = [Xi ≥ s]

Nj,0

[Tj = 0] = [Xi ≤ s]

Figure 5 – Exemple d’arbre avec 5 nœuds et 4 arêtes. La racine A correspond à
l’ensemble X. À un nœud donné Nj de profondeur j est affecté un
sous-ensemble de X. Le test courant Tj est effectué sur les observations
contenues dans Nj , qui sont réparties dans les deux nœuds fils Nj,0 et Nj,0 en
fonction du résultat de Tj .
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Algorithme CART de Breiman, 1984

Algorithm 1: CART algorithm

Input: Arbre = nœud racine
// Expansion

for chaque nœud n de Arbre do
if n ̸= condition d’arrêt then

Choisir critère de segmentation T
Créer les nœuds fils
Maj : Arbre = Arbre ∪ nœuds fils

end
end
// Élagage

for chaque nœud n de Arbre do
if n = condition d’élagage then

Maj : Arbre = Arbre − nœuds fils et descendants
end

end
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CART exemple 1 : iris de Fisher (2 variables)

L’algorithme CART est appliqué à la base de données des iris de Fisher.

• À gauche, l’arbre de décision construit sur les variables longueur et
largeur de la sépale.
• À droite, la partition de l’ensemble X = R2 en fonction des critères.
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CART exemple 2 - Iris de Fisher (4 variables)
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CART exemple 3 : base de données des défauts de paiement
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Règle de classification

Une fois l’arbre construit, la règle de classification consiste simplement à
parcourir l’arbre depuis la racine :

• Pour un x ∈ X, on détermine la feuille (nœud terminal) qui le
contient en parcourant l’arbre de haut en bas.

• En classification, on affecte à x l’étiquette y correspondant à la
classe majoritairement représentée par les exemples xi de cette
feuille.

• En régression, on affecte à x la moyenne des étiquettes yi

correspondant aux exemples xi de la feuille.
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CART : segmentation, critère d’arrêt et élagage

Le critère d’arrêt vérifie l’une des conditions suivantes sur un seuil donné :

• Chaque feuille satisfait un seuil d’homogéné̈ıté.
• La profondeur de l’arbre dépasse le seuil.
• Le nombre de feuilles dépasse le seuil.
• L’effectif du nœud est inférieur au seuil.

La segmentation peut produire de bonnes performances sur l’ensemble
des données d’entrainement, mais est susceptible de provoquer du
sur-apprentissage si l’arbre est trop complexe. Un arbre avec moins de
branches aura une variance plus faible en contrepartie d’un biais un peu
plus fort.

Un stratégie pour simplifier l’arbre est d’élaguer des branches qui ne
contribuent pas trop à augmenter le risque estimé, c’est le processus
d’élagage (« pruning »).
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Critères de segmentation 1 : l’indice de Gini

• Indice de Gini ou entropie pour classification, variance pour régression.

Définition de l’indice de Gini

∀A ⊂ X, G(A) = 1 − Y 2
A − (1 − Y A)2 (19)

• G(A) = 0 ⇐⇒ Y A = 0 ou 1.

• Un nœud sera de bonne qualité (homogène, pur) si une très grande
majorité des étiquettes des exemples associés à ce nœud sont identiques.
Il est alors très discriminant et G(A) est presque nul.

• Pour évaluer la qualité d’un critère de segmentation, on calcule le gain
d’homogénéité lorsque A est segmenté en A1 et A2 :

IG(A1, A2) = G(A) − qG(A1) − (1 − q)G(A2) (20)

avec q = NA1/AA2 proportion des xi ∈ A qui se dirigent vers A1. CART
choisit la partition qui maximise IG à chaque étape.
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Critères de segmentation 2 : l’entropie

La quantité d’information de Shannon apportée par la réalisation d’un
évènement A est I(A) = −P(A) log2 P(A). Elle mesure la vraisemblance
de cet évènement.

L’entropie d’une va mesure l’information moyenne sur l’ensemble des
réalisations possibles. C’est le nombre moyen de questions binaires que
l’on doit poser pour déterminer la valeur exacte de la variable aléatoire.

Entropie d’une va ou d’une mesure de probabilité

H(X ) = −E[log2 P(X )] = −
n∑

i=1
pi log2 pi (21)

On l’utilise comme critère de segmentation en calculant l’entropie de la
mesure de probabilité empirique uniforme créée par la partition des
données (pi proportion de 1 (ou 0) dans chaque classe).

27



Critères de segmentation 3 : la variance en régression

• On rappelle que dans une tâche de régression, la valeur affectée à un
nœud est la moyenne des observations appartenant à ce nœud.

• L’hétérogéné̈ıté est mesurée par la variance du nœud. Si l’on note N le
nœud et y la moyenne des valeurs yi des observations se trouvant dans le
nœud correspondant,

V(N ) = 1
|N |

∑
i :xi ∈N

(yi − y)2. (22)

• La segmentation privilégie le découpage en deux nœuds homogènes
dont la variance sera la plus faible possible.
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Critère d’élagage CART -1-

• Élaguer pour éviter le sur-apprentissage et garder un modèle simple.
• Complexité d’un arbre donnée par sa dimension de Vapnik (hors

programme) ou bien son nombre de coupures ou sa profondeur.
• Tester tous les sous-arbres ? Trop coûteux. Méthode de Breiman : se

limiter à une suite de sous-arbres emboités de taille raisonnable.
• Choisir un arbre de la suite par minimisation d’un risque

d’ajustement.

Si T arbre dont les noeuds terminaux sont les Nm. Deux risques
d’ajustement classiques (respectivement régression et classification)

Rr (m) = 1
Nm

∑
i :xi ∈Nm

(yi − ym)2 et Rc(m) = 1
Nm

∑
i :xi ∈Nm

1[yi ̸=ym] (23)
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Critère d’élagage CART -2-

• On définit un critère côut/complexité par

Cα(T ) =
M∑

m=1
NmRm(T ) + Mα (24)

• M = |T | nombre de nœuds de T , α ≥ 0 paramètre d’ajustement.

• La somme représente l’erreur totale (le risque) sur l’arbre, le paramètre
αM pénalise le nombre total de feuilles (la complexité).

• On cherche l’arbre T qui minimise Cα(T ) pour α bien choisi (α = 0
arbre entier, α = ∞ racine uniquement).

• Approche CART de Breiman : régularise pour améliorer les
performances en prédiction, évite toute l’exploration de l’espace des
solutions, intègre une préférence pour la simplicité (règle de l’écart-type).
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Critère d’élagage CART -3-

Théorème de Breiman, 1984
Il existe une suite finie 0 = α0 < ... < αM avec M ≤ |T | et une suite
imbriquées de sous-arbres (Tαm )m avec

T = Tα0 ⊆ Tα1 ⊆ ... ⊆ TαM = racine (25)

telle que ∀α ∈ [αm, αm+1[ ,

Tm ∈ arg min
Ti ⊂T

Cα(Ti) (26)

• Choisir un arbre revient à choisir une valeur de α : sur le chemin de
coût/complexité, en augmentant α, on trouve une succession d’arbres
embôıtés de taille décroissante.

• Vidéo de Ricco Rakotomalala :
https://www.youtube.com/watch?v=if6QEtJP77E
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Mesure d’importance d’un arbre

• La visualisation de l’arbre peut donner une idée sur l’importance des
variables.

• Mais certaines variables possèdent une grande importance sans
apparaitre explicitement dans l’arbre.

• Difficile de quantifier l’importance juste en regardant l’arbre !
• C’est le même problème que la significativité d’un régresseur dans

une régression linéaire ou logistique.
• La mesure d’importance d’un arbre est basée sur le gain d’impureté

des noeuds internes.

Plus de détails seront donnée en TP.
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CART : exemple en classification

Figure 6 – Classification des iris de Fisher par arbre CART profondeur 4 (à
gauche) et k-ppv pour k = 7 (à droite).
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CART : exemple en régression

Figure 7 – Régression CART. Nuage de points (oranges) généré avec sinusöıde + bruit

aléatoire. Objectif : reconstruire la courbe avec arbre de profondeur 2 (en bleu) ou 5 (en vert). 34



Arbres : une méthode non linéaire

En fonction des données, les arbres peuvent obtenir de meilleures
performances (ou pas) que les méthodes linéaires.
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Remarques finales

• Les arbres sont des modèles hiérarchiques, non linéaires, itératifs.
• Ils sont adaptés aux problèmes continus, discrets, multiclasses,

multimodes.
• Ils prédisent par l’intermédiaire d’une stratification (partition) de

l’espace des données.
• Les arbres proposent une méthode graphique intuitive et facile à

comprendre.
• Ils ne sont pas performants !
• Ils ne sont pas robustes au bruit dans les données.
• Variantes diverses : CID3, C4.5, C5, CHAID, MARS, QUEST, etc.

Des méthodes plus robustes et ayant de meilleures performances peuvent
se déduire des arbres de décision : les forêts aléatoires et le bagging, par
exemple, dont nous parlerons dans un autre chapitre.
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