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1. Principe des algorithmes a
base de partition



Introduction -1-

o F ensemble des fonctions de X dans Y.
e G C F dictionnaire.

1 méthode d'apprentissage supervisé = 1 choix de dictionnaire G.

Choix populaire : fonction constante / morceaux sur 1 partition de X.

= algorithme des plus proches voisins k-pp ou k-NN (pour k Nearest
Neighbors), arbres de décision et de régression avec |'algorithme CART
(ClAssification and Regression Tree).

A = (Aq, ..., Ay) partition de X :
X={JAn (1)

G(A) C F(X,Y) ensemble des fonctions constantes sur chaque A, € A.



Introduction -2-

La partition peut étre aléatoire, déterminée par D,,.

Soit g, = @n(-,.A) le minimiseur du risque empirique sur le dictionnaire
G(A) et Ny, le nombre d'exemples appartenant a A,

gn € argmin R, (g )—argmlnf 1(Yi, g(Xi)) et Ny = 1a,(
g€G(A) geG(A) N ; Z
Classifieur binaire optimal
1 siVa >1/2
Vm=1.M,Yx € Am, 8a(x, A) =1 am si Ya, =1/2 (2)
0 siVa <1/2

Minimiseur du risque empirique pour la régression MC

M M i
A= Vada()=3 (,\} D YfﬂAm(X")> Lanl) - (3)
m=1 m=1 =1

Démonstration en exercice !



Npm = 8 éléments
[ 3t 7Am =5/8
= &n(x) =1




Méthodes a base de partition -1-

Soit A = (Aq, ..., Ay) une partition de X et G = G(.A) classe des
fonctions constantes sur chaque élément de la partition :

G={g:X—Y: Vm=1,.... M, g constante sur A,,} (4)

Le minimiseur du risque empirique associé a cette partition est la fonction
n

~ 1
8n = 8n(., A) = argmin= > " I(V;,8(X))) (5)
geg(A) N i=1

Notons N, le nombre d'observations X; de I'échantillon qui se trouvent
dans I'élément A, de la partition :

N, = z_; 1a (X)) (6)



Méthodes a base de partition -2-

et notons Y, la moyenne des étiquettes observées dans I'élément A, :
n
Y= Yila,(X) (7)
i=1

Alors le minimiseur du risque empirique pour la classification binaire est,
si x € Am,

8n(x) =Ly ~1p (8)

Vm=1,..., M. Autrement dit :

M
gn(x) = Z 11[7m>1/2]]lAm(X) (9)

m=1



Méthodes a base de partition -3-

On généralise facilement de classifieur binaire a une situation multiclasses
avec Y ={1,...,K}. ¥x € X,

M n
1
Z.(x) = arg max — Tiy—qla (X)) | 1a (x 10
) =rgmac3” (03t 109 (0
M

= arg maxz Wi kL a, (X) (11)

k=1,..K "1

avec Wm x = Npm(k)/Nm proportion des observations dans A, pour
lesquelles Y = k.



2. Algorithme des k plus proches
voisins



Méthode des k-ppv (k-NN)

Soit k < n. Vx € RY, Vi=1,...n, di(x) = ||X; — x||
Soient ri(x) indice du ieéme ppv de x parmi Xi,..., X, :

et par récurrence sur k > 1,

d()=_ mn  d(x)
) i=1..ni#nmn,..,rk—1
rn(x) =4 <
k() J dJ(X < min d,'(X)
1<i<jii#n,..,re—1

(12)

(13)



Partition définie par les rangs

Vk € [1,..,n], les di(x) définissent une partition Ax = (Am k)m telle que,
Vm=1,...M:

An={xeX=R?: C,=(rn(x),..., (x))} (16)

C» combinaison de k éléments parmi net M = ( | ). Les A, sont les
parties de X pour lesquelles x — (r1(x), ..., rk(x)) est constante : la
partition forme des zones caractérisées par un choix de k observations
parmi n et les points de cette zone sont les plus prés des k observations
caractérisant la zone. Pour x,x’ € A, les k-ppv de x et x’ parmi

Xi, ..., X, sont les mémes. Si x € A, et x' € Ay avec m# m', les k
-ppv de x sont # des k-ppv de x’.



Diagrammes de Voronoi -1-

Ces partitions forment des diagrammes de Voronoi. Chaque zone est une
cellule de Voronoi. Les figures illustrent des partitions ppv pour k = 1.

Cellules de Voronoi pour k = 1.

https://strongriley.github.io/d3/ex/voronoi.html
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https://strongriley.github.io/d3/ex/voronoi.html

Diagrammes de Voronoi -2-
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Prédicteur et classifieur des k-ppv

Prédicteur k-NN pour la régression aux moindres carrés
M
k() =Y Ya,la,(x)
m=1
ot (Anm)m partition définie a partir des rangs.
Classifieur binaire k~-NN

M
&nk(x) = Lo co>1/2 = Z Lj1/21)(Ya,)1a,(x)
m=1

ol (An)m partition définie a partir des rangs.

e k-NN = k-ppv!

(18)
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Consistance de I'algorithme k-NN

Pour que k-NN soit consistant, il faut choisir k = k, fonction croissante
de la taille de I'échantillon (cf. point sur le sur-apprentissage évoqués
dans le chapitre précédent concernant la taille de G).

Théoreme admis : consistance de k-NN

Si k, tend vers +oo lorsque n — 400 moins vite que n, c'est a dire
k/n — 0, alors le prédicteur k-NN est consistant. Il en est de méme du
classifieur k-NN.

En exercice, nous démontrerons que k-NN pour kK = 1 n'est pas
consistant. La démonstration générale de la consistance de k-NN est

assez difficile.
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Exemple des iris de Fisher -1-

e Exemple incontournable : classification des iris de Fisher.

e Utilisé par Ronald Fisher en 1936 (données d'Edgar Anderson).

e 50 échantillons des 3 espéces d'iris (setosa, virginica et versicolor). 4
variables statistiques : longueur et largeur des sépales et des pétales.

Figure 1 — Les 3 espéces d'lris (de gauche a droite versicolor, setosa, virginica),
Crédit photo : Frank Mayfield et Kosaciec Szczecinkowaty, Wikipédia.
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Exemple des iris de Fisher -2-
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Figure 2 — A gauche, nuage de points représentant les iris de Fisher (une

espéce par couleur) en fonction de la longueur et de la largeur de leur sépale. A

droite, une courbe indiquant les performances de k-ppv sur la tache de

classification des iris, en fonction du nombre k.
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Exemple des iris de Fisher -3-

Classification Classification

(k=11, poids="uniform') (k=11, poids="distance')
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Figure 3 — lllustration d'un classifieur k-ppv pour k = 11, avec deux types de
poids différents. Les zones de couleur représentent |I'espéce qui sera affectée a
une nouvelle observation selon la longueur et la largeur de son sépale.
Simulations effectuées sous Python.
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k-NN en régression

Régression kppv (k = 5, poids = 'uniform’) Régression kopy (k = 1) Régression kppy (k = 3)
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Figure 4 — Régression a I'aide de la méthode k-ppv. Un nuage de points
(rouges) bruité est généré en perturbant aléatoirement les points d'une
sinusoide. La courbe bleue, issue de la méthode des k-ppv, doit reconstituer au
mieux cette sinusoide. Les deux courbes a gauche correspondent a kK =5 pour
deux types de poids différents. Les 4 courbes de droite représentent la
régression pour des valeurs différentes de k = 1,3,5,7. Simulations effectuées
sous Python.
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3. Arbres de décision et
algorithme CART




Arbre de décision -1-

Un graphe est un ensemble de nceuds reliés par des arétes. Un arbre est
un graphe sans cycle.

Dans un arbre de décision, chaque noceud correspond a un sous-ensemble
A C X et un test statistique T (critere de segmentation, d'impureté) est
appliqué sur les variables explicatives x € X. Si le test peut donner K
résultats 1, ..., K, alors le nceud (A, T) donne naissance a k nceuds fils,
tel que I'ensemble Ay associé au ke fils est Ay = {x € A: T(x) = k}.

L'algorithme est initialisé a la racine correspondant a A = X, puis on
itére le procédé. Des branches sont élaguées si elles ne dégradent pas trop
le taux d'erreur de I'arbre.

Différentes implémentations possibles selon :

e Les critéres de segmentation choisis.
e Le critére d'arrét.
e Le critére d'élagage. 18



Arbre de décision -2-

Figure 5 — Exemple d’arbre avec 5 nceuds et 4 arétes. La racine A correspond a
I'ensemble X. A un nceud donné N de profondeur j est affecté un
sous-ensemble de X. Le test courant T; est effectué sur les observations
contenues dans N, qui sont réparties dans les deux nceuds fils Nj o et Njo en

fonction du résultat de T;.
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Algorithme CART de Breiman, 1984

Algorithm 1: CART algorithm

Input: Arbre = noeud racine
// Expansion
for chaque nceud n de Arbre do

if n # condition d'arrét then
Choisir critere de segmentation T

Créer les nceuds fils
Maj : Arbre = Arbre U nceuds fils
end
end
// Elagage
for chaque nceud n de Arbre do
if n = condition d'élagage then
| Maj : Arbre = Arbre — noeuds fils et descendants
end

end




L'algorithme CART est appliqué a la base de données des iris de Fisher.
oA gauche, I'arbre de décision construit sur les variables longueur et
largeur de la sépale.

o A droite, la partition de I'ensemble X = R2 en fonction des criteres.

= setosa
setosa = versicolor
.33 .33 .33 = virginica

00%
Sepal.Length < 5.5

Fd
o

Sepal. Width >= 2.8 Sepal.Length < 6.2

Sepal.Width
@
=3

Sepal.Width >= 3.1

6
Sepal.Length
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CART exemple 2 - Iris de Fisher (4 variables)

petal length (cm) = 2.6
ini = 0.666

samples = 135
value = [47, 43, 45]
class = setosa

gini = 0.
samples = 47
value = [0, 42, 5]
class = versicolor

node #4
petal width (cm) < 1.65
gini = 0.048
samples = 41
value = [0, 40, 1]

class = versicolor class = vir

node #9
node #5 sepal length (cm) < 6.95
gini = 0.444.

value

class = versicolor class

class = versicolor

samples = 2
value = [0, 2, 0]
class = versicolor

22



CART exemple 3 : base de données des défauts de paiement

23



Reégle de classification

Une fois I'arbre construit, la régle de classification consiste simplement a

parcourir |'arbre depuis la racine :

e Pour un x € X, on détermine la feuille (noeud terminal) qui le
contient en parcourant |'arbre de haut en bas.

e En classification, on affecte a x I'étiquette y correspondant a la
classe majoritairement représentée par les exemples x; de cette
feuille.

e En régression, on affecte a x la moyenne des étiquettes y;
correspondant aux exemples x; de la feuille.

24



CART : segmentation, critére d’arrét et élagage

Le critére d'arrét vérifie |'une des conditions suivantes sur un seuil donné :

e Chaque feuille satisfait un seuil d’homogénéité.
e La profondeur de |'arbre dépasse le seuil.
e Le nombre de feuilles dépasse le seuil.

o |'effectif du noeud est inférieur au seuil.

La segmentation peut produire de bonnes performances sur I'ensemble
des données d'entrainement, mais est susceptible de provoquer du
sur-apprentissage si |'arbre est trop complexe. Un arbre avec moins de
branches aura une variance plus faible en contrepartie d'un biais un peu
plus fort.

Un stratégie pour simplifier I'arbre est d'élaguer des branches qui ne
contribuent pas trop a augmenter le risque estimé, c'est le processus
d'élagage (« pruning »).

25



Critéres de segmentation 1 : I'indice de Gini

e Indice de Gini ou entropie pour classification, variance pour régression.
Définition de I'indice de Gini

VACK, G(A)=1-Y4—(1-Ya)? (19)
¢ G(A)=0 « Y4=0oul.

e Un nceud sera de bonne qualité (homogene, pur) si une trés grande
majorité des étiquettes des exemples associés a ce nceud sont identiques.
Il est alors tres discriminant et G(A) est presque nul.

e Pour évaluer la qualité d'un critere de segmentation, on calcule le gain
d'homogénéité lorsque A est segmenté en A; et A, :

I6(A1, A2) = G(A) — qG(A1) — (1 — q)G(A2) (20)

avec g = Na, /Aa, proportion des x; € A qui se dirigent vers A;. CART
choisit la partition qui maximise /g a chaque étape.

26



Criteres de segmentation 2 : I'entropie

La quantité d'information de Shannon apportée par la réalisation d'un
événement A est I(A) = —P(A) log, P(A). Elle mesure la vraisemblance
de cet événement.

L'entropie d'une va mesure |'information moyenne sur I'ensemble des
réalisations possibles. C'est le nombre moyen de questions binaires que
I'on doit poser pour déterminer la valeur exacte de la variable aléatoire.

Entropie d’une va ou d’une mesure de probabilité

H(X) = —Ellog, B(X)] = — 3" pi log, pi (21)
i=1

On I'utilise comme critére de segmentation en calculant I'entropie de la
mesure de probabilité empirique uniforme créée par la partition des
données (p; proportion de 1 (ou 0) dans chaque classe).

27



Criteres de segmentation 3 : la variance en régression

e On rappelle que dans une tiche de régression, la valeur affectée a un
nceud est la moyenne des observations appartenant a ce nceud.

o L'hétérogénéité est mesurée par la variance du nceud. Si I'on note A le
nceud et ¥ la moyenne des valeurs y; des observations se trouvant dans le
nceud correspondant,

VW) = — 3 (-7 (22)

|N| ixi€N

e La segmentation privilégie le découpage en deux nceuds homogeénes
dont la variance sera la plus faible possible.

28



Critére d’élagage CART -1-

e Elaguer pour éviter le sur-apprentissage et garder un modele simple.

e Complexité d'un arbre donnée par sa dimension de Vapnik (hors
programme) ou bien son nombre de coupures ou sa profondeur.

e Tester tous les sous-arbres ? Trop coliteux. Méthode de Breiman : se
limiter 3 une suite de sous-arbres emboités de taille raisonnable.

e Choisir un arbre de la suite par minimisation d'un risque
d'ajustement.

Si T arbre dont les noeuds terminaux sont les \,,,. Deux risques
d’'ajustement classiques (respectivement régression et classification)

Re(m) =7 > (i —7m) et Rc(m)=,\,i 2, Moy (3

M i eN, M X €Np

29



Critére d’élagage CART -2-

e On définit un critére cdut/complexité par
M
Ca(T) = NpRm(T) + Ma (24)
m=1

e M = |T| nombre de noeuds de T, « > 0 paramétre d'ajustement.

e La somme représente |'erreur totale (le risque) sur I'arbre, le paramétre
aM pénalise le nombre total de feuilles (la complexité).

e On cherche I'arbre T qui minimise C,(T) pour « bien choisi (. =0
arbre entier, & = oo racine uniquement).

e Approche CART de Breiman : régularise pour améliorer les
performances en prédiction, évite toute |'exploration de |'espace des
solutions, intégre une préférence pour la simplicité (régle de I'écart-type).

30



Critére d’élagage CART -3-

Théoréme de Breiman, 1984

Il existe une suite finie 0 = ap < ... < apy avec M < |T| et une suite
imbriquées de sous-arbres (T, )m avec

T="TyC T C... C T, = racine (25)
telle que Vo € [am, amia|

Tm € argmin C,(T;) (26)

T,CT

e Choisir un arbre revient a choisir une valeur de « : sur le chemin de
colit/complexité, en augmentant «, on trouve une succession d’arbres
emboités de taille décroissante.

e Vidéo de Ricco Rakotomalala :
https://www.youtube.com/watch?v=1f6QEtJP77E

31
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Mesure d’importance d’un arbre

e La visualisation de I'arbre peut donner une idée sur I'importance des
variables.

e Mais certaines variables possédent une grande importance sans
apparaitre explicitement dans |'arbre.

o Difficile de quantifier I'importance juste en regardant I'arbre !

e C'est le méme probléme que la significativité d'un régresseur dans
une régression linéaire ou logistique.

e La mesure d'importance d'un arbre est basée sur le gain d'impureté
des noeuds internes.

Plus de détails seront donnée en TP.
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Arbre (profondeur 4) KNN (k=7)

Figure 6 — Classification des iris de Fisher par arbre CART profondeur 4 (a

gauche) et k-ppv pour k =7 (a droite).
33



CART : exemple en régression

Régression avec arbres de décision

154 o data
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Figure 7 — Régression CART. Nuage de points (oranges) généré avec sinusoide + bruit

aléatoire. Objectif : reconstruire la courbe avec arbre de profondeur 2 (en bleu) ou 5 (en vert).
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Arbres : une méthode non linéaire

En fonction des données, les arbres peuvent obtenir de meilleures

performances (ou pas) que les méthodes linéaires.

Xz
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Remarques finales

e Les arbres sont des modeéles hiérarchiques, non linéaires, itératifs.

e |Is sont adaptés aux problemes continus, discrets, multiclasses,
multimodes.

e lIs prédisent par I'intermédiaire d'une stratification (partition) de
|'espace des données.

e Les arbres proposent une méthode graphique intuitive et facile a
comprendre.

e |Is ne sont pas performants!
e |ls ne sont pas robustes au bruit dans les données.

e Variantes diverses : CID3, C4.5, C5, CHAID, MARS, QUEST, etc.

Des méthodes plus robustes et ayant de meilleures performances peuvent
se déduire des arbres de décision : les foréts aléatoires et le bagging, par
exemple, dont nous parlerons dans un autre chapitre.
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