
Chapitre 4. Méthodes liées à la convexification

Claude Petit, Insee et université de Rennes - claude.petit@univ-rennes.fr
2025-2026

Overview

1. Convexification de l’ensemble des classifieurs et de la perte

2. Espaces de Hilbert à noyau auto-reproduisant

3. Machines à vecteurs de support

4. Boosting

1

1. Convexification de l’ensemble
des classifieurs et de la perte

Fonction et ensemble convexe

Ensemble convexe
Soi E un espace vectoriel et C ⊂ E . C est convexe si pour tout x , y ∈ C
et λ ∈ [0, 1], λx + (1 − λ)y ∈ C .

Fonction convexe
Soit C ⊂ E un ensemble convexe. Une fonction f : C −→ R est convexe
si ∀x , y ∈ C , ∀λ ∈ [0, 1]

f (λx + (1 − λ)y) ≤ λf (x) + (1 − λ)f (y)

Une fonction convexe définie sur un ensemble convexe fermé atteint son
minimum.

2

Problématique : pourquoi convexifier ?

• La minimisation du risque empirique est difficile à mettre en œuvre à
cause de la non-convexité de G et de la non-convexité de Rn(g).

• Minimiser une fonction convexe dans un ensemble convexe est un
problème « facile » à résoudre.

• Il faut changer l’espace des classifieurs G pour qu’il devienne
convexe.

• Il faut changer la forme du risque R(g) pour en faire une fonction
convexe.

On suppose dans ce chapitre, pour simplifier les formules, que
Y = {−1, 1} au lieu de Y = {0, 1}.

3

Convexification de l’espace de recherche G

• Avant : g : X = Rd −→ {−1, 1}.
• Maintenant : h : X −→ R car F(X,R) est convexe.

On affecte à x l’étiquette −1 si h(x) ≤ 0 et 1 si h(x) > 0 :

g(x) = sgn(h(x)) où sgn est la fonction signe :

sgn(u) =
{

1 si u > 0
−1 si u ≤ 0

(1)

Toute fonction réelle h peut alors être considérée comme prédicteur.

Convexification de G en H
On remplace F(X, {−1, 1}) par F(X,R)
On remplace g ∈ G par h ∈ H ⊂ F(X,R)

4

Forme de la perte de prédiction et du risque

La perte de prédiction est donnée par

l(y , h(x)) = 1[y ̸=sgn(h(x))] = 1[y=1]1[1̸=sgn(h(x))] + 1[y=−1]1[−1̸=sgn(h(x))]

= 1[y=1]1[h(x)≤0] + 1[y=−1]1[h(x)>0]

= 1[y=1]1[yh(x)≤0] + 1[y=−1]1[yh(x)<0]

[yh(x) < 0] ⊂ [yh(x) ≤ 0] ⇒
l(y , h(x)) ≤ 1[y=1]1[yh(x)≤0] + 1[y=−1]1[yh(x)≤0] ≤ 1[yh(x)≤0]

l(y , h(x)) ≥ 1[yh(x)<0] et H ⊂ F(X,R)/ P[h(X) = 0] = 0 ∀h ∈ H ⇒

Forme de la fonction de perte et du risque

l(y , h(x)) = 1[yh(x)≤0] = 1[0,+∞[(−yh(x))
R(g) = R(sgn(h)) = E

[
1[0,+∞[(−Yh(X))

]

5

Convexification de la fonction de perte

On définit le minimiseur du risque empirique convexifié par

ĥn ∈ arg min
h∈H

1
n

n∑
i=1

1[0,+∞[(−Yih(Xi)) (2)

ĥn appartient à H. Mais 1[0,+∞[n’est pas convexe. On la remplace par ϕ
convexe, et on appelle ϕ-risque du classifieur h la quantité :

A(h) = Rn(ϕ, h) = E[ϕ(−Yh(x))] (3)

Le ϕ-classifieur de Bayes est le prédicteur minimisant le ϕ-risque :

h⋆ ∈ arg min
h∈F

A(h) (4)

Le minimiseur sur H ⊂ F du ϕ-risque empirique est le prédicteur

ĥn ∈ arg min
h∈H

1
n

n∑
i=1

ϕ(−Yih(Xi)) (5)

6

Fonctions convexes usuelles pour le ϕ-risque

Objectif : choisir pour ϕ un majorant convexe de 1[0,+∞[pour qu’un
classifieur de ϕ-risque faible ait un faible risque de classification.

Les fonctions traditionnellement utilisées sont les suivantes :

Perte charnière ϕ(x) = (1 + x)+

Perte de Boosting ϕ(x) = ex

Perte logistique ϕ(x) = log2(1 + ex)

Perte quadratique ϕ(x) = (1 + x)2

7

Fonctions de perte convexes

−1 −0.5 0.5 1 1.5 2

1

2

3

x

log2(1 + ex)
(1 + x)+

(1 + x)2

ex

1[0,∞[

Figure 1 – Fonctions de perte convexe ϕ : courbes de ϕ(yh(x)).

8

Consistance du minimiseur du ϕ-risque

Théorème de consistance
Soit ϕ : R −→ R une fonction convexe telle que ∀x ∈ R,

x(ϕ(x) − ϕ(−x)) ≥ 0. (6)

Soit ψ : [0, 1] −→ R la fonction définie par

ψ(p) = inf
u∈R

(pϕ(−u) + (1 − p)ϕ(u)) (7)

S’il existe γ ∈ [0, 1] et c > 0 tels que ∀p ∈ [0, 1],

|1 − 2p| ≤ c (ϕ(0) − ψ(p))γ
, (8)

alors pour toute fonction de prédiction h,

R[sgn(h)] − R[g⋆] ≤ c (A(h) − A(h⋆))γ (9)

Démonstration en exercice !
9

2. Espaces de Hilbert à noyau
auto-reproduisant

Espace de Hilbert : définition

On suppose maintenant que H a une structure d’espace de Hilbert :
espace vectoriel normé muni d’un produit scalaire qui en fait un espace
métrique complet :

• l’espace euclidien Rn muni de ⟨x , y⟩ = xT y .
• l’ensemble des suites de carré sommable l2(N) muni de

⟨x , y⟩ =
∑+∞

k=1 xkyk .
• l’ensemble des fonctions de carré intégrable L2(R). muni de

⟨f , g⟩ =
∫ +∞

−∞ f (x)g(x)dx .
• idem sur C en ajoutant un conjugué sur le second terme.

Les espaces de Hilbert généralisent en dimension infinie la notion
d’espace euclidien : on peut travailler de façon ”géométrique” dans
l’espace : avec des normes, angles, projections orthogonales.

10

Espace de représentation des données

Données de X pas facilement manipulables ⇒

• on les transforme en les envoyant...
• ... dans un espace (vectoriel) de représentation (de redescription, ou

features space),
• via une fonction de représentation ϕ (features map).
• ici, l’espace de représentation sera un espace de Hilbert H.

X Hϕ

•
•

•
•

•

•

•
•

Figure 2 – H représente les données (features) issues de X

11

Noyau de similarité

Plutôt qu’une représentation individuelle, il est souhaitable de représenter
les données par couples en respectant les similarités entre objets de X :

K :X × X −→ R

(x , y) −→ K (x , y)

• noyau symétrique : K (x , y) = K (y , x).
• semi-défini positif : ∀xi , xj ∈ X,∀ai , aj ∈ R,

∑
i
∑

j aiajK (xi , xj) ≥ 0.
• qui définit une matrice carrée réelle : (K (xi , xj))i,j pour i , j = 1, ..., n.

On peut mélanger les deux points de vue en utilisant ϕ : X → H et le
noyau K : X × X → R :

K (x , y) = ⟨ϕ(x), ϕ(y)⟩

12

Pourquoi augmenter la dimension ? 1

• Si X possède beaucoup de paramètres (de features), H peut être de
grande dimension.

• C’est même l’objectif de ϕ : travailler dans un espace où il y a
beaucoup de « place », de degrés de liberté.

• Si ϕ choisie de façon adéquate, possible de ne pas avoir à effectuer
explicitement les produits scalaires en grande dimension grâce à l’astuce
du noyau (« kernel trick »).

• K mesure la similarité entre les données x et y ∼ généralisation d’une
fonction de covariance.

13

Pourquoi augmenter la dimension ? 2

• Travailler dans un espace où il y a beaucoup de « place », de degrés de
liberté.

Espace initial X

ϕ

Feature Space H

Figure 3 – On envoie les données initiales dans un espace (abstrait) de
dimension plus grande, afin de pouvoir séparer plus facilement les classes.

14

Pourquoi augmenter la dimension ? 3

• K mesure la similarité entre les données x et y ∼ généralisation d’une
fonction de covariance.

x x ′

Φ

Φ(x) Φ(x ′)

Figure 4 – La fonction de représentation ϕ transforme en fait un point de X en
une fonction Kx = ϕ(x) de X dans R (considérée comme un élément de
l’espace de Hilbert H).

15

Les noyaux usuels

• Vanille : K (x , y) = ⟨x , y⟩.
• Sigmöıde : K (x , y) = tanh(⟨x , y⟩).
• Gaussien (RBF) : K (x , y) = exp

(
− 1

2σ2 ||x − y ||2
)
.

• ReLU : K (x , y) = min(x , y) = x − ReLU(x − y) = y − ReLU(y − x).
• Polynomial : K (x , y) = (c + ⟨x , y⟩)p.
• Exponentiel : K (x , y) = exp (−γ||x − y ||).

L’espace de représentation associé au noyau gaussien est un espace de
Hilbert de dimension infinie.

On remarque que ϕ n’apparâıt pas dans les formules.

16

Un théorème abstrait mais très important

Théorème de Mercer-Kolmogorov-Aronszajn (MKA)
Si K est un noyau continu, défini positif sur un ensemble X, alors il existe
un unique espace de Hilbert H et une application de représentation
ϕ : X → H tel que tels que ∀x , y ∈ X,

K (x , y) = ⟨ϕ(x), ϕ(y)⟩

Mercer (1909) pour X compact de Rd , Kolmogorov (1941) pour X
dénombrable et Aronszajn (1944) pour le cas général.

• H est unique, mais pas ϕ.
• On espère que si H est de grande dimension (éventuellement infinie)

les données vont devenir plus facile à classifier (séparer).
• L’astuce du noyau (kernel trick) : on n’a pas besoin de spécifier ϕ et

d’évaluer ϕ(x) et ϕ(y), seul compte K (x , y).

17

Dual d’un espace de Hilbert et théorème de Riesz

• On souhaite choisir pour H un espace de fonctions h : X −→ R.
• Une forme linéaire continue (FLC) sur un espace de Hilbert est une

fonction linéaire continue de H dans R.
• Leur ensemble est un e.v. H′ appelé dual de H.
• Le théorème de représentation de Riesz dit que H ≃ H′.

Théorème de représentation de Riesz
∀L ∈ H′, ∃!f ∈ H tel que L(h) = ⟨f , h⟩, ∀h ∈ H.
Réciproquement, ∀f ∈ H, L(h) = ⟨f , h⟩ définit un élément de H′.

L application linéaire continue ⇐⇒ |L(h)| ≤ δ||h||, ∀h ∈ H
⇐⇒ ||L|| < δ ⇐⇒ L bornée.

18

RKHS

∀x ∈ X, soit Lx : H −→ R telle que Lx (h) = h(x).
Lx reproduit l’action de h sur x , c’est la fonction d’évaluation en x .

• ∀x ∈ X, Lx ∈ H′.
• H est un RKHS si, et seulement si ∀x ∈ X, Lx est continue.
• Le théorème de Riesz ⇒

∀x ∈ X, ∃!Kx ∈ H tel que Lx (h) = ⟨Kx , h⟩ = h(x), ∀h ∈ H

On peut poser K (x , y) = ⟨Kx ,Ky ⟩ = ⟨ϕ(x), ϕ(y)⟩, c.-à-d. Kx = ϕ(x).
K est un noyau reproduisant, unique, symétrique, semi-défini positif.

Correspondance entre noyau et RKHS (réciproque de Aronszajn)
H est un RKHS si, et seulement s’il existe un noyau reproduisant
(unique) K vérifiant K (x , y) = ⟨Kx ,Ky ⟩, ∀x , y ∈ X.

Tout élément de H s’écrit de façon unique h =
∑n

i=1 αiKxi :
h(x) =

∑n
i=1 αiK (x , xi).

19

Le théorème du représentant

Théorème du représentant
• Soit K : X × X −→ R un noyau symétrique, défini positif.
• Soit H son RKHS.
• Soit Dn = {(xi , yi)} ∈ (X × R)n un échantillon.
• Soit l une fonction de perte.
• Soient λ > 0 et J fonction réelle strictement croissante.

Alors toute solution ĥn du problème de minimisation

arg min
h∈H

(
1
n

n∑
i=1

l(yi , h(xi)) + λJ (||h||)
)

s’écrit de façon unique sous la forme

ĥn(x) =
n∑

i=1
αiK (x , xi)

20

Beaucoup d’espaces abstraits...

X

H ∼ H′

ϕ

•x
•y

•
•

• ϕ(x) = Kx

• ϕ(y) = Ky

•
•

•h

K

•K (x , y) = ⟨ϕ(x), ϕ(y)⟩

R

Figure 5 – Les espaces X, H, H′ et R, ainsi que les fonctions ϕ et K .

21

3. Machines à vecteurs de
support

Machine à vecteurs de support : premier point de vue

Pour un t > 0, on pose

ĥSVM(t) ∈ arg min
h∈H:||h||≤t

1
n

n∑
i=1

ϕ(−Yih(Xi)) (10)

⇐⇒ ĥSVM(λ) ∈ arg min
h∈H

(
1
n

n∑
i=1

ϕ(−Yih(Xi)) + λ||h||2
)
. (11)

• ĥ est une fonction et H est un espace de fonctions de X dans R.
• En classification, on choisit ϕ(x) = (1 + x)+. En régression,
ϕ(x) = x2 ; l’expression ϕ(−Yh(X)) est remplacée par ϕ(Y − h(X)).

• Si H espace de Hilbert à noyau auto-reproduisant (RKHS) alors on
dit que ĥn = ĥSVM est un prédicteur à base de noyau, ou machine à
vecteurs de support (SVM).

• L’hyperparamètre t (ou λ) est calculé par validation croisée.

22

Machine à vecteurs de support : classifieur SVM

• Comme H est un RKHS, la solution de

arg min
h∈H:||h||≤t

1
n

n∑
i=1

ϕ(−Yih(Xi)). (12)

est de la forme (théorème du représentant)

ĥSVM(.) = ĥn(.) =
n∑

i=1
αiK (., xi) (13)

avec K noyau RKHS de l’espace H, α1, ...αn ∈ R et x1, .., xn données
observées de l’échantillon.

• Les αi sont facilement et rapidement déterminés par une méthode
d’optimisation convexe.

• Les SVM ont été inventées par Vapnik dans les années 1990.
23

Machine à vecteurs de support : point de vue traditionnel

On dispose d’un échantillon Dn de n observations (xk , yk), avec xk ∈ Rd

et y = ±1, que l’on peut séparer linéairement par un hyperplan :{
wT xk + b > 0 si yk = 1
wT xk + b < 0 si yk = −1

L’hyperplan séparateur est caractérisé par son vecteur normal w ∈ Rd et
un seuil b. Son équation est

wT x + b = 0

La distance euclidienne d’un point x ∈ Rd à l’hyperplan H est donnée
par :

d(x ,H) =
∣∣wT x + b

∣∣
||w ||

24

Séparateur de plus grande marge

La plus petite distance entre les observations et un hyperplan séparateur
(w , b) est

1
||w ||

n
min
i=1

yi(wT xi + b)

Le double de ce minimum s’appelle la marge. L’hyperplan de plus grande
marge a pour paramètres (w , b) les solutions de

arg max
w ,b

(
1

||w ||
n

min
i=1

yi(wT xi + b)
)

Les observations qui réalisent le minimum sont appelées les vecteurs de
support. Les séparateurs à vaste marge (SVM) sont des machines à
vecteurs de support au sens défini précédemment.

25

Illustrations des SVM - 1 -

w · x + b = 0
w · x + b = 1

w · x + b = −1

w

Marge : 2
||w ||

x1

x2

Figure 6 – 2 classes d’observations (bleu et vert) linéairement séparables. En rouge, l’hyperplan

séparateur de plus grande marge, en vert et bleu les hyperplans frontières de chaque classe et

vecteurs supports (centre jaune).

−1 0 1 2 3

−
1

0
1

2
3

−1 0 1 2 3

−
1

0
1

2
3

X1X1

X
2

X
2

−1 0 1 2 3

−
1

0
1

2
3

−1 0 1 2 3

−
1

0
1

2
3

X1X1

X
2

X
2

Figure 7 – Deux classes d’observations (bleu et rouge) mesurées par
l’intermédiaire de deux variables x1 et x2. À gauche, trois exemples de plans
séparateurs. À droite, le plan séparateur optimal, le plus éloigné des deux
nuages. Crédit : Introduction to Machine Learning with Python. James, Witten,
Hastie, Tibshirani. Figures du chapitre 9.

26

Illustrations des SVM - 2 -

−1 0 1 2 3

−
1

0
1

2
3

−1 0 1 2 3

−
1

0
1

2
3

X1X1

X
2

X
2

Figure 8 – Deux classes d’observations (bleu et rouge) mesurées par
l’intermédiaire de deux variables x1 et x2. À gauche, trois exemples de plans
séparateurs. À droite, le plan séparateur optimal, le plus éloigné des deux
nuages. Crédit : Intro. to ML with Python. James, Witten, Hastie, Tibshirani.

27

Illustrations des SVM - 3 -

−1 0 1 2 3

−
1

0
1

2
3

X1

X
2

0 1 2 3

−
1
.0

−
0
.5

0
.0

0
.5

1
.0

1
.5

2
.0

X1

X
2

Figure 9 – Deux classes d’observations (bleu et rouge) mesurées par
l’intermédiaire de deux variables x1 et x2. À gauche, le plan séparateur de plus
grande marge avec les points les vecteurs de support à la frontière. À droite, un
exemple de nuages non linéairement séparable à cause d’un point rouge ajouté
par rapport au nuage précédent (trouver où...). Crédit : Introduction to
Machine Learning with Python. James, Witten, Hastie, Tibshirani. Figures du
chapitre 9.

28

Résolution du problème d’optimisation -1-

La marge vaut γ = 1/||w ||. Maximiser γ ⇐⇒ minimiser ||w ||.

Condition de séparation des classes : ∀i = 1, ..., n :

sgn(h(xi)) = yi ⇐⇒ yih(xi) ≥ 1 ⇐⇒ yi(wT xi + b) ≥ 1

Problème d’optimisation (primal){
minw ,b ||w ||2/2
s.c. yi(wT xi + b) ≥ 1 ∀i = 1, ..., n.

(14)

Problème d’optimisation convexe ⇒ lagrangien + conditions de
Karush-Kuhn-Tucker (KKT). ⇒ problème dual.

Démo et résolution en exercice.

29

Résolution du problème d’optimisation -2-

Problème d’optimisation (dual)
arg max

α∈Rn
+

(n∑
i=1

αi −
n∑

i=1

n∑
j=1

αiαjyiyj ⟨xi , xj⟩ /2
)

s.c. αi ≥ 0 ∀i = 1, ..., n, ;
n∑

i=1
αiyi = 0.

(15)

On obtient d’abord les α⋆
i , on en déduit w⋆ et b⋆ qui donnent

l’hyperplan optimal :

w⋆ =
n∑

i=1
α⋆

i yixi

ĥn(x) = h⋆(x) =
n∑

i=1
α⋆

i yi ⟨xi , x⟩ + b⋆

Les données de l’échantillon correspondant à α⋆
i > 0 sont les vecteurs

support (seuls à contribuer à la solution).
30

Cas non linéairement séparables, lien entre les 2 points de vue

Si données non linéairement séparables (grande majorité des cas), on
généralise par une perte convexe ϕ et on reécrit le pb. d’optimisation :

min
w ,b

(
||w ||2 + c

n

n∑
i=1

ϕ(−yih(xi))
)

⇐⇒ min
w ,b

(
1
n

n∑
i=1

ϕ(−yih(xi)) + λ||w ||2
)

avec λ = 1/2c paramètre de régularisation.

Dans le pb. dual, ⟨x , y⟩ se transforme en K (x , y) = ⟨ϕ(x), ϕ(y)⟩ et... on
retrouve le premier point de vue.

31

Illustration des SVM avec noyaux non linéaires -1-

−4 −2 0 2 4

−
4

−
2

0
2

4

−4 −2 0 2 4

−
4

−
2

0
2

4

X1X1

X
2

X
2

−4 −2 0 2 4

−
4

−
2

0
2

4

−4 −2 0 2 4

−
4

−
2

0
2

4

X1X1

X
2

X
2

Figure 10 – 2 classes (bleu et rouge) mesurées par x1 et x2. En haut, données plus linéairement

séparables. En bas, après changement de x en ϕ(x) (fonction non linéaire). À gauche, ϕ polynome

degré 3, à droite, ϕ gaussienne radiale. Crédit : Intro. to ML with Pyton. James, Witten, Hastie. 32

Illustration des SVM avec noyaux non linéaires -2-

−1 −0.5 0 0.5 1

−0.5

0

0.5

Feature Space H

Figure 11 – Données non linéairement séparables en dimension 2, mais dont on
se doute qu’elles sont à symétrie circulaire. En dimension 3, elles correspondent
à deux nuages de hauteurs différentes qui sont linéairement séparables.
ϕ(x , y) = (x , y , x2 + y 2) et K(x , y) = ⟨ϕ(x), ϕ(y)⟩ = xT y + ||x ||2||y ||2.

33

Marge souple : principe

Un cas particulier « presque linéaire » est donné par le pb. à marge
souple : on autorise quelques écarts à l’hyperplan séparateur en
introduisant une variable d’ajustement (« slack » variable pour varaible
d’écart, souple, molle, etc.) :

ξi = (1 − yi(wxi + b))+, i = 1, ..., n.


arg min

w ,b,ξ

(
1
2 ||w ||2 + c

n∑
i=1

ξi

)

s.c. ξi ≥ (1 − yi(wxi + b))+, i = 1, ..., n.

c grand : pénalise fortement les ξi (peu de souplesse).
c petit : on peut s’écarter sensiblement de l’hyperplan.

Dans le pb. dual, les ξi disparaissent. Seule ̸= : condition αi ≤ c.
34

Marge souple : illustration

w · x + b = 0
w · x + b = 1

w · x + b = −1

w

Marge : 2
||w ||

ξ⋆
1

ξ⋆
2

x1

x2

Figure 12 – Marge souple avec 2 classes (en bleu et vert) non linéairement
séparables. 2 points (l’un vert, l’autre bleu) de part et d’autre de la marge. La
distance ξ⋆

1 et ξ⋆
2 à la frontière les caractérisent. 35

Marge souple : conclusion

• Dans le probème dual, les ξi disparaissent et la seule ̸= avec le
problème précédent est la condition αi ≤ c. w ne dépend toujours que
des vecteurs supports, pour lesquels la contrainte est saturée :

yi(wT xi + b) = 1 − ξi .

• Les vecteurs supports sont les xi tels que ξi = 0 ou ξi > 0, mais dans la
marge (bien classé si 0 < ξi < 1 et mal classé si ξi > 1). ⇐⇒ On tolère
quelques données mal classées mais permet d’être appliqué à des données
non linéairement séparables.

36

SVR : régression à vecteurs de support -1-

• En régression, on cherche h approchant au mieux le nuage de points
(xi , yi)i . h(x ,w) dépend d’un paramètre à optimiser w .

• ∀i = 1, ..., n, |h(xi) − yi | le + petit possible et h la plus régulière
possible (surapprentissage).

• ⇐⇒ Minimiser la perte insensible (« insensitive ») :

|x |ϵ =
{

0 si |x | < ϵ,

|x | − ϵ sinon.
(16)

|y − h(x)|ϵ = max (0, |y − h(x)| − ϵ) . (17)

• Pour la perte ϵ-insensible, écart ≤ ϵ entre h(xi) et yi non en compte.

• Définit un tube de largeur ϵ de part et d’autre de h à l’intérieur duquel
doivent se trouver tous les points de l’échantillon.

37

SVR : régression à vecteurs de support -2-

x
ξ

ε-insensible

x2 (moindres carrés)

+ε−ε

Figure 13 – La fonction de perte ϵ-insensible comparée à la perte au sens des
moindres carrées.

38

SVR : régression à vecteurs de support -3-

h(x , w)

ε

ξ′
i > 0, ξi = 0

ξi > 0, ξ′
i = 0

ξi = 0, ξ′
i = 0

Figure 14 – Dans la SVR, la fonction perte définie un ϵ-tube de part et d’autre
de la fonction de régression h dans laquelle doivent se trouver tous les points
de l’échantillon. Il est possible de définir des variables d’écarts ξ comme pour
une marge souple. En noir, les observations se trouvant dans le ϵ-tube, en
rouge, les données à l’extérieur (pour lesquelles l’une des variables d’écart est
non nulle) et en vert les données qui correspondent aux vecteurs de support.

39

SVR : régression à vecteurs de support -4-

yi ∈ R ⇒ on doit résoudre : arg min
w ,b

(
||w ||2/2

)
s.c. |yi − (w txi + b)| ≤ ϵ, ∀i = 1, ..., n.

Les (xi , yi) doivent être dans un tube de rayon ϵ autour de (x , f (x))
(appelé ϵ-tube).
Pas de solution si ϵ trop petit. On introduit des écarts possibles :

ξi =
{

|yi − (w txi + b)| − ϵ si |yi − (w txi + b)| > ϵ,

0 sinon.

Problème d’optimisation primal SVR arg min
w ,b,ξ,ξ′

(
||w ||2/2 + c

n∑
i=1

(ξi + ξ′
i)
)

s.c. yi − w txi + b ≤ ϵ+ ξi , w txi + b − yi ≤ ϵ+ ξ′
i , ∀i = 1, .., n.

40

SVR : régression à vecteurs de support -5-

Problème d’optimisation dual SVR
arg min

α,α′
−1

2
∑
i,j

(αi − α′
i)(αj − α′

j)xixj − ϵ
∑

i
(αi + α′

i) +
∑

i
yi(αi − α′

i)

s.c. 0 ≤ αi , α
′
i ≤ C , ∀i = 1, .., n ;

∑
i(αi − α′

i) = 0.

Après résolution, le régresseur s’écrit sous la forme :

f (x) =
n∑

i=1
(αi − α′

i) ⟨xi , x⟩ + b

et si des noyaux non linéaires sont utilisés, il s’exprime sous la forme :

f (x) =
n∑

i=1
(αi − α′

i)K (xi , x) + b.

41

SVR : exemple 1 -6-

Figure 15 – Un nuage de points (en rouge) générés autour d’une sinusöıde
perturbée par un bruit aléatoire et la courbe de régression SVR (en bleu).

42

SVR : exemple 2 -7-

Figure 16 – Nuage de points (en bleu) autour d’une sinusöıde et courbes de
régressions SVR (en rouge, avec les ϵ-tubes en rose, pour ϵ = 0.5) pour 4 types
de noyaux. 43

Classification multiclasses : exemple des iris de Fisher -1-

Figure 17 – SVM : classification des 3 espèces d’iris de Fisher. 4 noyaux
différents proposés. Régions dédiées à chaque espèce : dans le plan caractérisé
par la longueur et la largeur du sépale. 44

Classification multiclasses : exemple des iris de Fisher -2-

Figure 18 – SVM : classification des 3 espèces d’iris de Fisher. 4 noyaux
différents proposés, dont 3 sont des noyaux gaussiens RBF (ligne du bas).

45

Remarques finales

• SVM permettent également de faire de la régression.
• SVM considérées comme 1 des meilleures méthodes de classification.
• En grande dimension (d >> n) les SVM sont efficaces.
• Mais n’estiment pas de probabilité (̸= reg. logistique).
• Bonne alternative aux réseaux de neurones : plus faciles à entrâıner.
• Mais pas toujours interprétable, pas toujours très rapides.
• Souvent moins performant que les forêts aléatoires.

46

Bibliographie

• Learning With Kernels : Support Vector Machines, Regularization,
Optimization and Beyond, 2002.

• Hofmann, Schölkopf, Smola, Kernel methods in machine learning,
Annals of Statistics, 2008.

• Burges, A tutorial on support vector machines for pattern
recognition, Data Mining, 1998.

• Smola, Schölkopf, A tutorial on support vector regression, Statistics
and Computing, 2004.

• + Chapitre SVM (p.367) Intro to Statistical Learning with Python.
• + Chapitre 8 du polycopié de Frédéric Sur.

47

4. Boosting

Encore une histoire de convexification

Autre façon de convexifier l’ensemble des prédicteurs
H ⊂ F(X, {−1, 1}) :

Hλ = {
M∑

m=1
λmhm; λm ≥ 0, hm ∈ H,

∑
m
λm ≤ λ}. (18)

Hλ est convexe. On pose

ĥn,λ ∈ arg min
h∈Hλ

An(h) (19)

• Si λ = λn → +∞, λnϕ
′(λn)

√
ln n/n → +∞ et H a une dimension

de Vapnik finie, alors ĥn,λn est universellement consistent.
• Problème difficile à résoudre car de dimension infinie.
• L’algorithme Adaboost permet de le résoudre.

48

Algorithme AdaBoost -1-

Adaptive Boosting (Freund et Shapire 1996). Principe : la sagesse des
foules (wisdom of the many).

• Classifieur performant à partir de classifieurs faibles (réduit le biais).
• Donne plus de poids aux observations difficiles à prédire.
• Simple, rapide et facile à implémenter : très peu de paramètres.
• Flexible (s’adapte à tout type de classifieur faible sans it a priori).
• Permet également la régression.
• Versatile : beaucoup d’applications (reconnaissance d’images, de

textes, moteurs de recherche).

Mais....

• Comportement vis à vis du sur-apprentissage ambigu.
• Entrainement séquentiel coûteux en temps de calcul.
• Sensible aux valeurs aberrantes et au bruit.

49

Algorithme AdaBoost -2-

Classifieur Classifieur Classifieur Classifieur final

✓

×

✓

×

✓

×

Données initiales Données repondérées Données repondérées

Figure 19 – Boosting : un classifieur faible est entrâıné sur l’ensemble des données initiales.

Pondération ̸= des données bien et mal classées favorisant ces dernières. Second classifieur

entrâıné sur données pondérées et remet à jour les pondérations, etc. Classifieur final = moyenne

pondérée des classifieurs faibles.

50

Algorithme AdaBoost -3-

Diagramme plus explicite pour illustrer le Boosting :

Échantillon initial

Échantillon pondéré

Échantillon pondéré

Échantillon pondéré

h1(x)

h2(x)

hm(x)

hM(x)

R : ĥM(x) =
M∑

m=1
αmhm(x)

C : sgn
(

ĥM(x)
)

Forme du prédicteur Boosting (C : classifieur, R : régresseur).

À chaque itération, hm(x) = hm−1(x) + αh
où α et h doivent rendre hm minimal pour Rn.

51

Algorithme AdaBoost -4- : l’algorithme

Initialisation : wi(0) = 1/n. Puis à chaque itération m = 1, ...,M,

1. Entrâıner hm(x) sur l’échantillon pondéré par w = (wi(m))i :

hm ∈ arg min
h∈H

n∑
i=1

wi(m)1[yi ̸=h(xi)]. (20)

2. Calculer l’erreur normalisée :

ϵm =
n∑

i=1
wi(m)1[yi ̸=hm(xi)]/||w ||1. (21)

3. Calculer le poids de l’itération m : αm = ln
√

(1 − ϵm)/ϵm.

4. Mettre à jour les poids des observations :

wi(m + 1) = wi(m) exp
(
αm1[yi ̸=hm(xi)]

)
, ∀i = 1, ..., n. (22)

⇒ ĥM(x) =
M∑

m=1
αmhm(x) (23)

52

Algorithme AdaBoost -5- : pourquoi ça marche

∀m, hm = hm−1 + α̂ĥ, avec hm min. ϕ-risque empirique / perte Boosting :

(ĥ, α̂) ∈ arg min
h∈H,α∈R+

1
n

n∑
i=1

ϕ (−yi [hm−1(xi) + αh(xi)]) (24)

= arg min
h,α

1
n

n∑
i=1

wi(m) exp (−yiαh(xi)) (25)

= arg min
h,α

e−α

n
∑

yi =h(xi)

wi(m) + eα

n
∑

yi ̸=h(xi)

wi(m)

 (26)

ϕ(x) = ex , wi(m) = exp(−yihm−1(xi)).

On trouve ĥ, on déduit α̂ = αm : démo en exercice et dans le polycopié.

53

Algorithme AdaBoost -6- : propriétés

Les classifieurs faibles utilisés ne doivent pas être trop faibles :
ϵm = 1/2 − γn avec γn > 0.

Majoration de l’erreur empirique :

Rn(ĥM) = 1
n

n∑
i=1

1[yi ̸=ĥM (xi)]
≤ exp

(
−2

M∑
m=1

γ2
m

)
(27)

Majoration de l’erreur de généralisation (Freund et Shapire) :

R(ĥM) = P[ĥM(X) ̸= Y] ≤ Rn(ĥM) + O

(√
MV

n

)
(28)

V dimension de Vapnik de l’espace des classifieurs faibles.

Bartlett et Traskin : si M = Mn = n1−ϵ, ϵ ∈]0, 1[, alors Adaboost est
fortement et universellement consistant.

54

Généralisations

• À des étiquettes non binaires : SAMME Stagewise Additive
Modeling Multi-class Exponentiel (c.f. polycopié).

• À de la régression : L2 Boosting (c.f. polycopié).
• À d’autres fonctions de perte : logistique, etc.
• À d’autres méthodes de minimisation du risque empirique : ⇒

Gradient Boosting et XGBoost (eXtreme Gradient Boosting).

55

Algorithme Adaboost -7- : performances

Régression Boosting sur des arbres de profondeur 2.
56

Gradient Boosting -0- : Descente de gradient -1-

• Gradient Boosting = Boosting par descente de gradient.

• La descente de gradient s’inspire de la méthode de Newton-Raphson. Si
u strictement convexe de R dans R,

xn+1 = xn − u(xn)
u′(xn) .

En xn l’équation de la tangente à la courbe de u est

y = u(x) = u(xn) + u′(xn)(x − xn)

• y = 0 ⇒ la tangente coupe (0x) en xn+1.
• De proche en proche, on se rapproche d’un zéro de u.

• Descente de gradient : remplacer u par u′, fixer η /

xn+1 = xn − ηu′(xn)

57

Gradient Boosting -0- : Descente de gradient -2-

x0 x1 x2 x3x⋆

u(x)

x⋆

x0

x1
x2 x3

xn+1 = xn − ηu′(xn)
x

y

Figure 20 – Illustration de l’algorithme de Newton-Raphson (à gauche) et de
celui de la descente de gradient (à droite).

58

Gradient Boosting -0- : Descente de gradient -3-

Figure 21 – Illustration de l’algorithme de descente de gradient en dimension 2.

59

Gradient Boosting -0- : le problème de la notation -1-

• Si régression et l(y , y ′) = (y − y ′)2/2. i fixé, y ′
i = h(xi). Erreur de

prédiction pour (xi , yi) : yi − y ′
i = yi − h(xi).

∂

∂y ′ l(y , y ′) = 1
2
∂l
∂y ′ (y − y ′)2 = y ′ − y . (29)

• évaluée en (yi , h(xi)), = à l’opposé de la perte.

Rn(h) = 1
n

n∑
i=1

l(yi , h(xi)) = 1
2n

n∑
i=1

(yi − h(xi))2. (30)

• Rn(h) fonction de h... et de y1, ..., yn et y ′
1 = h(x1), ..., y ′

n = h(xn). Le
gradient de Rn(h) (fonction de y ′), évalué en (yi , h(xi))i , est

∂Rn(h)
∂y ′

i
(y ′

1, ..., y ′
n)
⌋

y ′
i =h(xi)

= 1
n
∂l
∂y ′

i
(yi , y ′

i)
⌋

y ′
i =h(xi)

= 1
n (h(xi) − yi) .

(31)

60

Gradient Boosting -0- : le problème de la notation -2-

• On note ce vecteur, de façon peu rigoureuse et très ambiguë :

∇Rn(h) =
(
∂l(yi , h(xi))
∂h(xi)

)T

i=1,..,n
(32)

• Vecteur, n coord ∂ Rn / 2e coord. (h(xi)), évalué en (yi , h(xi)).

• En fait, la minimisation de Rn(h) est effectuée sur la fonction h et non
sur les points de l’échantillon. On parle de gradient fonctionnel car
minimisation sur h, à xi et yi fixés.

• À l’itération m, Boosting ⇒ hm−1(x), On veut hm(x)

hm(x) = hm−1(x) + αh(x) (33)

où αh(x) minimise l’erreur. Si αh(x) égal à la perte quad., ⇒
hm(xi) = yi ⇒ erreur prédiction nulle. On choisit comme expression de
h(x) le gradient du risque.

61

Gradient Boosting -1- : principe

• Adaboost : cas particulier d’algorithme de descente de gradient.
• ĥM =

∑M
m=1 αmhm minimisant Rn(h) =

∑n
i=1 l(h(xi), yi)/n ?

• Pas de solution explicite ⇒ solution approchée.
• Idée : algorithme de descente de gradient de type Newton-Raphson.

• À une itération donnée, on a un classifieur hm−1 à améliorer.
• On lui ajoute g / Rn(hm−1 + αg) diminue au maximum.
• ⇒ opposé du gradient : g = −∇Rn(hm−1).

hm(x) = hm−1(x) − α∇Rn(hm−1) :
(

hm−1(xi) − α

n
∂l
∂y ′

i
(yi , hm−1(xi))

)
i

62

Gradient Boosting -2- : principe - suite

Deux problèmes :

• La récurrence donne hm uniquement aux points xi .
• Le gradient g n’a aucune raison d’appartenir à H, donc hm non plus.

Pour obtenir hm(x) ∀x ∈ Rd et assurer que hm ∈ H,
⇒ régression sur Dn,m = (xi , ui)i=1,..,n avec

ui = ui(m) = − ∂l
∂y ′

i
(yi , hm−1(xi))

On cherche la fonction h ∈ H la plus proche de g :

La solution hm s’obtient en ajustant le classifieur sur (xi , ui)i .

On détermine ensuite la valeur optimale αm de α.

63

Gradient Boosting -3- : l’algorithme de Friedman (1999)

c est une constante.

• Initialisation : h0(.) = 1
n arg minc

∑n
i=1 l(c, yi)

• Pour m = 1, ...,M, étant donné hm−1 calculé à l’itération
précédente,

∀i = 1, .., n, calculer les pseudos-résidus ui .
ajuster un classifieur de H sur l’échantillon (xi , ui)i :

hm = arg min
h,α

∑
i

[ui − αh(xi)]2

déterminer α optimal :

αm = arg min
α

∑
i

l
(
hm−1(xi) + αhm(xi)

)
mise à jour : hm(x) = hm−1(x) + αmhm(x).

En sortie, on obtient bien une combinaison linéaire d’estimateurs de H :

ĥM(x) =
M∑

m=1
αmhm(x).

64

Gradient Boosting -4- : remarques sur l’algorithme

Plusieurs paramètres sont à calibrer :

• La fonction de perte.
• Le nombre M d’itérations.
• Le paramètre de régularisation αm (learning rate : souvent ∼ 0.1).
• Les paramètres de chaque classifieur constituant la combinaison

linéaire.

La fonction de perte doit être dérivable et convexe. En classification
binaire :

• Adaboost : l(y , h(x)) = exp(−yh(x)).
• Logiboost : l(y , h(x)) = ln(1 + exp(−2yh(x))).

En régression, L2 boosting : l(y , h(x)) = (y − h(x))2/2.

65

Gradient Boosting -5- : remarques finales

• On utilise souvent Adaboost et Gradient Boost avec des arbres
CART peu profonds (classifieurs faibles) : H est un ensemble de
combinaisons linéaires d’arbres de décision.

• Gradient Boosting stochastique : à chaque itération, on entrâıne le
classifieur sur un sous échantillon aléatoire de Dn (sans remise).

• Gradient Boosting avec α = 1 et perte Boosting ∼ Adaboost.

La fonction de perte doit être dérivable et convexe. En classification
binaire :

• Adaboost : l(y , h(x)) = exp(−yh(x)).
• Logiboost : l(y , h(x)) = ln(1 + exp(−2yh(x))).

En régression, L2 boosting : l(h(x), y) = (y − h(x))2/2.

66

Gradient Boosting -6- : performances

67

Gradient Boosting -7- : performances

68

Extreme Gradient Boosting : XGBoost

• Version sophistiquée de Gradient Boosting (Chen et Guestrin, 2016).
• Ajoute de la régularisation dans les entrainements des classifieurs

faibles.
• Utilise Newton-Raphson à la place du gradient.
• développement limité au second ordre de la fonction de perte.
• Difficile à calibrer....
• ... mais très efficace si bien calibré.
• plus de détails dans le polycopié.

La fonction objectif possède un terme de régularisation :

1
n

n∑
i=1

l(hm(xi), yi) +
s∑

j=1
γ(hj)

γ(hj) pénalise hj en fonction de sa complexité (nombre de feuilles si c’est
un arbre).

γ élevé : complexité élevée (arbre profond).
69

Bibliographie

• Freund, Schapire. Experiments with a new boosting algorithm.
roceedings of the 13th Inter. Conf. on Machine Learning. 1996.

• Freund, Shapire. Boosting. MIT Press. 2012.
• Friedman. Greedy function approximation : A gradient boosting

machine. Annals of Statistics. 2001.
• Friedman, Hastie, Tibshirani. Additive logistic regression : A

statistical view of boosting. Annals of statistics. 2000.
• Chen, Guestrin. XGBoost : A Scalable Tree Boosting System. 2016.
• + Chapitre 8 : Tree-Based Methods (p.331-363) Intro to Statistical

Learning with Python.
• + Chapitre 7 du polycopié de Frédéric Sur.

70

	1. Convexification de l'ensemble des classifieurs et de la perte
	2. Espaces de Hilbert à noyau auto-reproduisant
	3. Machines à vecteurs de support
	4. Boosting

