N Université

Wity
ANRY] :,,/'/,/
11,77« Ecole nationale
- - 2 == delastatistique
/\\ de Rennes - - ENSAI 33 etderanaiyse
1] S5 delinformation
Electronique nh
TN

Chapitre 4. Méthodes liées a la convexification

Claude Petit, Insee et université de Rennes - claude.petit@univ-rennes.fr
2025-2026

1. Convexification de I'ensemble des classifieurs et de la perte
2. Espaces de Hilbert a noyau auto-reproduisant
3. Machines a vecteurs de support

4. Boosting

1. Convexification de I'’ensemble
des classifieurs et de la perte

Fonction et ensemble convexe

Ensemble convexe
Soi E un espace vectoriel et C C E. C est convexe si pour tout x,y € C
et A€ [0,1], Ax+ (1 -y e C.

Fonction convexe
Soit C C E un ensemble convexe. Une fonction f : C — R est convexe
si Vx,y € C, VA € [0,1]

F(Ax + (1= N)y) < M(x)+ (1= Nf(y)

Une fonction convexe définie sur un ensemble convexe fermé atteint son

minimum.

Problématique : pourquoi convexifier 7

e La minimisation du risque empirique est difficile a3 mettre en ceuvre a
cause de la non-convexité de G et de la non-convexité de R,(g).

e Minimiser une fonction convexe dans un ensemble convexe est un
probléme « facile » a résoudre.

e |l faut changer |'espace des classifieurs G pour qu'il devienne

convexe.

e |l faut changer la forme du risque R(g) pour en faire une fonction

convexe.

On suppose dans ce chapitre, pour simplifier les formules, que
Y ={-1,1} au lieu de Y = {0, 1}.

Convexification de I'espace de recherche G

eAvant: g: X=R?% — {-11}.
e Maintenant : h: X — R car F(X,R) est convexe.

On affecte a x I'étiquette —1 si h(x) <O et 1si h(x) >0:

g(x) = sgn(h(x)) ol sgn est la fonction signe :

sgn(u)—{ 1 siu>0

-1 siu<O0

Toute fonction réelle h peut alors étre considérée comme prédicteur.

Convexification de G en H
On remplace F(X, {—1,1}) par F(X,R)
On remplace g € G par h € H C F(X,R)

Forme de la perte de prédiction et du risque

La perte de prédiction est donnée par
I(y, h(x)) = Liyzsgn(ne) = Liy=11L1£sgn(h(x))] + Ly=—11L[-1£5gn(h(x))]

= Tpy=1lne <o) + Ly=—11Lin)>0)
= Ty —ylpyneg<op + Ly=—111ynx) <0

[yh(x) < 0] C [yh(x) < 0] =

I(y, h(x)) < Lpy=yLineg<o) + Ly=—11Lphx)<o) < Lpyax<o]

I(y, h(x)) > Lpynpo<o) et H C F(X,R)/ P[A(X) =0] =0 Vhe H =

Forme de la fonction de perte et du risque

I(y, h(x)) = Liyne<o)] = Ljo,+00[(—Yh(X))
R(g) = R(sgn(h)) = E [T 1oof(— YH(X))]

Convexification de la fonction de perte

On définit le minimiseur du risque empirique convexifié par

hy € argerrtln - Z]l[o +oo[(—Yih(Xi)) (2)

~

h,, appartient a H. Mais 1g | o[n'est pas convexe. On la remplace par ¢
convexe, et on appelle ¢-risque du classifieur h la quantité :

A(h) = Ra(o, h) = E[o(=Yh(x))] 3)
Le ¢-classifieur de Bayes est le prédicteur minimisant le ¢-risque :

h* e arlgery_in A(h) (4)

Le minimiseur sur H C F du ¢-risque empirique est le prédicteur

hEargmlanqﬁ =Y;h(X})) (5)

heH

Fonctions convexes usuelles pour le ¢-risque

Objectif : choisir pour ¢ un majorant convexe de 1 [pour qu'un
classifieur de ¢-risque faible ait un faible risque de classification.

Les fonctions traditionnellement utilisées sont les suivantes :

Perte charniére o(x) = (14 x)+
Perte de Boosting | ¢(x) = e~

Perte logistique d(x) = logy(1 + €)

Perte quadratique | ¢(x) = (1 + x)?

Fonctions de perte convexes

3
— logy(1 + &)
— (L +x)4+
(1+x)?
24 e*
— Lo,ocf
\
‘ ‘ ‘ ‘ X
-1 -05 0.5 1 15 2

Figure 1 — Fonctions de perte convexe ¢ : courbes de ¢(yh(x)).

Consistance du minimiseur du ¢-risque

Théoreme de consistance
Soit ¢ : R — R une fonction convexe telle que Vx € R,

x(¢(x) = ¢(=x)) = 0.
Soit ¢ : [0,1] — R la fonction définie par
¥(p) = inf (pé(—u) + (1 - p)¢(u))
S'il existe vy € [0,1] et ¢ > 0 tels que Vp € [0, 1],
11— 2p| < c(4(0) —¥(p))”,
alors pour toute fonction de prédiction h,

Rlsgn(h)] — R[g"] < c (A(h) — A(h"))"

Démonstration en exercice !

2. Espaces de Hilbert a noyau
auto-reproduisant

Espace de Hilbert : définition

On suppose maintenant que A a une structure d'espace de Hilbert :
espace vectoriel normé muni d'un produit scalaire qui en fait un espace
métrique complet :

e I'espace euclidien R" muni de (x,y) = x"y.
e I'ensemble des suites de carré sommable /2(N) muni de
(X, y) = 02T Xy
e I'ensemble des fonctions de carré intégrable L2(R). muni de
(f.g) = = F(x)g(x)dx.
e idem sur C en ajoutant un conjugué sur le second terme.
Les espaces de Hilbert généralisent en dimension infinie la notion

d'espace euclidien : on peut travailler de facon "géométrique” dans
|'espace : avec des normes, angles, projections orthogonales.

10

Espace de représentation des données

Données de X pas facilement manipulables =

e on les transforme en les envoyant...

e ... dans un espace (vectoriel) de représentation (de redescription, ou
features space),

e via une fonction de représentation ¢ (features map).

e ici, I'espace de représentation sera un espace de Hilbert H.

Figure 2 — H représente les données (features) issues de X

11

Noyau de similarité

Plutot qu'une représentation individuelle, il est souhaitable de représenter
les données par couples en respectant les similarités entre objets de X :

KXxX—R
(X7y) — K(X7.y)

e noyau symétrique : K(x,y) = K(y, x).
o semi-défini positif : Vx;, x; € X,Va;, a5 € R,), Zj aja;K(x;, x;) > 0.

e qui définit une matrice carrée réelle : (K(x;,x;))ij pour i,j=1,...,n.

On peut mélanger les deux points de vue en utilisant ¢ : X — H et le
noyau K : X x X —>R:

K(x,y) = (¢(x), d(y))

12

Pourquoi augmenter la dimension? 1

o Si X posséde beaucoup de paramétres (de features), H peut étre de
grande dimension.

e C'est méme |'objectif de ¢ : travailler dans un espace ou il y a
beaucoup de « place », de degrés de liberté.

e Si ¢ choisie de fagon adéquate, possible de ne pas avoir a effectuer
explicitement les produits scalaires en grande dimension grace a I'astuce
du noyau (« kernel trick »).

e K mesure la similarité entre les données x et y ~ généralisation d'une
fonction de covariance.

13

Pourquoi augmenter la dimension ? 2

e Travailler dans un espace ol il y a beaucoup de « place », de degrés de

liberté.
o
)
o
o ® ¢ °?
e — e °
L °
P [
o
Feature Space H

Espace initial X

Figure 3 — On envoie les données initiales dans un espace (abstrait) de
dimension plus grande, afin de pouvoir séparer plus facilement les classes.

14

Pourquoi augmenter la dimension? 3

e K mesure la similarité entre les données x et y ~ généralisation d'une
fonction de covariance.

X

®(x) o(x')

Figure 4 — La fonction de représentation ¢ transforme en fait un point de X en
une fonction Ky = ¢(x) de X dans R (considérée comme un élément de
I'espace de Hilbert H).

15

Les noyaux usuels

Vanille : K(x,y) = (x,y).

Sigmoide : K(x,y) = tanh({x, y)).

Gaussien (RBF) : K(x,y) = exp (—ﬁHX —)’||2)-

ReLU : K(x,y) = min(x,y) = x — ReLU(x — y) = y — ReLU(y — x).
Polynomial : K(x,y) = (c + (x, y))".

e Exponentiel : K(x,y) = exp (—v||x — y||).

L'espace de représentation associé au noyau gaussien est un espace de
Hilbert de dimension infinie.

On remarque que ¢ n'apparait pas dans les formules.

16

Un théoréme abstrait mais trés important

Théoréeme de Mercer-Kolmogorov-Aronszajn (MKA)

Si K est un noyau continu, défini positif sur un ensemble X, alors il existe
un unique espace de Hilbert { et une application de représentation
¢ : X — H tel que tels que Vx,y € X,

K(x,y) = (o(x), &(y))

Mercer (1909) pour X compact de R?, Kolmogorov (1941) pour X
dénombrable et Aronszajn (1944) pour le cas général.
e 7{ est unique, mais pas ¢.

e On espére que si H est de grande dimension (éventuellement infinie)
les données vont devenir plus facile a classifier (séparer).

e L'astuce du noyau (kernel trick) : on n'a pas besoin de spécifier ¢ et
d'évaluer ¢(x) et ¢(y), seul compte K(x,y).

17

Dual d’un espace de Hilbert et théoreme de Riesz

e On souhaite choisir pour H un espace de fonctions h: X — R.

e Une forme linéaire continue (FLC) sur un espace de Hilbert est une
fonction linéaire continue de # dans R.

e Leur ensemble est un e.v. H' appelé dual de H.

e Le théoréme de représentation de Riesz dit que H ~ H'.

Théoréme de représentation de Riesz
VL e H', 3'f € H tel que L(h) = (f, h), Yh € H.
Réciproquement, Vf € H, L(h) = (f, h) définit un élément de H’'.

L application linéaire continue <= |L(h)| < d||h||, Vhe H
<~ ||L|| <§ < L bornée.

18

RKHS

Vx € X, soit Ly : H — R telle que Ly(h) = h(x).

L, reproduit I'action de h sur x, c'est la fonction d'évaluation en x.
e VxeX, L, eH.
o H est un RKHS si, et seulement si Vx € X, L, est continue.
e Le théoréme de Riesz =

Vx € X, 3K, € H tel que Ly(h) = (Ky, h) = h(x), Yhe H

On peut poser K(x,y) = (Ks, K,) = (6(x), ¢(y)). c-a-d. K = 6(x).
K est un noyau reproduisant, unique, symétrique, semi-défini positif.
Correspondance entre noyau et RKHS (réciproque de Aronszajn)

H est un RKHS si, et seulement s'il existe un noyau reproduisant
(unique) K vérifiant K(x,y) = (K, K,), Vx,y € X.

Tout élément de H s’écrit de facon unique h = >, Ky, :

h(x) = >0 aiK(x, x;). o

Le théoréeme du représentant

Théoréme du représentant
e Soit K : X x X — R un noyau symétrique, défini positif.
e Soit H son RKHS.

Soit D, = {(xi,yi)} € (X x R)" un échantillon.

e Soit / une fonction de perte.

e Soient A > 0 et J fonction réelle strictement croissante.
Alors toute solution h, du probléme de minimisation

arg min (1 S Iy, h(x) +AJ<|h|>>

¢ n
heH =

s'écrit de fagon unique sous la forme

n

Zn(x) = Z a;K(x, x;)

i=1

20

Beaucoup d’espaces abstraits...

oK(x,y) = (o(x), 8(y))

R

Figure 5 — Les espaces X, H, H' et R, ainsi que les fonctions ¢ et K.

21

3. Machines a vecteurs de
support

Machine a vecteurs de support : premier point de vue

Pour un t > 0, on pose

n

—~ . 1
hsvm(t) € hs;g:‘ml‘flt; ;¢(_Yih(Xi)) (10)

heH

<:>ZSVM()\)€argmin< qu —Y;ih(X, +>\||h|2> (11)

e h est une fonction et H est un espace de fonctions de X dans R.

e En classification, on choisit ¢(x) = (1 + x). En régression,
B(x) = x2; I'expression ¢(— Yh(X)) est remplacée par (Y — h(X)).

e Si H espace de Hilbert a noyau auto-reproduisant (RKHS) alors on
dit que /f;,, = //;SVM est un prédicteur a base de noyau, ou machine a
vecteurs de support (SVM).

e L’'hyperparamétre t (ou A) est calculé par validation croisée.

22

Machine a vecteurs de support : classifieur SVM

o Comme H est un RKHS, la solution de

1 n
argmin =Y ¢(=Y;h(X))). (12)
heH:||h||<t N ;
est de la forme (théoréme du représentant)

n

hswm(-) = ha(1) = > K (., xi) (13)

i=1

avec K noyau RKHS de l'espace H, a1,...a, € R et xi, .., X, données
observées de I'échantillon.

e Les «; sont facilement et rapidement déterminés par une méthode
d'optimisation convexe.

e Les SVM ont été inventées par Vapnik dans les années 1990.

23

Machine a vecteurs de support : point de vue traditionnel

On dispose d'un échantillon D,, de n observations (x, yx), avec xx € R4
et y = £1, que I'on peut séparer linéairement par un hyperplan :

1
-1

wlixx+b>0 siy
wixe+b<0 siyg

L'hyperplan séparateur est caractérisé par son vecteur normal w € RY et
un seuil b. Son équation est

wix+b=0

La distance euclidienne d'un point x € R? a I'hyperplan H est donnée
par :

24

Séparateur de plus grande marge

La plus petite distance entre les observations et un hyperplan séparateur
(w, b) est

1

mlny,(w x; + b)
[[wl]

Le double de ce minimum s'appelle la marge. L'hyperplan de plus grande
marge a pour paramétres (w, b) les solutions de

1
argmax<| " mlny,(w x,+b)>

Les observations qui réalisent le minimum sont appelées les vecteurs de
support. Les séparateurs a vaste marge (SVM) sont des machines a
vecteurs de support au sens défini précédemment.

25

Illustrations des SVM - 1 -

w-x+b=1 X2
w-x+b=0
w-x+b=-1 ® ®
[N]
[]
w []
{]
L ® X1
° [)
[]
Marge:ﬁ
[]

Figure 6 — 2 classes d'observations (bleu et vert) linéairement séparables. En rouge, I'hyperplan

séparateur de plus grande marge, en vert et bleu les hyperplans frontiéres de chaque classe et

vecteurs supports (centre jaune).

26

Illustrations des SVM - 2 -

o o
o o
SR CR
o o
T T T T T T T T T T
-1 0 1 2 3 -1 0 1 2 3
X, X,

Figure 8 — Deux classes d'observations (bleu et rouge) mesurées par
I'intermédiaire de deux variables x; et xo. A gauche, trois exemples de plans
séparateurs. A droite, le plan séparateur optimal, le plus éloigné des deux

nuages. Crédit : Intro. to ML with Python. James, Witten, Hastie, Tibshirani.

27

Illustrations des SVM - 3 -

Figure 9 — Deux classes d'observations (bleu et rouge) mesurées par
I'intermédiaire de deux variables x; et xo. A gauche, le plan séparateur de plus
grande marge avec les points les vecteurs de support a la frontiere. A droite, un
exemple de nuages non linéairement séparable a cause d'un point rouge ajouté
par rapport au nuage précédent (trouver ou...). Crédit : Introduction to
Machine Learning with Python. James, Witten, Hastie, Tibshirani. Figures du
chapitre 9.

28

Résolution du probléeme d’optimisation -1-

La marge vaut v = 1/||w||. Maximiser v <= minimiser ||w]|]|.

Condition de séparation des classes : Vi =1,...,n:
sgn(h(x)) = yi <= yih(x)>1 < yi(w'x +b) > 1

Probléeme d’optimisation (primal)

min b ||| /2
e . (14)
sc. yilw'x;+b)>1Vi=1,..,n.

Probléme d'optimisation convexe = lagrangien + conditions de
Karush-Kuhn-Tucker (KKT). = probleme dual.

Démo et résolution en exercice.

29

Résolution du probléeme d’optimisation -2-

Probléeme d’optimisation (dual)

n n
arg max (Z o — Zzaiaj)/iyj {xi> x;) /2
a€RY =il =1

i (15)
sc.a;>0Vi=1,..,n, ; Za;y,- =0.

On obtient d'abord les o}, on en déduit w* et b* qui donnent
I"hyperplan optimal :

= iai*}’ixi
//;n(Za Yi X/; + b*

Les données de I'échantillon correspondant a o > 0 sont les vecteurs
support (seuls a contribuer a la solution).
30

Cas non linéairement séparables, lien entre les 2 points de vue

Si données non linéairement séparables (grande majorité des cas), on
généralise par une perte convexe ¢ et on reécrit le pb. d'optimisation :

min <|w||2 +: I;qb(y,-h(x,-))) = min (1 > (e + A||w||2>

avec A\ = 1/2¢ paramétre de régularisation.

Dans le pb. dual, (x,y) se transforme en K(x,y) = (¢(x), ¢(y)) et... on
retrouve le premier point de vue.

31

lllustration des SVM avec noyaux non linéaires -1-

Figure 10 — 2 classes (bleu et rouge) mesurées par x; et xo. En haut, données plus linéairement
séparables. En bas, aprés changement de x en ¢(x) (fonction non linéaire). A gauche, ¢ polynome

degré 3, a droite, ¢ gaussienne radiale. Crédit : Intro. to ML with Pyton. James, Witten, Hastie.

32

lllustration des SVM avec noyaux non linéaires -2-

T
0.5 |
0 il C)
—0.5| |
oo®
1 05 0 05 1 Feature Space H

Figure 11 — Données non linéairement séparables en dimension 2, mais dont on
se doute qu'elles sont a symétrie circulaire. En dimension 3, elles correspondent
a deux nuages de hauteurs différentes qui sont linéairement séparables.
d(x,y) = (x, 5,3 + y?) et K(x,y) = (6(x), ¢(y)) = x"y + [Ix|P|lyl|*.

33

Marge souple : principe

Un cas particulier « presque linéaire » est donné par le pb. a marge
souple : on autorise quelques écarts a I'hyperplan séparateur en
introduisant une variable d'ajustement (« slack » variable pour varaible

d'écart, souple, molle, etc.) :

& =1 —yi(wqg+ b))y, i=1,..,n

(1 ¢
argmin | —||lw||* 4+ ¢ &
< <2|| ey)

sc. &> (1 —yilwxi + b))y, i=1,...,n

c grand : pénalise fortement les &; (peu de souplesse).
c petit : on peut s'écarter sensiblement de I'hyperplan.

Dans le pb. dual, les &; disparaissent. Seule # : condition «; < c.

34

Marge souple : illustration

w-x+b=1 X2
w-x+b=0
w-x+b=-1 * . o
&
o
o
w [J
([J
L L X1
° []
[J
Marge:ﬁ
. | &

Figure 12 — Marge souple avec 2 classes (en bleu et vert) non linéairement

séparables. 2 points (I'un vert, 'autre bleu) de part et d’autre de la marge. La

distance &7 et &5 a la frontiére les caractérisent.

35

Marge souple : conclusion

e Dans le probéme dual, les &; disparaissent et la seule # avec le
probleme précédent est la condition a; < c. w ne dépend toujours que

des vecteurs supports, pour lesquels la contrainte est saturée :
T _
yi(w'x;+b) =1-¢.

e | es vecteurs supports sont les x; tels que & = 0 ou & > 0, mais dans la
marge (bien classé si 0 < & < 1 et mal classé si §; > 1). <= On tolére
quelques données mal classées mais permet d'étre appliqué a des données
non linéairement séparables.

36

SVR : régression a vecteurs de support -1-

e En régression, on cherche h approchant au mieux le nuage de points
(xi, yi)i- h(x,w) dépend d'un paramétre a optimiser w.

eVi=1 ..n, |h(x) — yi| le + petit possible et h la plus réguliére
possible (surapprentissage).

e < Minimiser la perte insensible (« insensitive ») :

0 si |x| <,
|x|e:{ X (16)

|x| —€e sinon.

ly = h(x)lc = max (0, |y — h(x)| —€). (17)
e Pour la perte e-insensible, écart < € entre h(x;) et y; non en compte.

e Définit un tube de largeur € de part et d'autre de h a I'intérieur duquel
doivent se trouver tous les points de I'échantillon.

37

SVR : régression a vecteurs de support -2-

x2 (moindres carrés)

e-insensible

§

—€ +e X

Figure 13 — La fonction de perte e-insensible comparée a la perte au sens des
moindres carrées.

38

SVR : régression a vecteurs de support -3-

lg; >0,6=0
Figure 14 — Dans la SVR, la fonction perte définie un e-tube de part et d’autre
de la fonction de régression h dans laquelle doivent se trouver tous les points
de I'échantillon. Il est possible de définir des variables d'écarts £ comme pour
une marge souple. En noir, les observations se trouvant dans le e-tube, en
rouge, les données a I'extérieur (pour lesquelles I'une des variables d’écart est
non nulle) et en vert les données qui correspondent aux vecteurs de support.

39

SVR : régression a vecteurs de support -4-

vi € R = on doit résoudre :

arg min (||w[|*/2)
w,b
sc. |y —(w'x +b)| <e Vi=1,..,n
Les (x;, yi) doivent étre dans un tube de rayon € autour de (x, f(x))

(appelé e-tube).
Pas de solution si € trop petit. On introduit des écarts possibles :

¢ = lvi — (w'x; + b)| — € si|y; — (wix; + b)| > e,
10 sinon.

Probleme d’optimisation primal SVR

arg min <||W|2/2 +ey (6+ Ef))
i=1

’
w,D,¢,

sc.yi—wixi+b<e+&, wxi+b—y <e+& ,Vi=1.,n.

40

SVR : régression a vecteurs de support -5-

Probleme d’optimisation dual SVR
1
argnjin = E (i — i)y — aj)xixj — € E aj +al) + E yi(
“ ij

sc.0<a;,a;<C, Vi=1,.,n;> (j—a})=0.

Apres résolution, le régresseur s'écrit sous la forme :

n

F(x) = D (e — af) (x.x) + b

i=1

et si des noyaux non linéaires sont utilisés, il s’exprime sous la forme :

n

f(x)= Z(ai —al)K(xi,x) + b.

i=1

,*O{

41

SVR : exemple 1 -6-

L @ données

2.0
[] —— prediction

1.5

—1.5

Figure 15 — Un nuage de points (en rouge) générés autour d’une sinusoide
perturbée par un bruit aléatoire et la courbe de régression SVR (en bleu).

SVR : exemple 2 -7-

SVR linéaire R pol !

SVR logistique

Figure 16 — Nuage de points (en bleu) autour d’une sinusoide et courbes de
régressions SVR (en rouge, avec les e-tubes en rose, pour € = 0.5) pour 4 types
de noyaux.

Classification multiclasses : exemple des iris de Fisher -1-

SVC avec noyau linéaire

sepal width (cm)

e o °
5 o
A . %%
J ° o o
B Y
a

o0

sepal length (cm)

SVC avec noyau RBF

sepal width (cm)

Figure 17 — SVM :
différents proposés.

par la longueur et la largeur du sépale.

sepal length (cm)

classification des 3 espéces d'iris de Fisher. 4 noyaux
Régions dédiées a chaque espece : dans le plan caractérisé

sepal width (cm)

sepal width (cm)

LinearSVC avec noyau linéaire

e o °
3 o
4 . %%
&. o o ©
. o
o

oo

sepal length (cm)

SVC noyau polynomial

.
.
;j;.' oo
B .
i g
&: ° o e
S &
.

sepal length (cm)

a4

Classification multiclasses : exemple des iris de Fisher -2-

Figure 18 — SVM : classification des 3 espéces d'iris de Fisher. 4 noyaux
différents proposés, dont 3 sont des noyaux gaussiens RBF (ligne du bas).

45

Remarques finales

e SVM permettent également de faire de la régression.

e SVM considérées comme 1 des meilleures méthodes de classification.
e En grande dimension (d >> n) les SVM sont efficaces.

e Mais n'estiment pas de probabilité (# reg. logistique).

e Bonne alternative aux réseaux de neurones : plus faciles a entrainer.
e Mais pas toujours interprétable, pas toujours trés rapides.

e Souvent moins performant que les foréts aléatoires.

46

Bibliographie

Learning With Kernels : Support Vector Machines, Regularization,
Optimization and Beyond, 2002.

Hofmann, Schélkopf, Smola, Kernel methods in machine learning,
Annals of Statistics, 2008.

Burges, A tutorial on support vector machines for pattern
recognition, Data Mining, 1998.

Smola, Schélkopf, A tutorial on support vector regression, Statistics
and Computing, 2004.

+ Chapitre SVM (p.367) Intro to Statistical Learning with Python.
+ Chapitre 8 du polycopié de Frédéric Sur.

47

4. Boosting

Encore une histoire de convexification

Autre facon de convexifier I'ensemble des prédicteurs

HC F(X,{-1,1}) :

M
Hy = {Z Ambmi Am >0, hm € H, Z)\m <AL (18)

m=1

H est convexe. On pose

77\,7)\ € argmin Ap(h) (19)
heH x

o Si A=\, = +00, \p¢’'(An)y/Inn/n — +0o et H a une dimension
de Vapnik finie, alors hj, 5, est universellement consistent.

e Probleme difficile a résoudre car de dimension infinie.

e |'algorithme Adaboost permet de le résoudre.

48

Algorithme AdaBoost -1-

Adaptive Boosting (Freund et Shapire 1996). Principe : la sagesse des
foules (wisdom of the many).

Classifieur performant a partir de classifieurs faibles (réduit le biais).

Donne plus de poids aux observations difficiles a prédire.

Simple, rapide et facile a implémenter : trés peu de paramétres.
Flexible (s'adapte a tout type de classifieur faible sans it a priori).
Permet également la régression.

Versatile : beaucoup d'applications (reconnaissance d'images, de
textes, moteurs de recherche).

Mais....

Comportement vis a vis du sur-apprentissage ambigu.
Entrainement séquentiel coliteux en temps de calcul.

Sensible aux valeurs aberrantes et au bruit.

49

Algorithme AdaBoost -2-

Données initiales Données repondérées Données repondérées

Classifieur final

‘ Classifieur ‘ ‘ Classifieur ‘

I

e o - I Ve @
o0 o 00

X (14 X 0000

o000 0000

000 o 00000

Figure 19 - Boosting : un classifieur faible est entrainé sur I'ensemble des données initiales.
Pondération # des données bien et mal classées favorisant ces derniéres. Second classifieur
entrainé sur données pondérées et remet a jour les pondérations, etc. Classifieur final = moyenne

pondérée des classifieurs faibles.

50

Algorithme AdaBoost -3-

Diagramme plus explicite pour illustrer le Boosting :

{Echantillon initial} Riiaing

[Echantillon pondéré} -
'

[Echantillon pondéré} g
'

[échantiuon pondéré} -

Forme du prédicteur Boosting (C : classifieur, R : régresseur).

A chaque itération, Apm(x) = Am_1(x) + ah
ol « et h doivent rendre h,, minimal pour R,.

51

Algorithme AdaBoost -4- : I'algorithme

Initialisation : w;(0) = 1/n. Puis a chaque itération m=1,..., M,

1. Entrainer hp,(x) sur I'échantillon pondéré par w = (w;(m)); :

hm, € arg min wi (M) Ly, £p(x,
A ; [yizh(x)]-

2. Calculer I'erreur normalisée :
n

em=Y_ wi(m) Ly, 2n, o/l W1
i=1
3. Calculer le poids de I'itération m : am = In /(1 — €m)/€m.
4. Mettre a jour les poids des observations :

wi(m+ 1) = w;(m)exp (ozm]l[y,.#hm(xl.)]) , Vi=1,...,

M
= Z amhm(x)

(20)

(21)

52

Algorithme AdaBoost -5- : pourquoi ca marche

Vm, hy, = hp_1 +&E, avec h,, min. ¢-risque empirique / perte Boosting :

(h,@) € argmin ,§:¢ —yilhm-1(x) + ah(x;)]) (24)
heH,a€R, N i—1
1 n
= arg min — w;(m) exp (—y;jah(x; 25
gm n?:l()p(y()) (25)
. e @ e*
:ar%Tm — E W,-(m)+7 E w;(m) (26)
? yi=h(x;) yi#h(x:)

¢(x) = €, wi(m) = exp(—yihm-1(xi)).

On trouve h, on déduit @ = «, : démo en exercice et dans le polycopié.

53

Algorithme AdaBoost -6- : propriétés

Les classifieurs faibles utilisés ne doivent pas étre trop faibles :
€m = 1/2 — v, avec vy, > 0.

Majoration de |'erreur empirique :

~ 1<
Ra(hw) = — Z L oy S &P (2 Z m) (27)

i=

Majoration de I'erreur de généralisation (Freund et Shapire) :

R(hm) = P[Am(X) # Y] < Ra(hu) + O (\/ /VLV> (28)

V' dimension de Vapnik de I'espace des classifieurs faibles.

Bartlett et Traskin : si M = M, = n'~¢, ¢ €]0, 1], alors Adaboost est
fortement et universellement consistant.

54

Généralisations

A des étiquettes non binaires : SAMME Stagewise Additive
Modeling Multi-class Exponentiel (c.f. polycopié).

A de la régression : L2 Boosting (c.f. polycopié).

e A d'autres fonctions de perte : logistique, etc.

A d’autres méthodes de minimisation du risque empirique : =
Gradient Boosting et XGBoost (eXtreme Gradient Boosting).

55

Algorithme Adaboost -7- : performances

Nombre d’arbres : 1

Nombre d’arbres : 2

Nombre d’arbres : 3

° ° °
1.0 1 1.0 A 1.0 1
0.5 4 0.5 4 0.5
0.0 H 0.0 + 0.0
—0.5 —0.5 —0.5
—1.0 o == Approx. —1.0 o === Approx. —1.0 o == Approx.
® Données . . ® Données o Données
—-1.5 4 T T T —-1.54 T T T —1.5 T T T
0 2 4 0 2 4 0 2 4
Nombre d’arbres : 7 Nombre d’arbres : 8 Nombre d’arbres : 9
L [o
1.0 1 1.0 4 1.0 1
0.5 0.5 o 0.5 A
0.0 1 0.0 o 0.0 A
—0.5 o —0.5 4 —0.5 4
~1.0 {/— Approx. ~1.0 1 — Approx. ~1.0 4 /— Approx.
® Données ® Données e Données
—1.5 4 —1.5 1 —1.5 4
T T T T T T T T T
0 2 4 0 2 4 0 2 4

Régression Boosting sur des arbres de profondeur 2.

56

Gradient Boosting -0- : Descente de gradient -1-

e Gradient Boosting = Boosting par descente de gradient.
e La descente de gradient s'inspire de la méthode de Newton-Raphson. Si
u strictement convexe de R dans R,

u(xn)
U/(Xn).

Xn+l = Xnp —
En x, I'équation de la tangente a la courbe de u est
y = u(x) = u(xn) + ' (xa)(x = xa)

e y =0 = la tangente coupe (0x) en X,i1.
e De proche en proche, on se rapproche d'un zéro de u.

e Descente de gradient : remplacer u par ', fixer n /

Xn+1 = Xn — UU/(Xn)

57

Gradient Boosting -0- : Descente de gradient -2-

X0

X1
N
;\\XQ 2}/
| —
{ NEE X

]
|
|
|
]
|
|
|
]
|
|
|
]
|
|
|
]
|
!
X0 T XN X §‘*
Xp+1 = Xp —NU (Xn)

Figure 20 — lllustration de I'algorithme de Newton-Raphson (a gauche) et de
celui de la descente de gradient (a droite).

58

Gradient Boosting -0- : Descente de gradient -3-

6000 __

o

4000 _

fix) =62+ 4% L axy
/

Figure 21 — lllustration de I'algorithme de descente de gradient en dimension 2.

59

Gradient Boosting -0- : le probleme de la notation -1-

o Si régression et /(y,y’) = (y — y')?/2. i fixé, y/ = h(x;). Erreur de
prédiction pour (x;,vi) : vi — y! = yi — h(x;).

10l

afy,/(y,y') = 567,(yfy’)2 =y —y. (29)

e évaluée en (y;, h(x;)), = a l'opposé de la perte.

n

1 1

Ra(h) = = S Iy b)) = 5= S0 = hG)2 (30)
i=1 i=1

o Ry(h) fonction de h... et de y1, ...,y et y1 = h(x1), ...,y = h(x,). Le

gradient de R,(h) (fonction de y’), évalué en (y;, h(x;));, est
ORA(h) 10l

v, ...,y;)J - (y;,y,-’)J ~ L hx) -).
dyi yi=hx) 0¥ y/=h(x)

60

Gradient Boosting -0- : le probleme de la notation -2-

e On note ce vecteur, de fagon peu rigoureuse et trés ambigué :

l(yi, h(x;))) !

VRi(h) = < dh(x;)

i=1,..,n
e Vecteur, n coord O R, / 2¢ coord. (h(x;)), évalué en (y;, h(x;)).
e En fait, la minimisation de R,(h) est effectuée sur la fonction h et non

sur les points de I'échantillon. On parle de gradient fonctionnel car
minimisation sur h, a x; et y; fixés.

o A I'itération m, Boosting = hp,_1(x), On veut Any(x)

hm(x) = hm—1(x) + ah(x) (33)

ol ah(x) minimise I'erreur. Si ah(x) égal a la perte quad., =
hm(x;) = y; = erreur prédiction nulle. On choisit comme expression de
h(x) le gradient du risque.

61

Gradient Boosting -1- : principe

hm(x) = hm-1(x) = aV R (hm-1) : (hml(x,-) —

Adaboost : cas particulier d'algorithme de descente de gradient.
=M | amhm, minimisant R,(h) = 27, I(h(x), yi)/n?
Pas de solution explicite = solution approchée.

Idée : algorithme de descente de gradient de type Newton-Raphson.

A une itération donnée, on a un classifieur h,,_; a améliorer.
On lui ajoute g / Ry(hm—1 + ag) diminue au maximum.

= opposé du gradient : g = =V R,(hm-1).

o 0l

" 07{()/"" hml(Xi)))

i

62

Gradient Boosting -2- : principe - suite

Deux problémes :

e La récurrence donne hy, uniquement aux points x;.

e Le gradient g n'a aucune raison d'appartenir a H, donc hp, non plus.

Pour obtenir h,(x) Vx € RY et assurer que h, € H,
= régression sur Dy, m = (X;, Uj)i=1,..,n aVec

ol

_87)/,-’()/” hm-1(xi))

up = u(m) =

On cherche la fonction h € H la plus proche de g :

La solution hp, s’obtient en ajustant le classifieur sur (x;, u;);.

On détermine ensuite la valeur optimale «,, de «.

63

Gradient Boosting -3- : I'algorithme de Friedman (1999)

c est une constante.
e Initialisation : ho(.) = L argmin. 37 /(c, y;)
e Pour m=1,..., M, étant donné h,,_; calculé a I'itération
précédente,
Vi =1,..,n, calculer les pseudos-résidus u;.
ajuster un classifieur de H sur I'échantillon (x;, u;); :

hm = ar%}r;in Z [u; — ah(x)]?
déterminer a optimal :

Q. = argmin Z / (hm,l(x,-) + aﬂm(x,-))

mise 3 jour : hp(x) = hp—1(x) + amhm(x).

En sortie, on obtient bien une combinaison linéaire d'estimateurs de H :

64

Gradient Boosting -4- : remarques sur I’algorithme

Plusieurs paramétres sont a calibrer :

e La fonction de perte.

o Le nombre M d’itérations.

e Le paramétre de régularisation «,, (learning rate : souvent ~ 0.1).

e Les parameétres de chaque classifieur constituant la combinaison
linéaire.
La fonction de perte doit étre dérivable et convexe. En classification

binaire :

e Adaboost : /(y, h(x)) = exp(—yh(x)).
e Logiboost : I(y, h(x)) = In(1 + exp(—2yh(x))).

En régression, L2 boosting : I(y, h(x)) = (y — h(x))?/2.

65

Gradient Boosting -5- : remarques finales

e On utilise souvent Adaboost et Gradient Boost avec des arbres
CART peu profonds (classifieurs faibles) : H est un ensemble de
combinaisons linéaires d’arbres de décision.

e Gradient Boosting stochastique : a chaque itération, on entraine le
classifieur sur un sous échantillon aléatoire de D, (sans remise).

e Gradient Boosting avec o = 1 et perte Boosting ~ Adaboost.

La fonction de perte doit étre dérivable et convexe. En classification

binaire :

e Adaboost : I(y, h(x)) = exp(—yh(x)).
e Logiboost : I(y, h(x)) = In(1 4 exp(—2yh(x))).

En régression, L? boosting : /(h(x),y) = (y — h(x))?/2.

66

Gradient Boosting -6- : performances

10

-2

-4

-6

ground truth

= RT max_depth=1
— RT max_depth=3

RT max_depth=20

fs
o

10

67

Gradient Boosting -7- : performances

10

T T

ground truth

RT max_depth=1
RT max_depth=3
GBRT max_depth=1

High bias - low variance

Hs

10

68

Extreme Gradient Boosting : XGBoost

e Version sophistiquée de Gradient Boosting (Chen et Guestrin, 2016).

Ajoute de la régularisation dans les entrainements des classifieurs
faibles.
e Utilise Newton-Raphson a la place du gradient.

développement limité au second ordre de la fonction de perte.
Difficile a calibrer....

e ... mais trés efficace si bien calibré.

plus de détails dans le polycopié.

La fonction objectif possede un terme de régularisation :

fZ/ m(Xi), Yi —|—ny

7v(hj) pénalise h; en fonction de sa complexité (nombre de feuilles si c’est
un arbre).

v élevé : complexité élevée (arbre profond).

69

Bibliographie

Freund, Schapire. Experiments with a new boosting algorithm.
roceedings of the 13th Inter. Conf. on Machine Learning. 1996.

Freund, Shapire. Boosting. MIT Press. 2012.

Friedman. Greedy function approximation : A gradient boosting
machine. Annals of Statistics. 2001.

Friedman, Hastie, Tibshirani. Additive logistic regression : A
statistical view of boosting. Annals of statistics. 2000.

Chen, Guestrin. XGBoost : A Scalable Tree Boosting System. 2016.

+ Chapitre 8 : Tree-Based Methods (p.331-363) Intro to Statistical
Learning with Python.

+ Chapitre 7 du polycopié de Frédéric Sur.

70

	1. Convexification de l'ensemble des classifieurs et de la perte
	2. Espaces de Hilbert à noyau auto-reproduisant
	3. Machines à vecteurs de support
	4. Boosting

