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1. Convexification de I'’ensemble
des classifieurs et de la perte



Fonction et ensemble convexe

Ensemble convexe
Soi E un espace vectoriel et C C E. C est convexe si pour tout x,y € C
et A€ [0,1], Ax+ (1 -y e C.

Fonction convexe
Soit C C E un ensemble convexe. Une fonction f : C — R est convexe
si Vx,y € C, VA € [0,1]

F(Ax + (1= N)y) < M(x)+ (1= Nf(y)

Une fonction convexe définie sur un ensemble convexe fermé atteint son

minimum.



Problématique : pourquoi convexifier 7

e La minimisation du risque empirique est difficile a3 mettre en ceuvre a
cause de la non-convexité de G et de la non-convexité de R,(g).

e Minimiser une fonction convexe dans un ensemble convexe est un
probléme « facile » a résoudre.

e |l faut changer |'espace des classifieurs G pour qu'il devienne

convexe.

e |l faut changer la forme du risque R(g) pour en faire une fonction

convexe.

On suppose dans ce chapitre, pour simplifier les formules, que
Y ={-1,1} au lieu de Y = {0, 1}.



Convexification de I'espace de recherche G

eAvant: g: X=R?% — {-11}.
e Maintenant : h: X — R car F(X,R) est convexe.

On affecte a x I'étiquette —1 si h(x) <O et 1si h(x) >0:

g(x) = sgn(h(x)) ol sgn est la fonction signe :

sgn(u)—{ 1 siu>0

-1 siu<O0

Toute fonction réelle h peut alors étre considérée comme prédicteur.

Convexification de G en H
On remplace F(X, {—1,1}) par F(X,R)
On remplace g € G par h € H C F(X,R)



Forme de la perte de prédiction et du risque

La perte de prédiction est donnée par
I(y, h(x)) = Liyzsgn(ne) = Liy=11L1£sgn(h(x))] + Ly=—11L[-1£5gn(h(x))]

= Tpy=1lne <o) + Ly=—11Lin)>0)
= Ty —ylpyneg<op + Ly=—111ynx) <0

[yh(x) < 0] C [yh(x) < 0] =

I(y, h(x)) < Lpy=yLineg<o) + Ly=—11Lphx)<o) < Lpyax<o]

I(y, h(x)) > Lpynpo<o) et H C F(X,R)/ P[A(X) =0] =0 Vhe H =

Forme de la fonction de perte et du risque

I(y, h(x)) = Liyne<o)] = Ljo,+00[(—Yh(X))
R(g) = R(sgn(h)) = E [T 1oof(— YH(X))]



Convexification de la fonction de perte

On définit le minimiseur du risque empirique convexifié par

hy € argerrtln - Z]l[o +oo[(—Yih(Xi)) (2)

~

h,, appartient a H. Mais 1g | o[ n'est pas convexe. On la remplace par ¢
convexe, et on appelle ¢-risque du classifieur h la quantité :

A(h) = Ra(o, h) = E[o(=Yh(x))] 3)
Le ¢-classifieur de Bayes est le prédicteur minimisant le ¢-risque :

h* e arlgery_in A(h) (4)

Le minimiseur sur H C F du ¢-risque empirique est le prédicteur

hEargmlanqﬁ =Y;h(X})) (5)

heH



Fonctions convexes usuelles pour le ¢-risque

Objectif : choisir pour ¢ un majorant convexe de 1 [ pour qu'un
classifieur de ¢-risque faible ait un faible risque de classification.

Les fonctions traditionnellement utilisées sont les suivantes :

Perte charniére o(x) = (14 x)+
Perte de Boosting | ¢(x) = e~

Perte logistique d(x) = logy(1 + €)

Perte quadratique | ¢(x) = (1 + x)?



Fonctions de perte convexes

3
— logy(1 + &)
— (L +x)4+
(1+x)?
24 e*
— Lo,ocf
\
‘ ‘ ‘ ‘ X
-1 -05 0.5 1 15 2

Figure 1 — Fonctions de perte convexe ¢ : courbes de ¢(yh(x)).



Consistance du minimiseur du ¢-risque

Théoreme de consistance
Soit ¢ : R — R une fonction convexe telle que Vx € R,

x(¢(x) = ¢(=x)) = 0.
Soit ¢ : [0,1] — R la fonction définie par
¥(p) = inf (pé(—u) + (1 - p)¢(u))
S'il existe vy € [0,1] et ¢ > 0 tels que Vp € [0, 1],
11— 2p| < c(4(0) —¥(p))”,
alors pour toute fonction de prédiction h,

Rlsgn(h)] — R[g"] < c (A(h) — A(h"))"

Démonstration en exercice !



2. Espaces de Hilbert a noyau
auto-reproduisant



Espace de Hilbert : définition

On suppose maintenant que A a une structure d'espace de Hilbert :
espace vectoriel normé muni d'un produit scalaire qui en fait un espace
métrique complet :

e I'espace euclidien R" muni de (x,y) = x"y.
e I'ensemble des suites de carré sommable /2(N) muni de
(X, y) = 02T Xy
e I'ensemble des fonctions de carré intégrable L2(R). muni de
(f.g) = = F(x)g(x)dx.
e idem sur C en ajoutant un conjugué sur le second terme.
Les espaces de Hilbert généralisent en dimension infinie la notion

d'espace euclidien : on peut travailler de facon "géométrique” dans
|'espace : avec des normes, angles, projections orthogonales.

10



Espace de représentation des données

Données de X pas facilement manipulables =

e on les transforme en les envoyant...

e ... dans un espace (vectoriel) de représentation (de redescription, ou
features space),

e via une fonction de représentation ¢ (features map).

e ici, I'espace de représentation sera un espace de Hilbert H.

Figure 2 — H représente les données (features) issues de X

11



Noyau de similarité

Plutot qu'une représentation individuelle, il est souhaitable de représenter
les données par couples en respectant les similarités entre objets de X :

KXxX—R
(X7y) — K(X7.y)

e noyau symétrique : K(x,y) = K(y, x).
o semi-défini positif : Vx;, x; € X,Va;, a5 € R, ), Zj aja;K(x;, x;) > 0.

e qui définit une matrice carrée réelle : (K(x;,x;))ij pour i,j=1,...,n.

On peut mélanger les deux points de vue en utilisant ¢ : X — H et le
noyau K : X x X —>R:

K(x,y) = (¢(x), d(y))

12



Pourquoi augmenter la dimension? 1

o Si X posséde beaucoup de paramétres (de features), H peut étre de
grande dimension.

e C'est méme |'objectif de ¢ : travailler dans un espace ou il y a
beaucoup de « place », de degrés de liberté.

e Si ¢ choisie de fagon adéquate, possible de ne pas avoir a effectuer
explicitement les produits scalaires en grande dimension grace a I'astuce
du noyau (« kernel trick »).

e K mesure la similarité entre les données x et y ~ généralisation d'une
fonction de covariance.

13



Pourquoi augmenter la dimension ? 2

e Travailler dans un espace ol il y a beaucoup de « place », de degrés de

liberté.
o
)
o
o ® ¢ °?
e — e °
L °
P [
o
Feature Space H

Espace initial X

Figure 3 — On envoie les données initiales dans un espace (abstrait) de
dimension plus grande, afin de pouvoir séparer plus facilement les classes.
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Pourquoi augmenter la dimension? 3

e K mesure la similarité entre les données x et y ~ généralisation d'une
fonction de covariance.

X

®(x) o(x')

Figure 4 — La fonction de représentation ¢ transforme en fait un point de X en
une fonction Ky = ¢(x) de X dans R (considérée comme un élément de
I'espace de Hilbert H).
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Les noyaux usuels

Vanille : K(x,y) = (x,y).

Sigmoide : K(x,y) = tanh({x, y)).

Gaussien (RBF) : K(x,y) = exp (—ﬁHX —)’||2)-

ReLU : K(x,y) = min(x,y) = x — ReLU(x — y) = y — ReLU(y — x).
Polynomial : K(x,y) = (c + (x, y))".

e Exponentiel : K(x,y) = exp (—v||x — y||).

L'espace de représentation associé au noyau gaussien est un espace de
Hilbert de dimension infinie.

On remarque que ¢ n'apparait pas dans les formules.

16



Un théoréme abstrait mais trés important

Théoréeme de Mercer-Kolmogorov-Aronszajn (MKA)

Si K est un noyau continu, défini positif sur un ensemble X, alors il existe
un unique espace de Hilbert { et une application de représentation
¢ : X — H tel que tels que Vx,y € X,

K(x,y) = (o(x), &(y))

Mercer (1909) pour X compact de R?, Kolmogorov (1941) pour X
dénombrable et Aronszajn (1944) pour le cas général.
e 7{ est unique, mais pas ¢.

e On espére que si H est de grande dimension (éventuellement infinie)
les données vont devenir plus facile a classifier (séparer).

e L'astuce du noyau (kernel trick) : on n'a pas besoin de spécifier ¢ et
d'évaluer ¢(x) et ¢(y), seul compte K(x,y).

17



Dual d’un espace de Hilbert et théoreme de Riesz

e On souhaite choisir pour H un espace de fonctions h: X — R.

e Une forme linéaire continue (FLC) sur un espace de Hilbert est une
fonction linéaire continue de # dans R.

e Leur ensemble est un e.v. H' appelé dual de H.

e Le théoréme de représentation de Riesz dit que H ~ H'.

Théoréme de représentation de Riesz
VL e H', 3'f € H tel que L(h) = (f, h), Yh € H.
Réciproquement, Vf € H, L(h) = (f, h) définit un élément de H’'.

L application linéaire continue <= |L(h)| < d||h||, Vhe H
<~ ||L|| <§ < L bornée.

18



RKHS

Vx € X, soit Ly : H — R telle que Ly(h) = h(x).

L, reproduit I'action de h sur x, c'est la fonction d'évaluation en x.
e VxeX, L, eH.
o H est un RKHS si, et seulement si Vx € X, L, est continue.
e Le théoréme de Riesz =

Vx € X, 3K, € H tel que Ly(h) = (Ky, h) = h(x), Yhe H

On peut poser K(x,y) = (Ks, K,) = (6(x), ¢(y)). c-a-d. K = 6(x).
K est un noyau reproduisant, unique, symétrique, semi-défini positif.
Correspondance entre noyau et RKHS (réciproque de Aronszajn)

H est un RKHS si, et seulement s'il existe un noyau reproduisant
(unique) K vérifiant K(x,y) = (K, K,), Vx,y € X.

Tout élément de H s’écrit de facon unique h = >, Ky, :

h(x) = >0 aiK(x, x;). o



Le théoréeme du représentant

Théoréme du représentant
e Soit K : X x X — R un noyau symétrique, défini positif.
e Soit H son RKHS.

Soit D, = {(xi,yi)} € (X x R)" un échantillon.

e Soit / une fonction de perte.

e Soient A > 0 et J fonction réelle strictement croissante.
Alors toute solution h, du probléme de minimisation

arg min (1 S Iy, h(x) +AJ<|h|>>

¢ n
heH =

s'écrit de fagon unique sous la forme

n

Zn(x) = Z a;K(x, x;)

i=1

20



Beaucoup d’espaces abstraits...

oK(x,y) = (o(x), 8(y))

R

Figure 5 — Les espaces X, H, H' et R, ainsi que les fonctions ¢ et K.

21



3. Machines a vecteurs de
support



Machine a vecteurs de support : premier point de vue

Pour un t > 0, on pose

n

—~ . 1
hsvm(t) € hs;g:‘ml‘flt; ;¢(_Yih(Xi)) (10)

heH

<:>ZSVM()\)€argmin< qu —Y;ih(X, +>\||h|2> (11)

e h est une fonction et H est un espace de fonctions de X dans R.

e En classification, on choisit ¢(x) = (1 + x). En régression,
B(x) = x2; I'expression ¢(— Yh(X)) est remplacée par (Y — h(X)).

e Si H espace de Hilbert a noyau auto-reproduisant (RKHS) alors on
dit que /f;,, = //;SVM est un prédicteur a base de noyau, ou machine a
vecteurs de support (SVM).

e L’'hyperparamétre t (ou A) est calculé par validation croisée.

22



Machine a vecteurs de support : classifieur SVM

o Comme H est un RKHS, la solution de

1 n
argmin =Y ¢(=Y;h(X))). (12)
heH:||h||<t N ;
est de la forme (théoréme du représentant)

n

hswm(-) = ha(1) = > K (., xi) (13)

i=1

avec K noyau RKHS de l'espace H, a1,...a, € R et xi, .., X, données
observées de I'échantillon.

e Les «; sont facilement et rapidement déterminés par une méthode
d'optimisation convexe.

e Les SVM ont été inventées par Vapnik dans les années 1990.

23



Machine a vecteurs de support : point de vue traditionnel

On dispose d'un échantillon D,, de n observations (x, yx), avec xx € R4
et y = £1, que I'on peut séparer linéairement par un hyperplan :

1
-1

wlixx+b>0 siy
wixe+b<0 siyg

L'hyperplan séparateur est caractérisé par son vecteur normal w € RY et
un seuil b. Son équation est

wix+b=0

La distance euclidienne d'un point x € R? a I'hyperplan H est donnée
par :

24



Séparateur de plus grande marge

La plus petite distance entre les observations et un hyperplan séparateur
(w, b) est

1

mlny,(w x; + b)
[[wl]

Le double de ce minimum s'appelle la marge. L'hyperplan de plus grande
marge a pour paramétres (w, b) les solutions de

1
argmax<| " mlny,(w x,+b)>

Les observations qui réalisent le minimum sont appelées les vecteurs de
support. Les séparateurs a vaste marge (SVM) sont des machines a
vecteurs de support au sens défini précédemment.

25



Illustrations des SVM - 1 -

w-x+b=1 X2
w-x+b=0
w-x+b=-1 ® ®
[ N ]
[ ]
w [ ]
{ ]
L ® X1
° [ )
[ ]
Marge:ﬁ
[ ]

Figure 6 — 2 classes d'observations (bleu et vert) linéairement séparables. En rouge, I'hyperplan

séparateur de plus grande marge, en vert et bleu les hyperplans frontiéres de chaque classe et

vecteurs supports (centre jaune).
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Illustrations des SVM - 2 -

o o
o o
SR CR
o o
T T T T T T T T T T
-1 0 1 2 3 -1 0 1 2 3
X, X,

Figure 8 — Deux classes d'observations (bleu et rouge) mesurées par
I'intermédiaire de deux variables x; et xo. A gauche, trois exemples de plans
séparateurs. A droite, le plan séparateur optimal, le plus éloigné des deux

nuages. Crédit : Intro. to ML with Python. James, Witten, Hastie, Tibshirani.
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Illustrations des SVM - 3 -

Figure 9 — Deux classes d'observations (bleu et rouge) mesurées par
I'intermédiaire de deux variables x; et xo. A gauche, le plan séparateur de plus
grande marge avec les points les vecteurs de support a la frontiere. A droite, un
exemple de nuages non linéairement séparable a cause d'un point rouge ajouté
par rapport au nuage précédent (trouver ou...). Crédit : Introduction to
Machine Learning with Python. James, Witten, Hastie, Tibshirani. Figures du
chapitre 9.
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Résolution du probléeme d’optimisation -1-

La marge vaut v = 1/||w||. Maximiser v <= minimiser ||w]|]|.

Condition de séparation des classes : Vi =1,...,n:
sgn(h(x)) = yi <= yih(x)>1 < yi(w'x +b) > 1

Probléeme d’optimisation (primal)

min b ||| /2
e . (14)
sc. yilw'x;+b)>1Vi=1,..,n.

Probléme d'optimisation convexe = lagrangien + conditions de
Karush-Kuhn-Tucker (KKT). = probleme dual.

Démo et résolution en exercice.

29



Résolution du probléeme d’optimisation -2-

Probléeme d’optimisation (dual)

n n
arg max (Z o — Zzaiaj)/iyj {xi> x;) /2
a€RY =il =1

i (15)
sc.a;>0Vi=1,..,n, ; Za;y,- =0.

On obtient d'abord les o}, on en déduit w* et b* qui donnent
I"hyperplan optimal :

= iai*}’ixi
//;n( Za Yi X/; + b*

Les données de I'échantillon correspondant a o > 0 sont les vecteurs
support (seuls a contribuer a la solution).
30



Cas non linéairement séparables, lien entre les 2 points de vue

Si données non linéairement séparables (grande majorité des cas), on
généralise par une perte convexe ¢ et on reécrit le pb. d'optimisation :

min <|w||2 +: I;qb(y,-h(x,-))) = min (1 > (e + A||w||2>

avec A\ = 1/2¢ paramétre de régularisation.

Dans le pb. dual, (x,y) se transforme en K(x,y) = (¢(x), ¢(y)) et... on
retrouve le premier point de vue.

31



lllustration des SVM avec noyaux non linéaires -1-

Figure 10 — 2 classes (bleu et rouge) mesurées par x; et xo. En haut, données plus linéairement
séparables. En bas, aprés changement de x en ¢(x) (fonction non linéaire). A gauche, ¢ polynome

degré 3, a droite, ¢ gaussienne radiale. Crédit : Intro. to ML with Pyton. James, Witten, Hastie.
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lllustration des SVM avec noyaux non linéaires -2-

T
0.5 |
0 il C)
—0.5| |
oo®
1 05 0 05 1 Feature Space H

Figure 11 — Données non linéairement séparables en dimension 2, mais dont on
se doute qu'elles sont a symétrie circulaire. En dimension 3, elles correspondent
a deux nuages de hauteurs différentes qui sont linéairement séparables.
d(x,y) = (x, 5,3 + y?) et K(x,y) = (6(x), ¢(y)) = x"y + [Ix|P|lyl|*.
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Marge souple : principe

Un cas particulier « presque linéaire » est donné par le pb. a marge
souple : on autorise quelques écarts a I'hyperplan séparateur en
introduisant une variable d'ajustement (« slack » variable pour varaible

d'écart, souple, molle, etc.) :

& =1 —yi(wqg+ b))y, i=1,..,n

(1 ¢
argmin | —||lw||* 4+ ¢ &
< <2|| ey )

sc. &> (1 —yilwxi + b))y, i=1,...,n

c grand : pénalise fortement les &; (peu de souplesse).
c petit : on peut s'écarter sensiblement de I'hyperplan.

Dans le pb. dual, les &; disparaissent. Seule # : condition «; < c.

34



Marge souple : illustration

w-x+b=1 X2
w-x+b=0
w-x+b=-1 * . o
&
o
o
w [ J
([ J
L L X1
° [ ]
[ J
Marge:ﬁ
. | &

Figure 12 — Marge souple avec 2 classes (en bleu et vert) non linéairement

séparables. 2 points (I'un vert, 'autre bleu) de part et d’autre de la marge. La

distance &7 et &5 a la frontiére les caractérisent.

35



Marge souple : conclusion

e Dans le probéme dual, les &; disparaissent et la seule # avec le
probleme précédent est la condition a; < c. w ne dépend toujours que

des vecteurs supports, pour lesquels la contrainte est saturée :
T _
yi(w'x;+b) =1-¢.

e | es vecteurs supports sont les x; tels que & = 0 ou & > 0, mais dans la
marge (bien classé si 0 < & < 1 et mal classé si §; > 1). <= On tolére
quelques données mal classées mais permet d'étre appliqué a des données
non linéairement séparables.
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SVR : régression a vecteurs de support -1-

e En régression, on cherche h approchant au mieux le nuage de points
(xi, yi)i- h(x,w) dépend d'un paramétre a optimiser w.

eVi=1 ..n, |h(x) — yi| le + petit possible et h la plus réguliére
possible (surapprentissage).

e < Minimiser la perte insensible (« insensitive ») :

0 si |x| <,
|x|e:{ X (16)

|x| —€e sinon.

ly = h(x)lc = max (0, |y — h(x)| —€). (17)
e Pour la perte e-insensible, écart < € entre h(x;) et y; non en compte.

e Définit un tube de largeur € de part et d'autre de h a I'intérieur duquel
doivent se trouver tous les points de I'échantillon.

37



SVR : régression a vecteurs de support -2-

x2 (moindres carrés)

e-insensible

§

—€ +e X

Figure 13 — La fonction de perte e-insensible comparée a la perte au sens des
moindres carrées.
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SVR : régression a vecteurs de support -3-

lg; >0,6=0
Figure 14 — Dans la SVR, la fonction perte définie un e-tube de part et d’autre
de la fonction de régression h dans laquelle doivent se trouver tous les points
de I'échantillon. Il est possible de définir des variables d'écarts £ comme pour
une marge souple. En noir, les observations se trouvant dans le e-tube, en
rouge, les données a I'extérieur (pour lesquelles I'une des variables d’écart est
non nulle) et en vert les données qui correspondent aux vecteurs de support.
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SVR : régression a vecteurs de support -4-

vi € R = on doit résoudre :

arg min (||w[|*/2)
w,b
sc. |y —(w'x +b)| <e Vi=1,..,n
Les (x;, yi) doivent étre dans un tube de rayon € autour de (x, f(x))

(appelé e-tube).
Pas de solution si € trop petit. On introduit des écarts possibles :

¢ = lvi — (w'x; + b)| — € si|y; — (wix; + b)| > e,
10 sinon.

Probleme d’optimisation primal SVR

arg min <||W|2/2 +ey (6+ Ef))
i=1

’
w,D,¢,

sc.yi—wixi+b<e+&, wxi+b—y <e+& ,Vi=1.,n.

40



SVR : régression a vecteurs de support -5-

Probleme d’optimisation dual SVR
1
argnjin = E (i — i)y — aj)xixj — € E aj +al) + E yi(
“ ij

sc.0<a;,a;<C, Vi=1,.,n;> (j—a})=0.

Apres résolution, le régresseur s'écrit sous la forme :

n

F(x) = D (e — af) (x.x) + b

i=1

et si des noyaux non linéaires sont utilisés, il s’exprime sous la forme :

n

f(x)= Z(ai —al)K(xi,x) + b.

i=1

,*O{
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SVR : exemple 1 -6-

L @ données

2.0
[ ] —— prediction

1.5

—1.5

Figure 15 — Un nuage de points (en rouge) générés autour d’une sinusoide
perturbée par un bruit aléatoire et la courbe de régression SVR (en bleu).



SVR : exemple 2 -7-

SVR linéaire R pol !

SVR logistique

Figure 16 — Nuage de points (en bleu) autour d’une sinusoide et courbes de
régressions SVR (en rouge, avec les e-tubes en rose, pour € = 0.5) pour 4 types
de noyaux.



Classification multiclasses : exemple des iris de Fisher -1-

SVC avec noyau linéaire

sepal width (cm)

e o °
5 o
A . %%
J ° o o
B Y
a

o0

sepal length (cm)

SVC avec noyau RBF

sepal width (cm)

Figure 17 — SVM :
différents proposés.

par la longueur et la largeur du sépale.

sepal length (cm)

classification des 3 espéces d'iris de Fisher. 4 noyaux
Régions dédiées a chaque espece : dans le plan caractérisé
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Classification multiclasses : exemple des iris de Fisher -2-

Figure 18 — SVM : classification des 3 espéces d'iris de Fisher. 4 noyaux
différents proposés, dont 3 sont des noyaux gaussiens RBF (ligne du bas).
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Remarques finales

e SVM permettent également de faire de la régression.

e SVM considérées comme 1 des meilleures méthodes de classification.
e En grande dimension (d >> n) les SVM sont efficaces.

e Mais n'estiment pas de probabilité (# reg. logistique).

e Bonne alternative aux réseaux de neurones : plus faciles a entrainer.
e Mais pas toujours interprétable, pas toujours trés rapides.

e Souvent moins performant que les foréts aléatoires.
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4. Boosting




Encore une histoire de convexification

Autre facon de convexifier I'ensemble des prédicteurs

HC F(X,{-1,1}) :

M
Hy = {Z Ambmi Am >0, hm € H, Z)\m <AL (18)

m=1

H est convexe. On pose

77\,7)\ € argmin Ap(h) (19)
heH x

o Si A=\, = +00, \p¢’'(An)y/Inn/n — +0o et H a une dimension
de Vapnik finie, alors hj, 5, est universellement consistent.

e Probleme difficile a résoudre car de dimension infinie.

e |'algorithme Adaboost permet de le résoudre.

48



Algorithme AdaBoost -1-

Adaptive Boosting (Freund et Shapire 1996). Principe : la sagesse des
foules (wisdom of the many).

Classifieur performant a partir de classifieurs faibles (réduit le biais).

Donne plus de poids aux observations difficiles a prédire.

Simple, rapide et facile a implémenter : trés peu de paramétres.
Flexible (s'adapte a tout type de classifieur faible sans it a priori).
Permet également la régression.

Versatile : beaucoup d'applications (reconnaissance d'images, de
textes, moteurs de recherche).

Mais....

Comportement vis a vis du sur-apprentissage ambigu.
Entrainement séquentiel coliteux en temps de calcul.

Sensible aux valeurs aberrantes et au bruit.
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Algorithme AdaBoost -2-

Données initiales Données repondérées Données repondérées

Classifieur final

‘ Classifieur ‘ ‘ Classifieur ‘

I

e o - I Ve @
o0 o 00

X ( 14 X 0000

o000 0000

000 o 00000

Figure 19 - Boosting : un classifieur faible est entrainé sur I'ensemble des données initiales.
Pondération # des données bien et mal classées favorisant ces derniéres. Second classifieur
entrainé sur données pondérées et remet a jour les pondérations, etc. Classifieur final = moyenne

pondérée des classifieurs faibles.
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Algorithme AdaBoost -3-

Diagramme plus explicite pour illustrer le Boosting :

{Echantillon initial} Riiaing

[Echantillon pondéré} -
'

[Echantillon pondéré} g
'

[échantiuon pondéré} -

Forme du prédicteur Boosting (C : classifieur, R : régresseur).

A chaque itération, Apm(x) = Am_1(x) + ah
ol « et h doivent rendre h,, minimal pour R,.
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Algorithme AdaBoost -4- : I'algorithme

Initialisation : w;(0) = 1/n. Puis a chaque itération m=1,..., M,

1. Entrainer hp,(x) sur I'échantillon pondéré par w = (w;(m)); :

hm, € arg min wi (M) Ly, £p(x,
A ; [yizh(x)]-

2. Calculer I'erreur normalisée :
n

em=Y_ wi(m) Ly, 2n, o/l W1
i=1
3. Calculer le poids de I'itération m : am = In /(1 — €m)/€m.
4. Mettre a jour les poids des observations :

wi(m+ 1) = w;(m)exp (ozm]l[y,.#hm(xl.)]) , Vi=1,...,

M
= Z amhm(x)

(20)

(21)
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Algorithme AdaBoost -5- : pourquoi ca marche

Vm, hy, = hp_1 +&E, avec h,, min. ¢-risque empirique / perte Boosting :

(h,@) € argmin ,§:¢ —yilhm-1(x) + ah(x;)]) (24)
heH,a€R, N i—1
1 n
= arg min — w;(m) exp (—y;jah(x; 25
gm n?:l()p(y()) (25)
. e @ e*
:ar%Tm — E W,-(m)+7 E w;(m) (26)
? yi=h(x;) yi#h(x:)

¢(x) = €, wi(m) = exp(—yihm-1(xi)).

On trouve h, on déduit @ = «, : démo en exercice et dans le polycopié.
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Algorithme AdaBoost -6- : propriétés

Les classifieurs faibles utilisés ne doivent pas étre trop faibles :
€m = 1/2 — v, avec vy, > 0.

Majoration de |'erreur empirique :

~ 1<
Ra(hw) = — Z L oy S &P ( 2 Z m) (27)

i=

Majoration de I'erreur de généralisation (Freund et Shapire) :

R(hm) = P[Am(X) # Y] < Ra(hu) + O (\/ /VLV> (28)

V' dimension de Vapnik de I'espace des classifieurs faibles.

Bartlett et Traskin : si M = M, = n'~¢, ¢ €]0, 1], alors Adaboost est
fortement et universellement consistant.

54



Généralisations

A des étiquettes non binaires : SAMME Stagewise Additive
Modeling Multi-class Exponentiel (c.f. polycopié).

A de la régression : L2 Boosting (c.f. polycopié).

e A d'autres fonctions de perte : logistique, etc.

A d’autres méthodes de minimisation du risque empirique : =
Gradient Boosting et XGBoost (eXtreme Gradient Boosting).
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Algorithme Adaboost -7- : performances

Nombre d’arbres : 1

Nombre d’arbres : 2

Nombre d’arbres : 3

° ° °
1.0 1 1.0 A 1.0 1
0.5 4 0.5 4 0.5
0.0 H 0.0 + 0.0
—0.5 —0.5 —0.5
—1.0 o == Approx. —1.0 o === Approx. —1.0 o == Approx.
®  Données . . ®  Données o  Données
—-1.5 4 T T T —-1.54 T T T —1.5 T T T
0 2 4 0 2 4 0 2 4
Nombre d’arbres : 7 Nombre d’arbres : 8 Nombre d’arbres : 9
L [ o
1.0 1 1.0 4 1.0 1
0.5 0.5 o 0.5 A
0.0 1 0.0 o 0.0 A
—0.5 o —0.5 4 —0.5 4
~1.0 {/— Approx. ~1.0 1 — Approx. ~1.0 4 /— Approx.
®  Données ®  Données e Données
—1.5 4 —1.5 1 —1.5 4
T T T T T T T T T
0 2 4 0 2 4 0 2 4

Régression Boosting sur des arbres de profondeur 2.
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Gradient Boosting -0- : Descente de gradient -1-

e Gradient Boosting = Boosting par descente de gradient.
e La descente de gradient s'inspire de la méthode de Newton-Raphson. Si
u strictement convexe de R dans R,

u(xn)
U/(Xn).

Xn+l = Xnp —
En x, I'équation de la tangente a la courbe de u est
y = u(x) = u(xn) + ' (xa)(x = xa)

e y =0 = la tangente coupe (0x) en X,i1.
e De proche en proche, on se rapproche d'un zéro de u.

e Descente de gradient : remplacer u par ', fixer n /

Xn+1 = Xn — UU/(Xn)
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Gradient Boosting -0- : Descente de gradient -2-

X0

X1
N
;\\XQ 2}/
| —
{ NEE X

]
|
|
|
]
|
|
|
]
|
|
|
]
|
|
|
]
|
!
X0 T XN X §‘*
Xp+1 = Xp —NU (Xn)

Figure 20 — lllustration de I'algorithme de Newton-Raphson (a gauche) et de
celui de la descente de gradient (a droite).
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Gradient Boosting -0- : Descente de gradient -3-

6000 __

o

4000 _

fix) =62+ 4% L axy
/

Figure 21 — lllustration de I'algorithme de descente de gradient en dimension 2.
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Gradient Boosting -0- : le probleme de la notation -1-

o Si régression et /(y,y’) = (y — y')?/2. i fixé, y/ = h(x;). Erreur de
prédiction pour (x;,vi) : vi — y! = yi — h(x;).

10l

afy,/(y,y') = 567,(yfy’)2 =y —y. (29)

e évaluée en (y;, h(x;)), = a l'opposé de la perte.

n

1 1

Ra(h) = = S Iy b)) = 5= S0 = hG)2 (30)
i=1 i=1

o Ry(h) fonction de h... et de y1, ...,y et y1 = h(x1), ...,y = h(x,). Le

gradient de R,(h) (fonction de y’), évalué en (y;, h(x;));, est
ORA(h) 10l

v, ...,y;)J - (y;,y,-’)J ~ L hx) - ).
dyi yi=hx) 0¥ y/=h(x)
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Gradient Boosting -0- : le probleme de la notation -2-

e On note ce vecteur, de fagon peu rigoureuse et trés ambigué :

l(yi, h(x;))) !

VRi(h) = < dh(x;)

i=1,..,n
e Vecteur, n coord O R, / 2¢ coord. (h(x;)), évalué en (y;, h(x;)).
e En fait, la minimisation de R,(h) est effectuée sur la fonction h et non

sur les points de I'échantillon. On parle de gradient fonctionnel car
minimisation sur h, a x; et y; fixés.

o A I'itération m, Boosting = hp,_1(x), On veut Any(x)

hm(x) = hm—1(x) + ah(x) (33)

ol ah(x) minimise I'erreur. Si ah(x) égal a la perte quad., =
hm(x;) = y; = erreur prédiction nulle. On choisit comme expression de
h(x) le gradient du risque.
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Gradient Boosting -1- : principe

hm(x) = hm-1(x) = aV R (hm-1) : (hml(x,-) —

Adaboost : cas particulier d'algorithme de descente de gradient.
=M | amhm, minimisant R,(h) = 27, I(h(x), yi)/n?
Pas de solution explicite = solution approchée.

Idée : algorithme de descente de gradient de type Newton-Raphson.

A une itération donnée, on a un classifieur h,,_; a améliorer.
On lui ajoute g / Ry(hm—1 + ag) diminue au maximum.

= opposé du gradient : g = =V R,(hm-1).

o 0l

" 07{()/"" hml(Xi)))

i
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Gradient Boosting -2- : principe - suite

Deux problémes :

e La récurrence donne hy, uniquement aux points x;.

e Le gradient g n'a aucune raison d'appartenir a H, donc hp, non plus.

Pour obtenir h,(x) Vx € RY et assurer que h, € H,
= régression sur Dy, m = (X;, Uj)i=1,..,n aVec

ol

_87)/,-’()/” hm-1(xi))

up = u(m) =

On cherche la fonction h € H la plus proche de g :

La solution hp, s’obtient en ajustant le classifieur sur (x;, u;);.

On détermine ensuite la valeur optimale «,, de «.
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Gradient Boosting -3- : I'algorithme de Friedman (1999)

c est une constante.
e Initialisation : ho(.) = L argmin. 37 /(c, y;)
e Pour m=1,..., M, étant donné h,,_; calculé a I'itération
précédente,
Vi =1,..,n, calculer les pseudos-résidus u;.
ajuster un classifieur de H sur I'échantillon (x;, u;); :

hm = ar%}r;in Z [u; — ah(x)]?
déterminer a optimal :

Q. = argmin Z / (hm,l(x,-) + aﬂm(x,-))

mise 3 jour : hp(x) = hp—1(x) + amhm(x).

En sortie, on obtient bien une combinaison linéaire d'estimateurs de H :
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Gradient Boosting -4- : remarques sur I’algorithme

Plusieurs paramétres sont a calibrer :

e La fonction de perte.

o Le nombre M d’itérations.

e Le paramétre de régularisation «,, (learning rate : souvent ~ 0.1).

e Les parameétres de chaque classifieur constituant la combinaison
linéaire.
La fonction de perte doit étre dérivable et convexe. En classification

binaire :

e Adaboost : /(y, h(x)) = exp(—yh(x)).
e Logiboost : I(y, h(x)) = In(1 + exp(—2yh(x))).

En régression, L2 boosting : I(y, h(x)) = (y — h(x))?/2.
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Gradient Boosting -5- : remarques finales

e On utilise souvent Adaboost et Gradient Boost avec des arbres
CART peu profonds (classifieurs faibles) : H est un ensemble de
combinaisons linéaires d’arbres de décision.

e Gradient Boosting stochastique : a chaque itération, on entraine le
classifieur sur un sous échantillon aléatoire de D, (sans remise).

e Gradient Boosting avec o = 1 et perte Boosting ~ Adaboost.

La fonction de perte doit étre dérivable et convexe. En classification

binaire :

e Adaboost : I(y, h(x)) = exp(—yh(x)).
e Logiboost : I(y, h(x)) = In(1 4 exp(—2yh(x))).

En régression, L? boosting : /(h(x),y) = (y — h(x))?/2.
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Gradient Boosting -6- : performances
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Gradient Boosting -7- : performances

10

T T

ground truth

RT max_depth=1
RT max_depth=3
GBRT max_depth=1
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Hs

10
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Extreme Gradient Boosting : XGBoost

e Version sophistiquée de Gradient Boosting (Chen et Guestrin, 2016).

Ajoute de la régularisation dans les entrainements des classifieurs
faibles.
e Utilise Newton-Raphson a la place du gradient.

développement limité au second ordre de la fonction de perte.
Difficile a calibrer....

e ... mais trés efficace si bien calibré.

plus de détails dans le polycopié.

La fonction objectif possede un terme de régularisation :

fZ/ m(Xi), Yi —|—ny

7v(hj) pénalise h; en fonction de sa complexité (nombre de feuilles si c’est
un arbre).

v élevé : complexité élevée (arbre profond).
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