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Formalisation et principales

méthodes



Pas d’étiquette car...

� Pas de temps ou d’argent.

� Pas de spécialiste pour étiquetter.

� Trop de catégories.

� Impossible à étiquetter.

⇒

� Structurer les données.

� Regrouper ce qui se ressemble (”ce qui se ressemble s’assemble”).

� Eloigner ce qui est vraiment différent.

� Cluster (dans une partition) : groupe de ”données similaires”.

⇒ Importance de définir une bonne notion de similarité.
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Exemple (Nicolas Baskiotis) -1-

Quel est le bon partitionnement ?
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Exemple (Nicolas Baskiotis) -2-
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Exemple (Nicolas Baskiotis) -2-

Aucun ! Échantillon de loi uniforme.
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Apprentissage non supervisé : un problème de similarité

Différentes approches :

� Géométrique : connectivité, centröıde (k-moyennes, CAH).

� Graphes (spectral clustering).

� Distribution de probabilités latentes (estimation de densités).

� Modèles bayésiens.

� Apprentissage génératif (réseaux de neurones).

Partitionnement :

� k-moyennes, DBSCAN, Mean Shift.

� Hard : une donnée appartient à un unique groupe.

� Soft : probabilité d’appartenance à un groupe.

� Nombre de classes k inconnu a priori.

� Similarité intra-groupe et dissimilarité inter-groupe.

� La malédiction de la dimension n’est jamais loin.
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Formalisation mathématique

� Échantillon D = {X1, ...,Xn} avec Xi ∈ Rd .

� Partition πk sur D : D1,..., Dk .

� Critère de similarité d (distance) sur Rd ou X.

� Critère de similarité D sur les sous-ensembles de D.

� Clustering : à k fixé, trouver π⋆
k = argminπ ϕ(π)

� ϕ est une fonction des distances d et D.
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Distances sur Rd et sur P(D)

dp(x , y) =

(
d∑

i=1

|xi − yi |p
)1/p

� p = 2 distance euclidienne.

� p = 1 distance de Manhattan.

� p → 0 distance de Hamming.

� p quelconque distance de Minkowski.

D(A,B) =

� PPV (simple linkage) : min{d(x , y), x ∈ A, y ∈ B}
� Diamètre max (complete linkage) : max{d(x , y), x ∈ A, y ∈ B}
� Moyenne (average linkage) : 1

|A|.|B|
∑

x,y d(x , y)

� Ward : |A|.|B|
|A|+|B| ||mA −mB ||2

� Barycentres : d(A,B) = d(mA,mB)

A,B ∈ {D1, ...,Dk} et mA =
∑

x∈A 1/|A| barycentre (centröıde) de A.
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Classification ascendante

hiérarchique



Classification ascendante hiérarchique : principe

Algorithme glouton :

� Fusionner les partitions les plus semblables selon D.

� Construire des clusters de plus en plus larges.

� S’arrêter quand il reste un unique cluster.

� ⇒ Arbre de partitionnement binaire : dendrogramme.

CAH : ce n’est pas une méthode de classification, mais de

parititionnement (non supervisé) !

Selon le choix de D, le dendrogramme est plus ou moins équilibré.

Le choix de k est également important... et subjectif.
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CAH : exemple 1 (J. Salmon, N. Verzelen) -1-

(Figure : J. Salmon, N. Verzelen)

Height sur l’axe (Oy) : distance entre les clusters.
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CAH : exemple 1 -2-

(Figure : J. Salmon, N. Verzelen)
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CAH : exemple 2 (J. Salmon, N. Verzelen) -1-

Jeu de données ”Agriculture” dans l’union européenne en 1993.
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CAH : exemple 2 -2-

(Figure : J. Salmon, N. Verzelen)
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CAH : exemple 2 -3-

(Figure : J. Salmon, N. Verzelen)
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CAH : exemple 2 -4-

(Figure : J. Salmon, N. Verzelen)
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CAH : exemple 2 -5-

(Figure : J. Salmon, N. Verzelen)

15



CAH : exemple 2 -5-

(Figure : J. Salmon, N. Verzelen)
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CAH : exemple 2 -5-

(Figure : J. Salmon, N. Verzelen)

Choix de k : méthode du ”coude”.
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CAH : complexité et remarques finales

Complexité :

� O(n3) en implémentation näıve (n itérations sur matrice n × n.).

� Meilleurs algorithmes en O(n2 ln n) voire O(n2).

Remarques finales :

� Le choix de k est important : méthode du ”coude”.

� Introduite par J.P. Benzécri, Rennes 1982.
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Méthode des k-moyennes



Algorithme des k-moyennes : principe

Construit la partition qui minimise la distance intra-cluster (inertie) :

ε(πk) =
k∑

i=1

∑
xj∈Di

||xj −mi ||2, (1)

avec mi barycentre (ou centröıde) du cluster (ou groupe) i :

mi =
1

|Di |
∑
xj∈Di

xj (2)

L’algorithme construit :

ε̂k ∈ argmin
πk={D1,...,Dk}

ε(πk).

Problème NP-difficile ⇒ obligation d’une méthode de résolution

approchée.

k-means ̸= k-nn !!!!!
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Algorithme des k-moyennes : exemple

(Figure : J. Salmon, N. Verzelen)
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Résolution approchée du problème NP-difficile

Formation cluster : chaque donnée affectée au centröıde le + proche.

Algorithme de Lloyd (1957)

� Affecter chaque point au cluster de plus proche centre mi .

� Ré-estimer les centres selon la nouvelle répartition.

� Itérer jusqu’à convergence

Complexité : O(n(k + 1)).

Converge vers un minimum local seulement.

⇒ En pratique, on lance plusieurs fois l’algo avec ̸= initialisations.

Heursitique pour choisir k : méthode du coude (Elbow). Quand la

décroissance devient moins franche.

21



Algorithme des k-moyennes : géométrie des classes

Les centres induisent une partition de Voronoi de Rd .

Vi = {x ∈ Rd : ||x −mi || ≤ min
k ̸=i

||x −mk ||}

Vi est une cellule de Voronoi (convexe).

Intéressant à lire : https://freakonometrics.hypotheses.org/19156.
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Méthodes à base de réseaux de

neurones



Machines de Boltzmann restreintes (RBM) -1-

� Smolensky 1986, Hinton 2005.

� Réseaux de neurones binaires à deux couches (graphe biparti).

� Estimation d’une distribution de probabilités empirique.

� Apprentissage par l’algorithme de Constrastive Divergence (CD).
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Machines de Boltzmann restreintes (RBM) -2-

Énergie et distribution de Gibbs :

E (v , h) = −
∑
i,j

wijvihj − bT v − b′Th = −STWS − bTS

P(v , h) ∝ e−E(v ,h)

avec s = (v , h) vecteur binaire regroupant neurones visibles et cachés.
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Modèles génératifs

� Modèle probabiliste : stochastic parrot (Shannon, Mathematical

Theory of Communication, 1948).

� Approche deep-learning : réseau antagoniste génératif (GAN), de Ian

Goodfellow 2014.

� 2 réseaux de neurones antagonistes en compétition via un problème

de théorie des jeux (jeu à somme nulle).

� Chat-GPT (openAI) : 2022.

� Chat-GPT : ”écris-moi un cours d’apprentissage statistique pour les

mastères spécialisés Data-Science”.

� Meow generator.

Coût énergétique des LLM...
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Spectral clustering



Partitionnement spectral

� Les méthodes géométriques (dont k-means) ne trouvent que des

clusters ”en boule”.

� Ne tiennent pas compte d’une éventuelle structure.

� Même problème pour les estimations de densité.

⇒ Spectral clustering :

� On projète les données sur les nœuds d’un graphe pondéré.

� Les arêtes modélisent la similarité entre les données.

� Le poids de chaque arête est proportionnel à la distance

(dissimilarité) entre données.
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Données avec structure latente -1-

Figure : Scikit-Learn documentation.
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Données avec structure latente -2-

Figure : Neerja Doshi.
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Partitionnement spectral

� Les méthodes géométriques (dont k-means) ne trouvent que des

clusters ”en boule”.

� Ne tiennent pas compte d’une éventuelle structure.

� Même problème pour les estimations de densité.

⇒ Spectral clustering :

� On projète les données sur les nœuds d’un graphe pondéré.

� Les arêtes modélisent la similarité entre les données.

� Le poids de chaque arête est proportionnel à la distance

(dissimilarité) entre données.
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Données définies sur un graphe

Features vectord
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Données définies sur un graphe

Features vectord
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Données définies sur un graphe

Features vectord
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Rappels théorie des graphes : quelques exemples
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Rappels théorie des graphes : notations

� G = (V ,E ) graphe.

� V = (v1, .., vn) nœuds.

� E = (e1, .., em) arêtes e = (vi , vj) = (i , j).

� B ∈ Rn×m matrice d’incidence :

bij = ±1 ⇐⇒ vi ∼ ej .

� A ∈ Rn×n matrice d’adjacence aij = 1 ⇐⇒ vi ∼ vj .

� W ∈ Rn×n
+ si pondéré : wij poids de l’arête.

� D matrice des degrés: dii = d(i) =
∑n

j=1 wij .

� L = D −W laplacien du graphe.

� xi ∈ Rd donnée portée par le nœud vi .

� Graphe de similarité : wij = exp
(
− ||xi−xj ||2

2σ2

)
.

v1 v2

v3 v4

e1

e2
e3

e4

e5

B =


1 1 0 0 0

−1 0 −1 −1 0

0 −1 1 0 −1

0 0 0 1 1



A =


0 1 1 0

1 0 1 1

1 1 0 1

0 1 1 0



L =


2 −1 −1 0

−1 3 −1 −1

−1 −1 3 −1

0 −1 −1 2



32



Graphes de similarité -1-

� Partant des n données on connecte chaque nœud à tous les autres.

� ⇒ Graphe complet, nombre exponentiel d’arêtes.

� ⇒ Il faut supprimer des arêtes.

Plusieurs possibilités :

� Graphe de voisinage : on garde l’arête si distance < ϵ fixé.

� Graphe des ppv : on conserve les arêtes des k-ppv uniquement.

� Graphe des ppv symétriques : k-ppv sans tenir compte de

l’orientation.
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Graphes de similarité -2- (Ex. Von Luxburg 2007)
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Graphes de similarité -3- (Ex. Von Luxburg 2007)
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Graphes de similarité -4- (Ex. Von Luxburg 2007)
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Rappels théorie des graphes : propriétés du laplacien

Si G non orienté, L symétrique,semi-défini, positif et diagonalisable.

Soit σ(L) = {λ1 ≤ ... ≤ λs} son spectre (vp).

� Coef (i , j) de Al : nombre de chemins de longueur l allant de i à j .

� λ1 = 0 ∈ σ(L) de multiplicité k ssi G a k composantes connexes.

� Base de E1 formée des vecteurs indicateurs 1Ai des composantes

connexes.

� λ1 connectivité algébrique. λ1 grand ⇒ graphe très connecté.

� Vecteur de Fiedler u2 : vecteur propre (VP) associé à λ2.

� dimE2 = 1 et le signe des coordonnées de u2 partitionne G.
� ”Mysteries around the graph Laplacian eigenvalue 4...”

⇒ A,W , L caractérisent G et contiennent toutes ses propriétés

topologiques et algébriques. Le spectre de L est l’outil essentiel pour

partitionner.
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Partition du graphe et coupures

A,B deux sous-ensembles de V partitionnant G .

La frontière de A et B est une coupure du graphe.

cut(A,B) =
∑

i∈A,j∈B

wij

� Objectif : partitionner le graphe en deux clusters avec coupure de

poids minimum.

� ⇒ Facile à faire, mais pas concluant (nœud isolé).

� On peut normaliser la coupure pour obliger à une taille minimum.

� ⇒ Problème NP-difficile.

� ⇒ Relaxation continue du problème = spectral clustering.

Ncut(A,B) = cut(A,B)

(
1

vol(A)
+

1

vol(B)

)
vol(A) =

∑
i∈A

di
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Coupure normalisée et laplacien -1-

Soit x = (x1, ..., xn) ∈ Rn (on suppose d = 1), avec :

xi =

{
1/vol(A) si i ∈ A

1/vol(B) si i ∈ B

Alors

xTLx =
n∑

i,j=1

wij(xi − xj)
2 =

∑
i∈A,j∈B

wij

(
1

vol(A)
+

1

vol(B)

)2

xTDx =

(
1

vol(A)
+

1

vol(B)

)

⇒ Ncut(A,B) =
xTLx

xTDx
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Coupure normalisée et laplacien -2-

Pour trouver la coupure minimale, on doit résoudre :

argmin
x : xTD1=0

xTLx

xTDx

� Caractérisation variationnelle des vp (quotient de Rayleigh).

� La solution est le vecteur de Fiedler u2 : Lu2 = λ2Du2.

� Analogie avec l’ACP : VP associés aux plus grandes vp.

� Se généralise (assez) facilement à k clusters.
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Coupure normalisée et laplacien -3-

Que représente le laplacien ?

� x variable indicatrice de l’appartenance à un cluster.

� x doit être orthogonal au vecteur 1 (noyau de L).

� xTLx représente l’énergie du signal x .

� L est un opérateur de moyennage, de lissage, de courbure...

Relaxation d’un problème NP-difficile :

� x : coordonnées 1 ou 0.

� Problème NP-difficile.

� On relâche le problème : coordonnées de x dans R.

� xi est alors le degré d’appartenance au cluster i .

� Les coordonnées des VP de L mesurent l’appartenance aux clusters.
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Algorithme de partitionnement spectral

Pour le laplacien non normalisé.

� À l’initialisation : nombre de clusters k donné (comment ?).

� Calculer les distances de similarité entre les données.

� En déduire les pondérations wij et le graphe de similarité G .

� Calculer la matrice laplacienne L.

� Calculer les k VP u1, ..., uk associés aux k plus petites vp.

� Construire la matrice colonne U = (u1, ..., uk) ∈ Rn×k .

� Regrouper les lignes en k groupes avec l’algorithme des k-moyennes.
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Exemple -1- (Von Luxburg 2007)
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Exemple -2- (Von Luxburg 2007)

Exemple : n = 200 données réelles xi générées par un mélange de 4

gaussiennes (σ = 1).

À lire : A tutorial on spectral clustering, Ulrike Von Luxburg, 2007, Stat.

Comput.
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Apprentissage semi-supervisé :

un exemple



Réseau neuronal sur graphe (Gnn) -1-

� G : graphe avec données

étiquettées portées par les

nœuds.

� Labels yi = f (xi , (xj , yj)j∈∂vi ).

� Certains labels inconnus : ?.

� Tâche : retrouver tous les

labels en exploitant le voisinage.

v1 v2

v3

v4

v5

v6

x1 x2

x4

x3

?

?

?
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Réseau neuronal sur graphe (Gnn) -2-

Gnn = graphe + algorithme de

”Message Passing”.

Formulation mathématique :

G = (V ,E ), X ∈ Rn×d données,

xv ∈ Rd ligne de X correspondant au

nœud v ∈ V .
h0v = xv ,

hl+1
v = ϕl

(
hlv ,
∑
u∼v

Âuvψl

(
hlu
))

.

Hl+1 = σ
(
D−1/2ÂD−1/2HlWl

)
,

Hl =
(
hlv
)
v
∈ Rn×d , D = diag(dii ),

dii =
∑

j Âij , Wl poids, σ = ϕl fonction

d’activation (ReLU, sigmöıde), ψl = Id.

v1 v2

v3

v4

v5

v6

h02 = x2

h04 = x4

h03 = x3

h11 = ϕ ( )

v1

v2

v3

v4

v5

v6

v1

v1

v5

v4

v1

v3
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