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Formalisation et principales méthodes
Classification ascendante hiérarchique
Méthode des k-moyennes

Méthodes a base de réseaux de neurones
Spectral clustering

Apprentissage semi-supervisé : un exemple



Formalisation et principales
méthodes



Pas d’étiquette car...

e Pas de temps ou d'argent.
e Pas de spécialiste pour étiquetter.
e Trop de catégories.

e Impossible a étiquetter.

e Structurer les données.
e Regrouper ce qui se ressemble (" ce qui se ressemble s'assemble”).
e Eloigner ce qui est vraiment différent.

e Cluster (dans une partition) : groupe de "données similaires”.

= Importance de définir une bonne notion de similarité.



Exemple (Nicolas Baskiotis) -1-

Quel est le bon partitionnement ?
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Exemple (Nicolas Baskiotis) -2-
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Exemple (Nicolas Baskiotis) -2-
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Aucun ! Echantillon de loi uniforme.



Apprentissage non supervisé : un probleme de similarité

Différentes approches :

e Géométrique : connectivité, centroide (k-moyennes, CAH).
e Graphes (spectral clustering).

e Distribution de probabilités latentes (estimation de densités).
e Modeles bayésiens.

e Apprentissage génératif (réseaux de neurones).
Partitionnement :

e k-moyennes, DBSCAN, Mean Shift.

e Hard : une donnée appartient a un unique groupe.

Soft : probabilité d'appartenance a un groupe.

Nombre de classes k inconnu a priori.

Similarité intra-groupe et dissimilarité inter-groupe.

e La malédiction de la dimension n'est jamais loin.



Formalisation mathématique

Echantillon D = {X1,...,Xn} avec X; € RY.
Partition 7, sur D : Dy,..., Dy.

Critere de similarité d (distance) sur R? ou X.

Critere de similarité D sur les sous-ensembles de D.

Clustering : a k fixé, trouver 7} = argmin_ ¢(m)

¢ est une fonction des distances d et D.



Distances sur R? et sur P(D)

d 1/p
o= (S
i=1

p = 2 distance euclidienne.

e p =1 distance de Manhattan.

p — 0 distance de Hamming.
e p quelconque distance de Minkowski.

D(A, B) =

PPV (simple linkage) : min{d(x,y),x € A,y € B}
Diametre max (complete linkage) : max{d(x,y),x € A,y € B}

Moyenne (average linkage) : ﬁ >y d(x,y)
. 1ALIB] 2
Ward : mHmA—mBH

Barycentres : d(A, B) = d(ma, mg)

A, B € {D1,....,Di} et ma =) . ,1/|A| barycentre (centroide) de A.



Classification ascendante
hiérarchique



Classification ascendante hiérarchique : principe

Algorithme glouton :

e Fusionner les partitions les plus semblables selon D.
e Construire des clusters de plus en plus larges.
e S'arréter quand il reste un unique cluster.

e = Arbre de partitionnement binaire : dendrogramme.

CAH : ce n'est pas une méthode de classification, mais de
parititionnement (non supervisé) !

Selon le choix de D, le dendrogramme est plus ou moins équilibré.

Le choix de k est également important... et subjectif.



CAH : exemple 1 (J. Salmon, N. Verzelen) -1-

Cluster Dendrogram
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(Figure : J. Salmon, N. Verzelen)

Height sur I'axe (Oy) : distance entre les clusters.



CAH : exemple 1 -2-

Cluster Dendrogram
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CAH : exemple 2 (J. Salmon, N. Verzelen) -1-
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Jeu de données

" Agriculture” dans I'union européenne en 1993.
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CAH : exemple 2 -2-

Single Linkage
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CAH : exemple 2 -3-

Complete Linkage
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CAH : exemple 2 -4-

Average Linkage
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CAH : exemple 2 -5-

Ward Linkage
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CAH : exemple 2 -5-

Ward Linkage

GR.
8 -
2 P.
g
3 o4
E) IRL.
5 2 e®
<4
& @
L]
w - F ok®
NL. ° °
° e D L
UK 8
T T T T
5 10 15 20
GNP
(Figure : J. Salmon, N. Verzelen)




CAH : exemple 2 -5-

Ward Linkage

g -
8
z
=]
i
z
g -
|
] ?_‘
o - I
X o & - x o o Z||w [
[} 3 z

IRL
GR

(Figure : J. Salmon, N. Verzelen)

Choix de k : méthode du "coude”.
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Ward Linkage

Number of clusters
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CAH : complexité et remarques finales

Complexité :

e O(n?) en implémentation naive (n itérations sur matrice n x n.).

e Meilleurs algorithmes en O(n? In n) voire O(n?).

Remarques finales :

e Le choix de k est important : méthode du "coude”.

e Introduite par J.P. Benzécri, Rennes 1982.
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Méthode des k-moyennes




Algorithme des k-moyennes : principe

Construit la partition qui minimise la distance intra-cluster (inertie) :
k
e(m) = D I —milf, (1)
i=1 x€D;
avec m; barycentre (ou centroide) du cluster (ou groupe) i :
1
mi= =y X (2)
‘,D’| x;€D;
GED;

L'algorithme construit :

Ex € argmin  e(my).
7x={D1,..., D}

Probleme NP-difficile = obligation d'une méthode de résolution
approchée.
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Algorithme des k-moyennes : exemple
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Résolution approchée du probleme NP-difficile

Formation cluster : chaque donnée affectée au centroide le + proche.

Algorithme de Lloyd (1957)
e Affecter chaque point au cluster de plus proche centre m;.
e Ré-estimer les centres selon la nouvelle répartition.

e Itérer jusqu’a convergence
Complexité : O(n(k + 1)).
Converge vers un minimum local seulement.
= En pratique, on lance plusieurs fois I'algo avec # initialisations.

Heursitique pour choisir k : méthode du coude (Elbow). Quand la
décroissance devient moins franche.
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Algorithme des k-moyennes : géométrie des classes

Les centres induisent une partition de Voronoi de R.

Vi={x eR:||x—mi|| < min [Ix — mil[}

V; est une cellule de Voronoi (convexe).

Intéressant a lire : https://freakonometrics.hypotheses.org/19156.
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Méthodes a base de réseaux de
neurones




Machines de Boltzmann restreintes (RBM) -1-

Smolensky 1986, Hinton 2005.

e Réseaux de neurones binaires a deux couches (graphe biparti).

Estimation d'une distribution de probabilités empirique.

Apprentissage par |'algorithme de Constrastive Divergence (CD).
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Machines de Boltzmann restreintes (RBM) -2-

Energie et distribution de Gibbs :

E(v,h) == wyvihj —b"v—bTh=-STWS—b"S
i
P(v, h) oc e E(v:h)

avec s = (v, h) vecteur binaire regroupant neurones visibles et cachés.
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Modéeles génératifs

Modele probabiliste : stochastic parrot (Shannon, Mathematical
Theory of Communication, 1948).

Approche deep-learning : réseau antagoniste génératif (GAN), de lan
Goodfellow 2014.

2 réseaux de neurones antagonistes en compétition via un probleme
de théorie des jeux (jeu a somme nulle).

Chat-GPT (openAl) : 2022.

Chat-GPT : "écris-moi un cours d’apprentissage statistique pour les
masteéres spécialisés Data-Science”.

Meow generator.

Colit énergétique des LLM...

25



Spectral clustering




Partitionnement spectral

e Les méthodes géométriques (dont k-means) ne trouvent que des
clusters "en boule”.

e Ne tiennent pas compte d’une éventuelle structure.

e Méme probleme pour les estimations de densité.
= Spectral clustering :

e On projete les données sur les nceuds d'un graphe pondéré.
o Les arétes modélisent la similarité entre les données.

e Le poids de chaque aréte est proportionnel a la distance
(dissimilarité) entre données.
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Données avec structure latente -1-

KMeans SpectralClustering GaussianMixture

Figure : Scikit-Learn documentation.
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Données avec structure latente -2-
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Figure : Neerja Doshi.
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Partitionnement spectral

o Les méthodes géométriques (dont k-means) ne trouvent que des
clusters "en boule”.

e Ne tiennent pas compte d’une éventuelle structure.

e Méme probleme pour les estimations de densité.
= Spectral clustering :

e On projete les données sur les nceuds d'un graphe pondéré.
e Les arétes modélisent la similarité entre les données.

e Le poids de chaque aréte est proportionnel a la distance
(dissimilarité) entre données.
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Données définies sur un graphe
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Données définies sur un graphe
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Données définies sur un graphe
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Rappels théorie des graphes : quelques exemples
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Rappels théorie des graphes : notations

e G =(V,E) graphe.

e V = (w,.., V) nceuds.

o £E=(e,..,enm) arétes e = (vj, v;) = (1, ).
e B € R"™ matrice d’incidence :
b,'j::tl <~ Vi~ §.

e Ac R"™" matrice d'adjacence a; =1 <= v; ~ v;.

o W e R si pondéré : w;; poids de I'aréte.
o D matrice des degrés: dj = d(i) = > 7_; wj.
e [ =D — W laplacien du graphe.

e x; € R? donnée portée par le nceud v;.

TIPS _ lxi—xl?
e Graphe de similarité : wj = exp 57 )

B =

e

=)

2
—1
—1

0

=R o

= O e e

—1

—1
—1

&

-
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Graphes de similarité -1-

e Partant des n données on connecte chaque nceud a tous les autres.
e = Graphe complet, nombre exponentiel d'arétes.

e = || faut supprimer des arétes.
Plusieurs possibilités :

e Graphe de voisinage : on garde |'aréte si distance < ¢ fixé.
e Graphe des ppv : on conserve les arétes des k-ppv uniquement.

e Graphe des ppv symétriques : k-ppv sans tenir compte de
|'orientation.
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Graphes de similarité -2- (Ex. Von Luxburg 2007)

34



Graphes de similarité -3- (Ex. Von Luxburg 2007)
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Graphes de similarité -4- (Ex. Von Luxburg 2007)

Data points epsilon-graph, epsilon=0.3

Mutual kNN graph, k =5
FE %

%




Rappels théorie des graphes : propriétés du laplacien

Si G non orienté, L symétrique,semi-défini, positif et diagonalisable.
Soit o(L) = {A\1 < ... < As} son spectre (vp).

Coef (i,j) de A’ : nombre de chemins de longueur / allant de i a ;.

A1 =0 € o(L) de multiplicité k ssi G a k composantes connexes.

Base de E; formée des vecteurs indicateurs 14, des composantes
connexes.

A1 connectivité algébrique. A\; grand = graphe trés connecté.
Vecteur de Fiedler uy : vecteur propre (VP) associé a ..
dim E; =1 et le signe des coordonnées de u, partitionne G.

" Mysteries around the graph Laplacian eigenvalue 4..."

= A, W, L caractérisent G et contiennent toutes ses propriétés

topologiques et algébriques. Le spectre de L est |'outil essentiel pour

partitionner.
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Partition du graphe et coupures

A, B deux sous-ensembles de V partitionnant G.
La frontiere de A et B est une coupure du graphe.

cut(A, B) Z wjj

i€EAJEB

Objectif : partitionner le graphe en deux clusters avec coupure de
poids minimum.

e = Facile a faire, mais pas concluant (nceud isolé).

e On peut normaliser la coupure pour obliger a une taille minimum.
= Probleme NP-difficile.

= Relaxation continue du probleme = spectral clustering.

Ncut(A, B) = cut(A, B) (1 + 1)

vol(A) ~ vol(B)
vol(A) = " d;

icA
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Coupure normalisée et laplacien -1-

Soit x = (x1, ..., X,) € R" (on suppose d = 1), avec :

) 1/vol(A) siieA
T\ 1/vol(B) siieB

Alors

. 1
xThx= > wil—x)P = Y w (V0|(A) *

ij=1 icAjeB

x"Dx = <Vo|1(A) + VoltB))

xTLx

= Ncut(A, B) = T Dx
xT Dx

1
vol(B)

:
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Coupure normalisée et laplacien -2-

Pour trouver la coupure minimale, on doit résoudre :

o xTlLx

argmin ———
7

x: xTD1=0 X Dx

e Caractérisation variationnelle des vp (quotient de Rayleigh).

La solution est le vecteur de Fiedler uy : Lup = Ay Dus.

Analogie avec I'ACP : VP associés aux plus grandes vp.

Se généralise (assez) facilement a k clusters.
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Coupure normalisée et laplacien -3-

Que représente le laplacien 7

e x variable indicatrice de I'appartenance a un cluster.
e x doit étre orthogonal au vecteur 1 (noyau de L).
e x'Lx représente |'énergie du signal x.

e [ est un opérateur de moyennage, de lissage, de courbure...
Relaxation d'un probleme NP-difficile :

e x : coordonnées 1 ou 0.
Probléeme NP-difficile.

On relache le probléeme : coordonnées de x dans R.

x; est alors le degré d'appartenance au cluster i.

Les coordonnées des VP de L mesurent |'appartenance aux clusters.
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Algorithme de partitionnement spectral

Pour le laplacien non normalisé.

e A I'initialisation : nombre de clusters k donné (comment ?).
e Calculer les distances de similarité entre les données.

e En déduire les pondérations wj; et le graphe de similarité G.
e Calculer la matrice laplacienne L.

e Calculer les k VP uy, ..., ux associés aux k plus petites vp.

e Construire la matrice colonne U = (u, ..., ux) € R™k.

e Regrouper les lignes en k groupes avec |'algorithme des k-moyennes.
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Exemple -1- (Von Luxburg 2007)

10 10
5 5
0 0
0 2 4 6 8 10 0 2 4 6 8 10
Eigenvalues Eigenvalues
* *
* 0.08 *
0.06
0.06
0.04
0.04 %
0.02 % % % * 0.02 * % ¥
O —F—k—* e X
12 3 456 7 8 9 10 12 3 456 7 8 910
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Exemple -2- (Von Luxburg 2007)

Eigenvalues Eigenvector 1 Eigenvector 2 Eigenvector 3 Eigenvector 4 Eigenvector 5
o T T < [ 0 \ [ 0 | o T
< oo = o1 || -0.05 | oo | -oos| | ! [
g 0.02 g || \ “‘ [ 0 [
£ oot g 005 |\ —0.1 I Lol 1|
= v [ L | | \J
123456782910 2 4 6 8 2 4 6 8 2 4 6 8 2 4 6 8 2 4 6 8

Exemple : n = 200 données réelles x; générées par un mélange de 4
gaussiennes (o = 1).

A lire : A tutorial on spectral clustering, Ulrike Von Luxburg, 2007, Stat.

Comput.
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Apprentissage semi-supervisé :
un exemple




Réseau neuronal sur graphe (Gnn) -1-

G: graphe avec données
étiquettées portées par les
nceuds.

Labels y; = f (Xiv (Xjayj)jeav,-)-
Certains labels inconnus : 7.

Tache : retrouver tous les
labels en exploitant le voisinage.

xla? E

Vi

.

Vy
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Réseau neuronal sur graphe (Gnn) -2-

GNN = graphe + algorithme de Ehl:

"Message Passing” .

Formulation mathématique :

G = (V,E), X € R™¢ données,

x, € R? ligne de X correspondant au
nceud v € V.

0 _
hy = xy,

B = ¢, (h’w > An (h’u)> :

Hii=o0 (D_1/2/2\D_1/2H/ W/) ; "e
Hy = (h,), € R"™9, D = diag(d;),

di = Zj /A\,J W, poids, o = ¢, fonction
d’'activation (RelLU, sigmoide), ¢; = Id.

o(

Va

:
v

V3
Vg

\

B

v .\ V2
m=x E
Vs Ve

hg:XAE

Vs
Vi

S

- e-

V3

Ve
Vs
vi
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