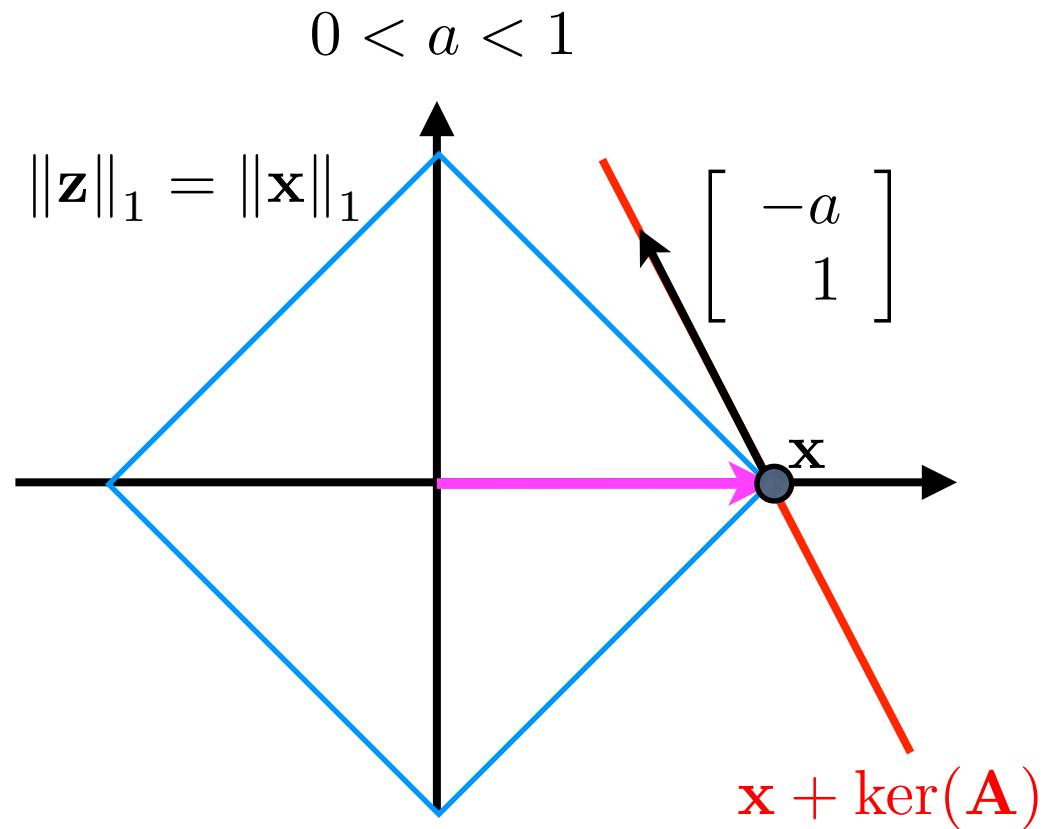
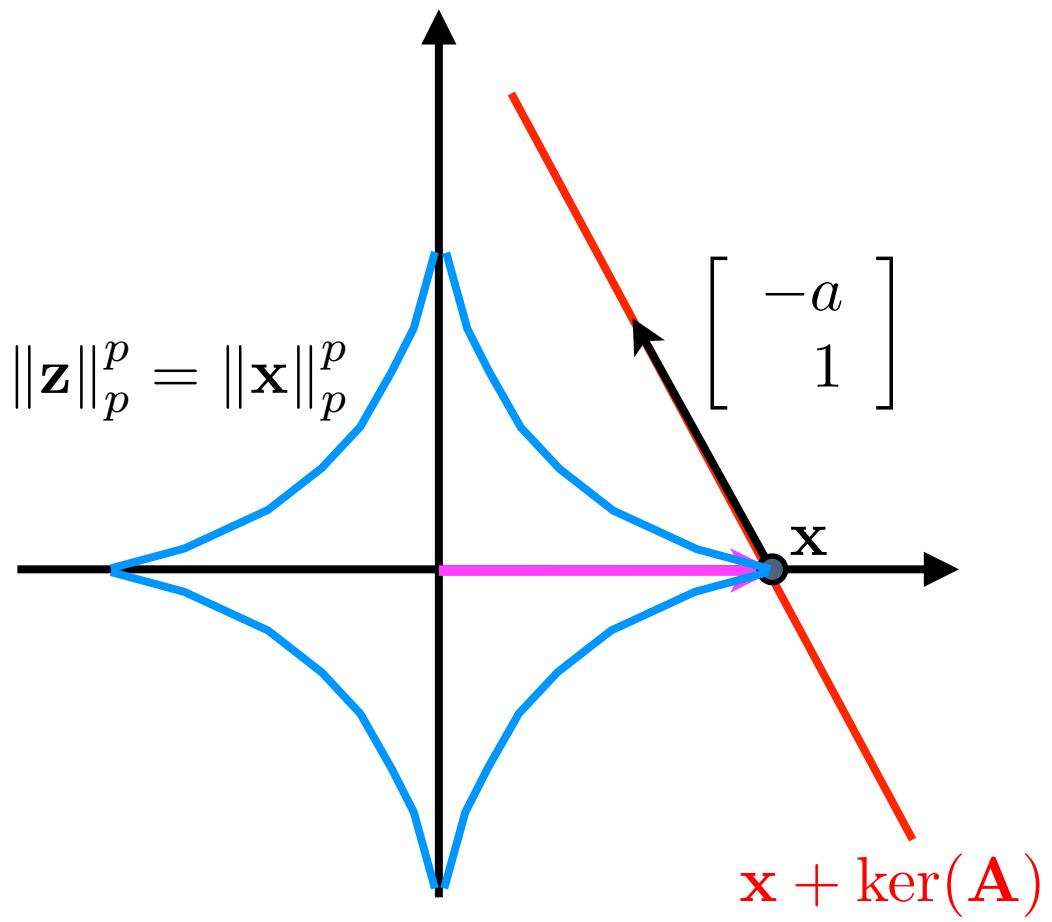


Graphical illustration with $p=1$ and \mathbf{x} sparse



Graphical illustration with $0 < p < 1$ and \mathbf{x} sparse



$$0 < a < 1$$

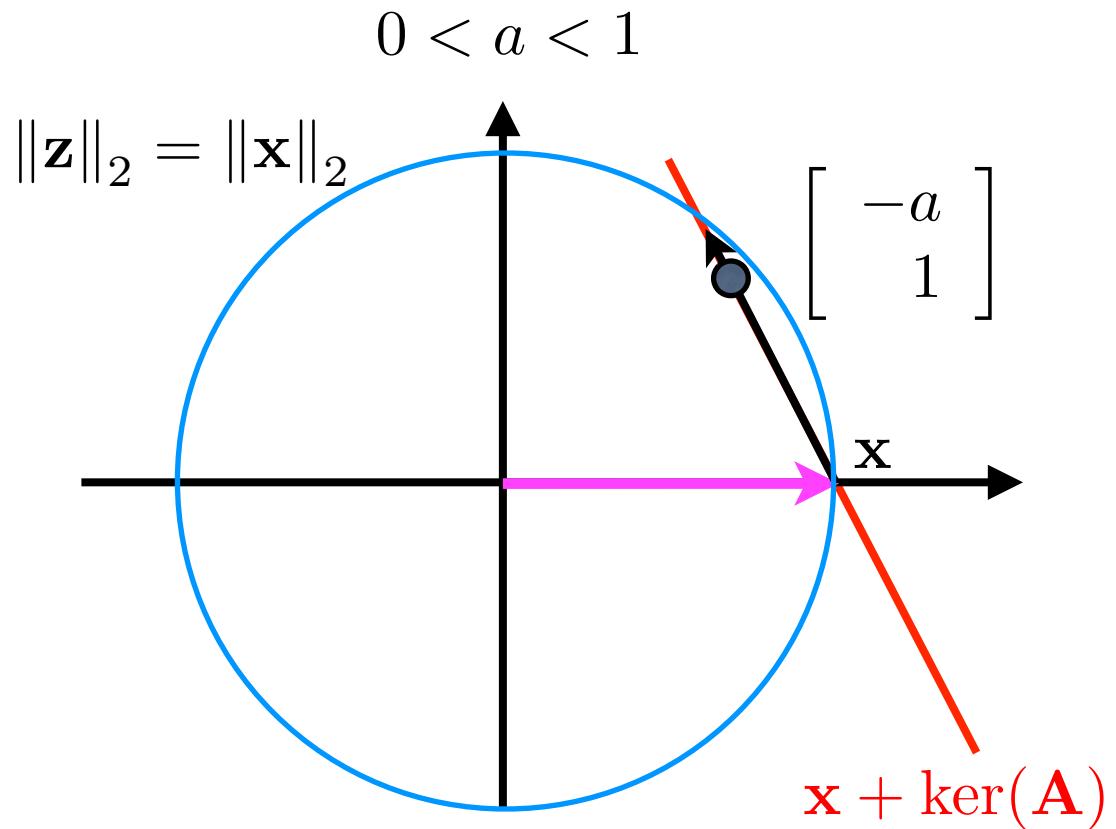
$$\mathbf{x} = \begin{bmatrix} 1 \\ 0 \end{bmatrix} \in \mathbb{R}^2$$

$$\|\mathbf{x}\|_0 = 1$$

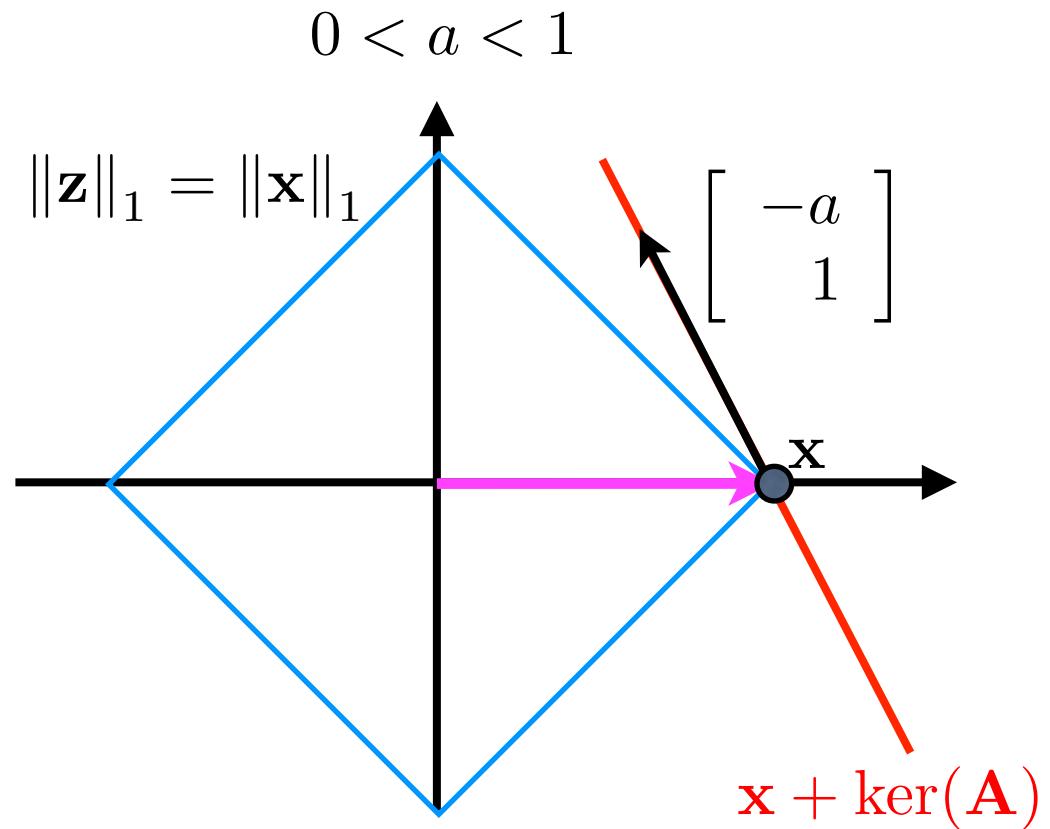
$$\mathbf{A} = \begin{bmatrix} 1 & a \end{bmatrix} \in \mathbb{R}^{1 \times 2}$$

$$\ker(\mathbf{A}) \propto \begin{bmatrix} -a \\ 1 \end{bmatrix}$$

Graphical illustration with $p=2$ and \mathbf{x} sparse



Graphical illustration with $p=1$ and \mathbf{x} sparse



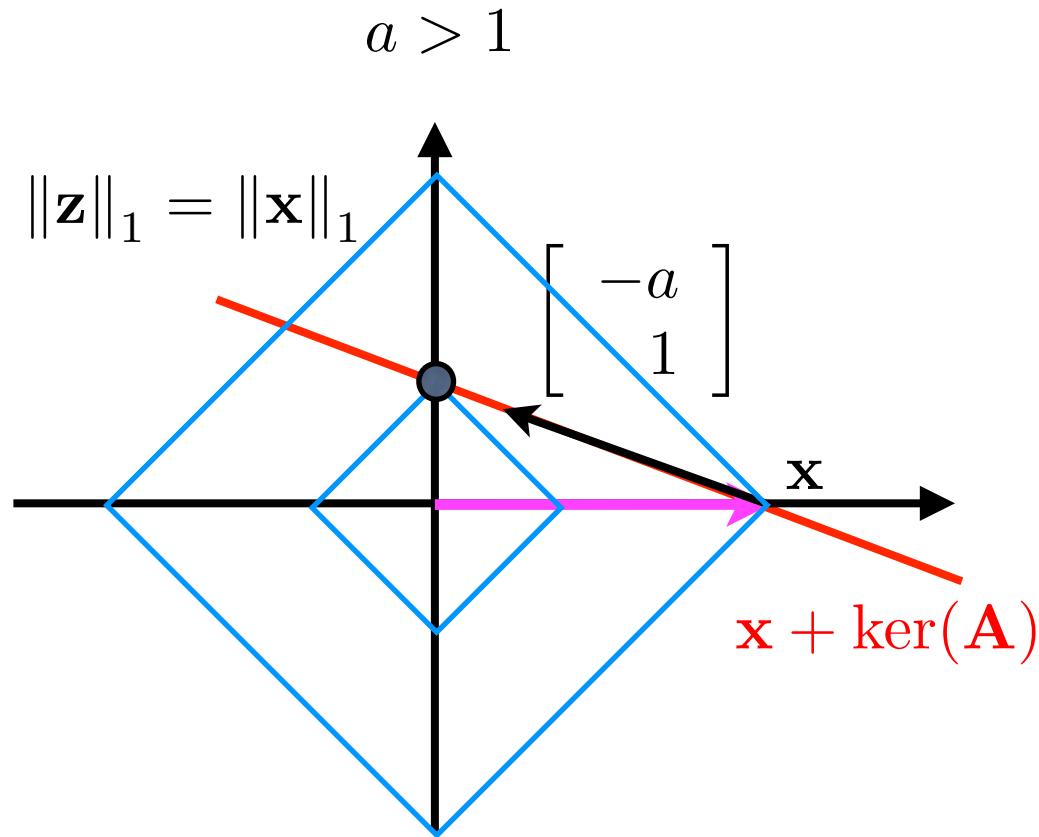
$$\mathbf{x} = \begin{bmatrix} 1 \\ 0 \end{bmatrix} \in \mathbb{R}^2$$

$$\|\mathbf{x}\|_0 = 1$$

$$\mathbf{A} = \begin{bmatrix} 1 & a \end{bmatrix} \in \mathbb{R}^{1 \times 2}$$

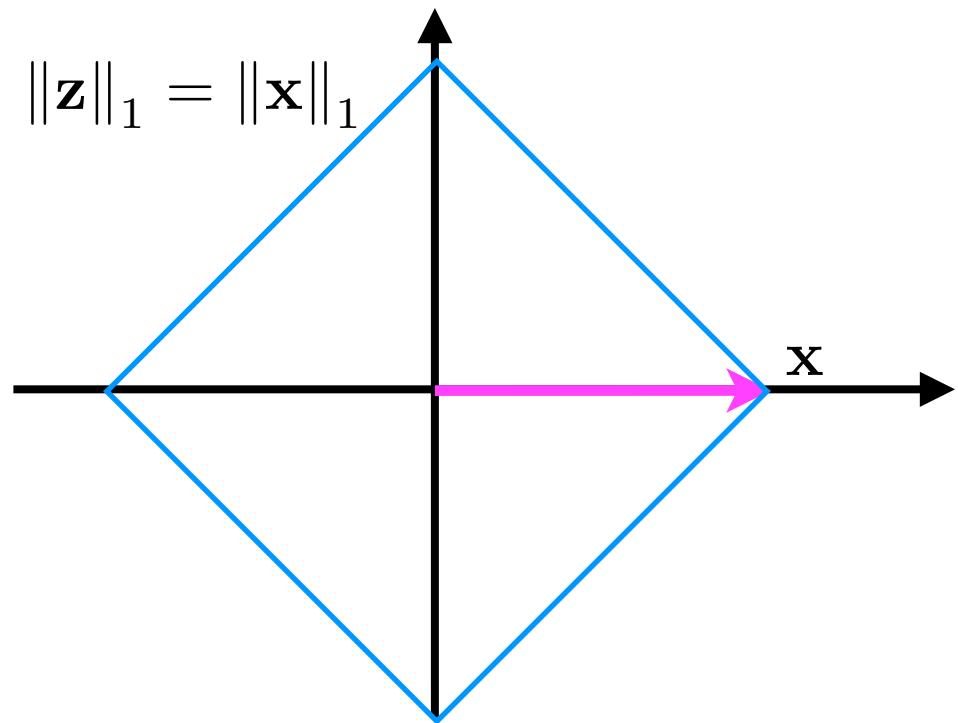
$$\ker(\mathbf{A}) \propto \begin{bmatrix} -a \\ 1 \end{bmatrix}$$

Graphical illustration with $p=1$ and \mathbf{x} sparse



Recovery of \mathbf{x} clearly depends on $\ker(\mathbf{A})$

Graphical illustration with $p=1$ and \mathbf{x} sparse



$$\mathbf{x} = \begin{bmatrix} 1 \\ 0 \end{bmatrix} \in \mathbb{R}^2$$

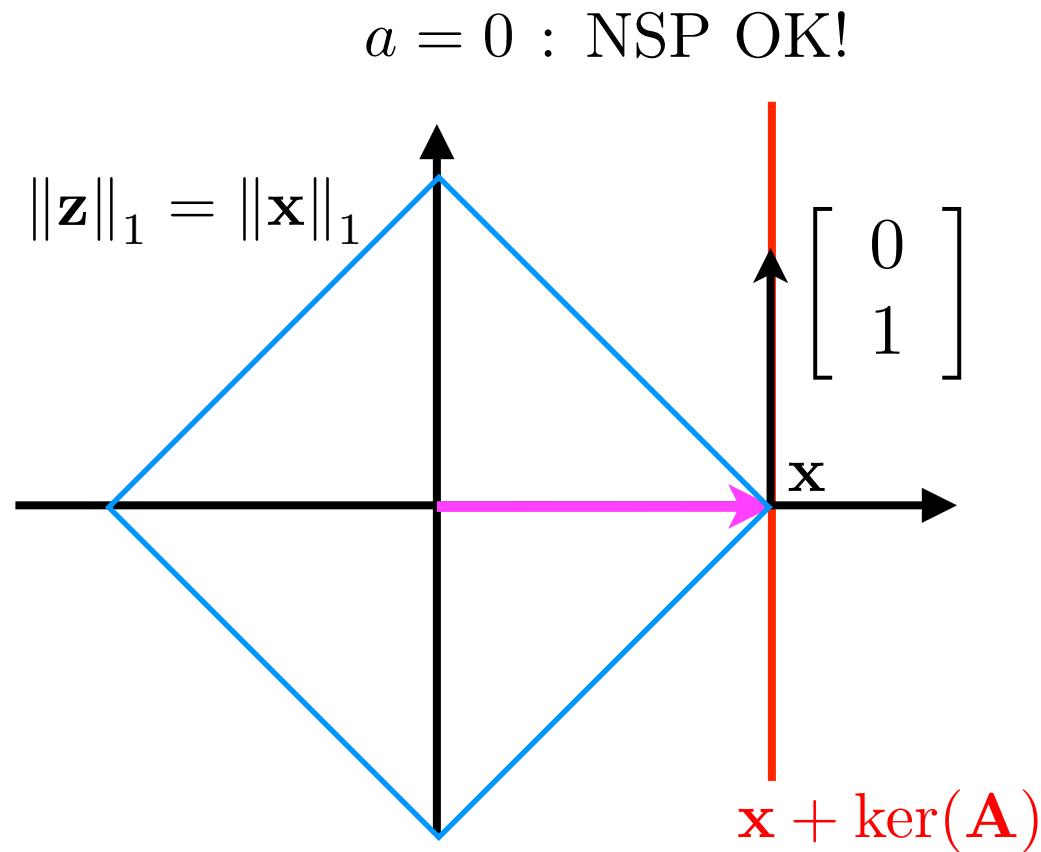
$$\|\mathbf{x}\|_0 = 1, S = \{1\}$$

$$\mathbf{A} = \begin{bmatrix} 1 & a \end{bmatrix} \in \mathbb{R}^{1 \times 2}$$

$$\ker(\mathbf{A}) \propto \begin{bmatrix} -a \\ 1 \end{bmatrix}$$

$$(\text{NSP}_p(S)) : \|\mathbf{v}_S\|_1^1 < \|\mathbf{v}_{\bar{S}}\|_1^1 \equiv |a| < 1$$

Graphical illustration with $p=1$ and \mathbf{x} sparse



$$\mathbf{x} = \begin{bmatrix} 1 \\ 0 \end{bmatrix} \in \mathbb{R}^2$$

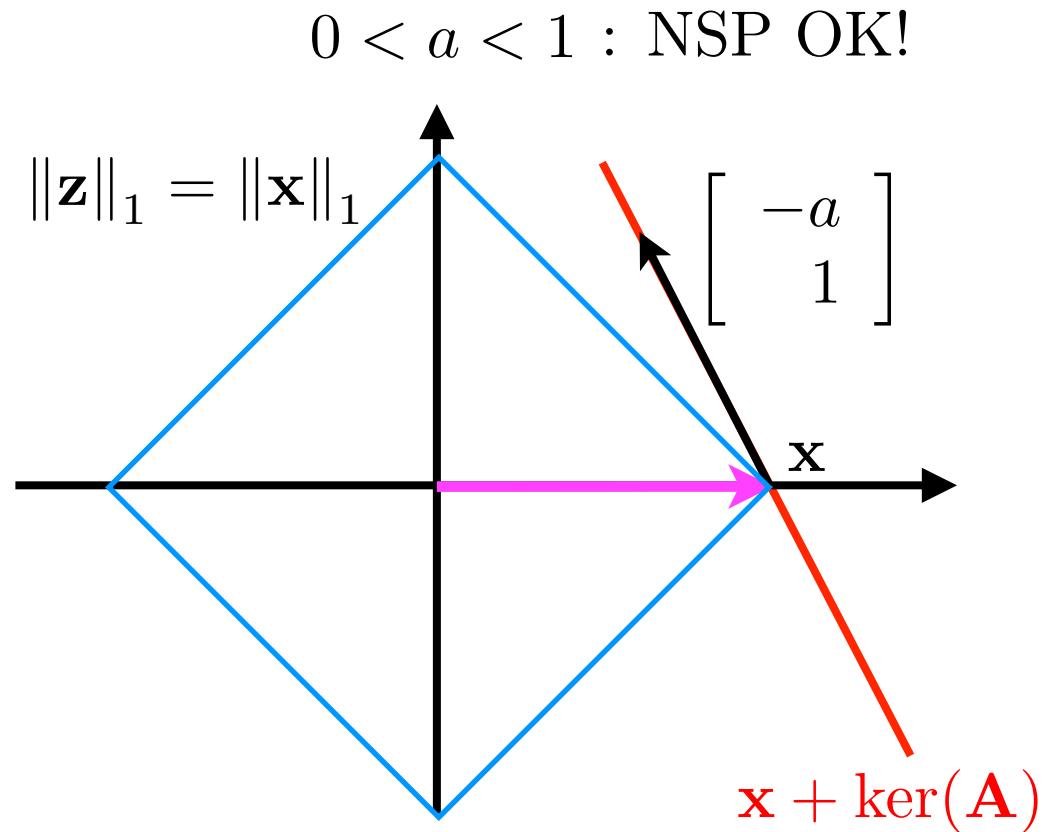
$$\|\mathbf{x}\|_0 = 1, S = \{1\}$$

$$\mathbf{A} = \begin{bmatrix} 1 & a \end{bmatrix} \in \mathbb{R}^{1 \times 2}$$

$$\ker(\mathbf{A}) \propto \begin{bmatrix} -a \\ 1 \end{bmatrix}$$

$$(\text{NSP}_p(S)) : \|\mathbf{v}_S\|_1^1 < \|\mathbf{v}_{\bar{S}}\|_1^1 \equiv |a| < 1$$

Graphical illustration with $p=1$ and \mathbf{x} sparse



$$\mathbf{x} = \begin{bmatrix} 1 \\ 0 \end{bmatrix} \in \mathbb{R}^2$$

$$\|\mathbf{x}\|_0 = 1, S = \{1\}$$

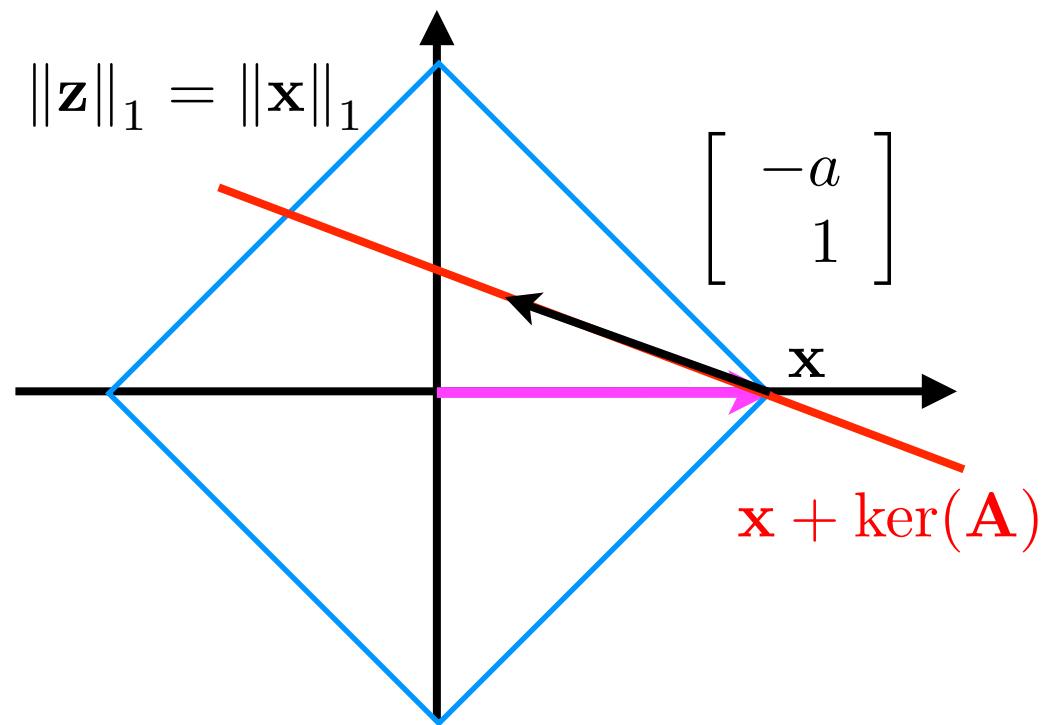
$$\mathbf{A} = \begin{bmatrix} 1 & a \end{bmatrix} \in \mathbb{R}^{1 \times 2}$$

$$\text{ker}(\mathbf{A}) \propto \begin{bmatrix} -a \\ 1 \end{bmatrix}$$

$$(\text{NSP}_p(S)) : \|\mathbf{v}_S\|_1^1 < \|\mathbf{v}_{\bar{S}}\|_1^1 \equiv |a| < 1$$

Graphical illustration with $p=1$ and \mathbf{x} sparse

$a > 1$: failure NSP!



$$\mathbf{x} = \begin{bmatrix} 1 \\ 0 \end{bmatrix} \in \mathbb{R}^2$$

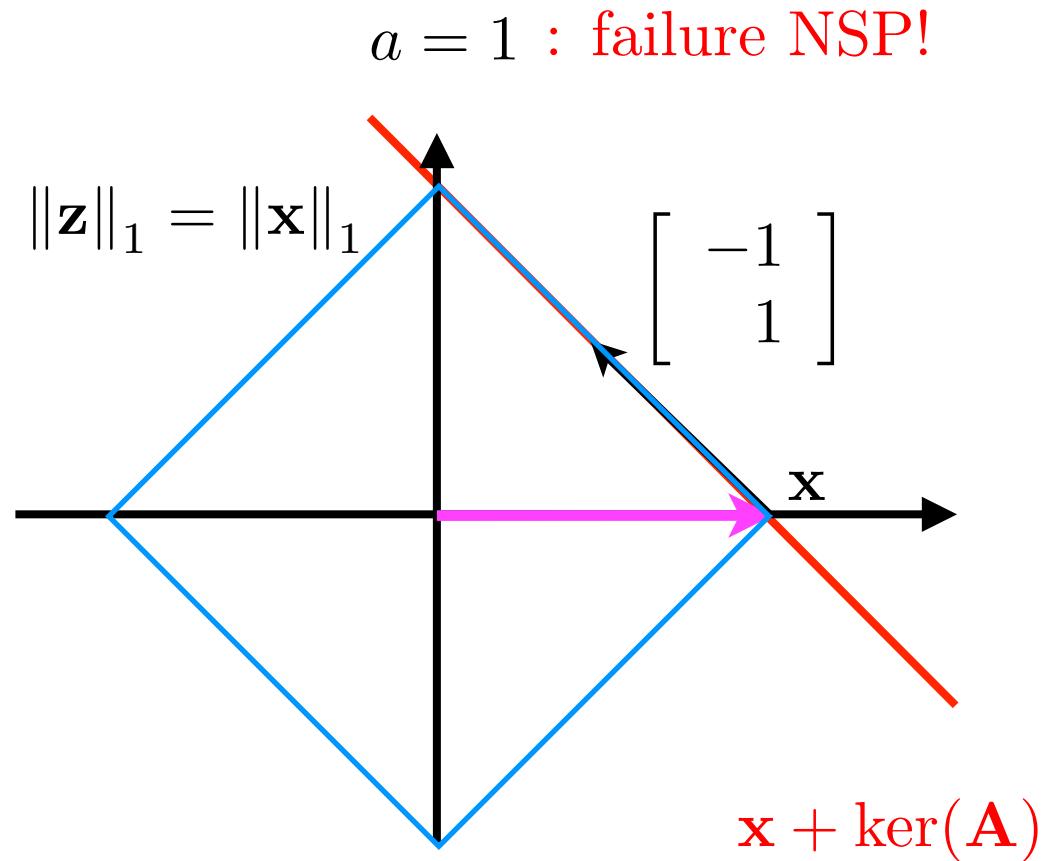
$$\|\mathbf{x}\|_0 = 1, S = \{1\}$$

$$\mathbf{A} = \begin{bmatrix} 1 & a \end{bmatrix} \in \mathbb{R}^{1 \times 2}$$

$$\ker(\mathbf{A}) \propto \begin{bmatrix} -a \\ 1 \end{bmatrix}$$

$$(\text{NSP}_p(S)) : \|\mathbf{v}_S\|_1^1 < \|\mathbf{v}_{\bar{S}}\|_1^1 \equiv |a| < 1$$

Graphical illustration with $p=1$ and \mathbf{x} sparse



$$\mathbf{x} = \begin{bmatrix} 1 \\ 0 \end{bmatrix} \in \mathbb{R}^2$$

$$\|\mathbf{x}\|_0 = 1, S = \{1\}$$

$$\mathbf{A} = \begin{bmatrix} 1 & a \end{bmatrix} \in \mathbb{R}^{1 \times 2}$$

$$\text{ker}(\mathbf{A}) \propto \begin{bmatrix} -a \\ 1 \end{bmatrix}$$

$$(\text{NSP}_p(S)) : \|\mathbf{v}_S\|_1^1 < \|\mathbf{v}_{\bar{S}}\|_1^1 \equiv |a| < 1$$

Exercise

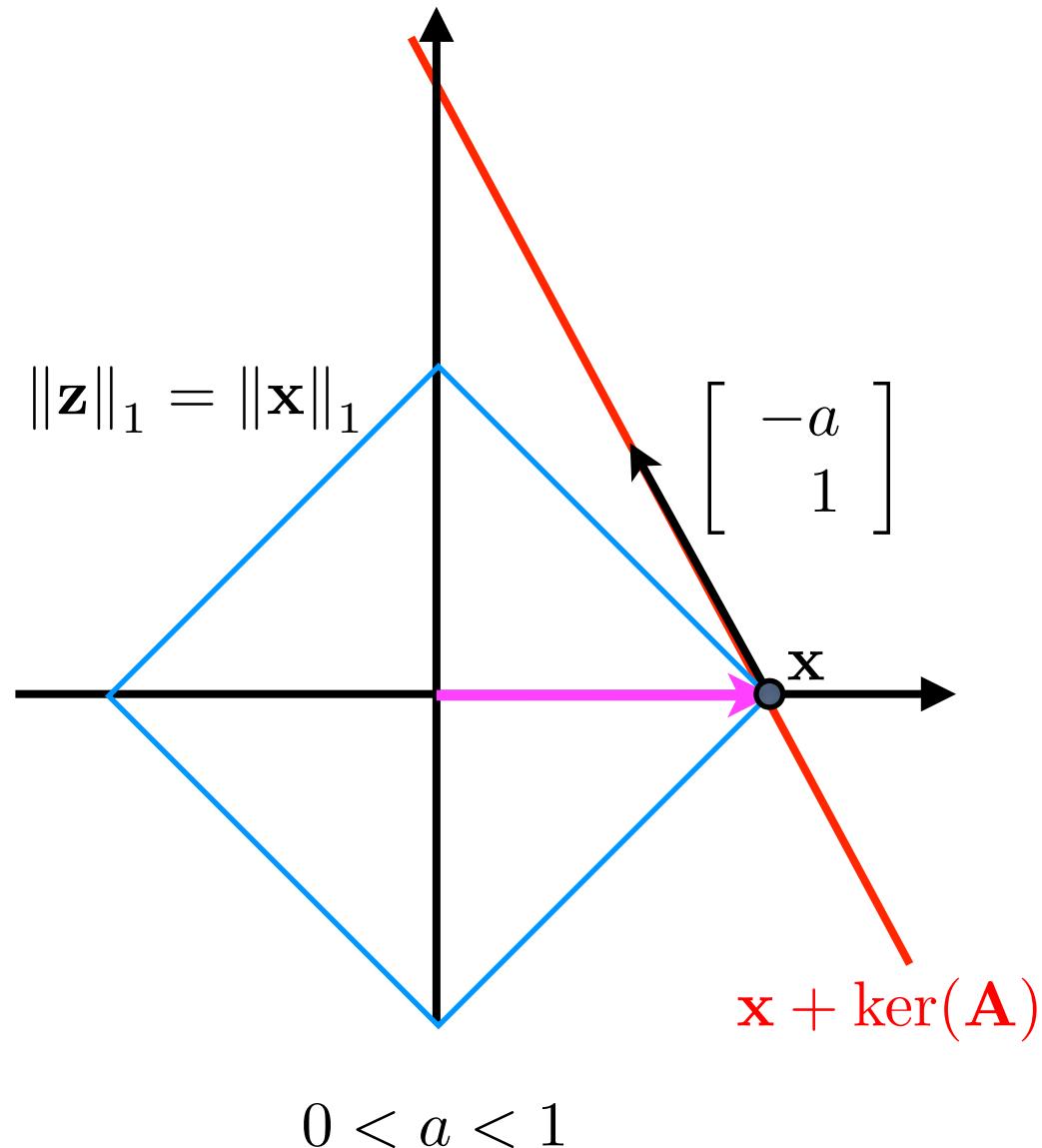
Particularize $\text{NSP}_1(S)$ and $\text{NSP}_0(S)$ to the following dictionary:

$$\mathbf{A} = \begin{bmatrix} 1 & a \end{bmatrix} \in \mathbb{R}^{1 \times 2}$$

for $S=\{1\}$.

If $-1 < a < 1$, can we recover S with $p=1$? and $p=0$?

Graphical illustration with $p=1$ and \mathbf{x} sparse

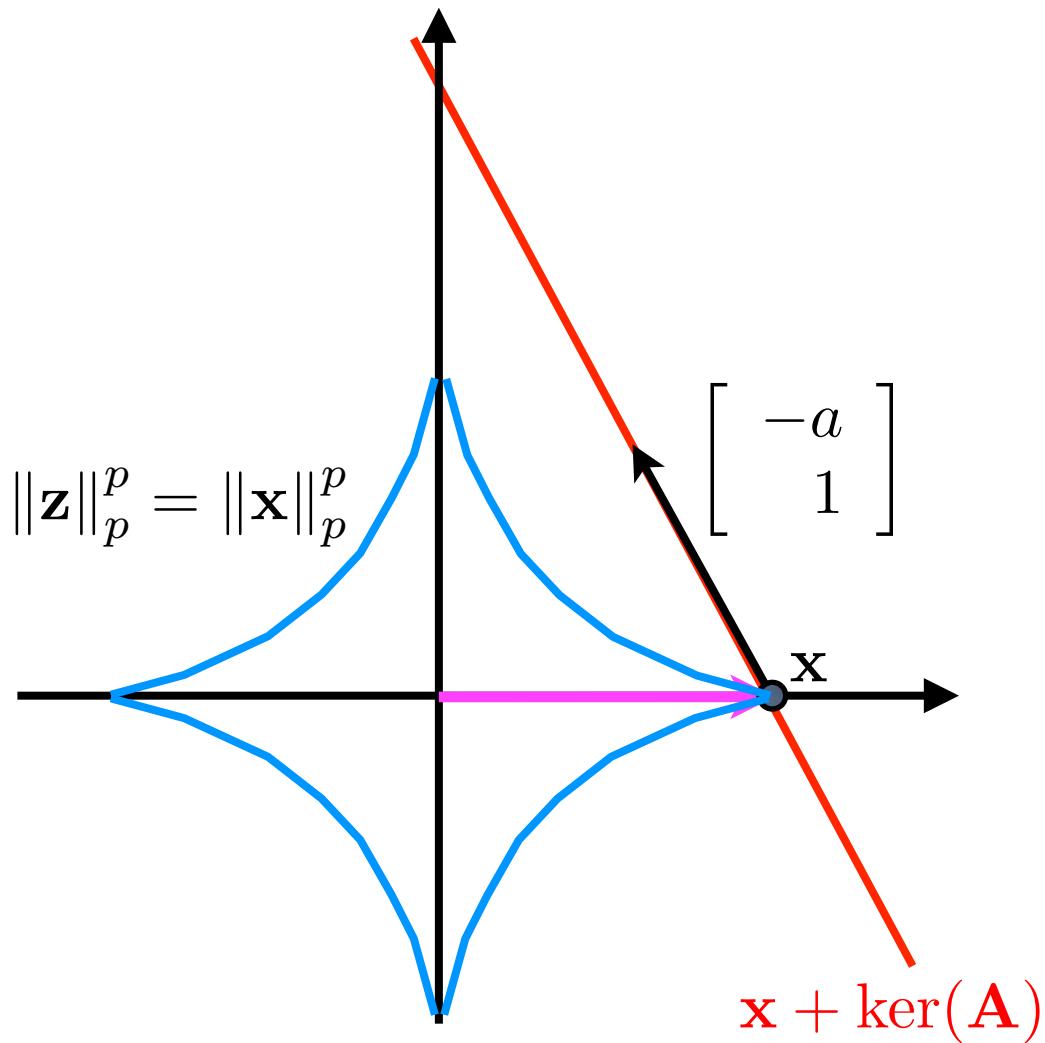


$$\text{NSP}_p(S) : |a|^p < 1^p$$

$$p = 1 : |a| < 1$$

NSP₁(S) OK!

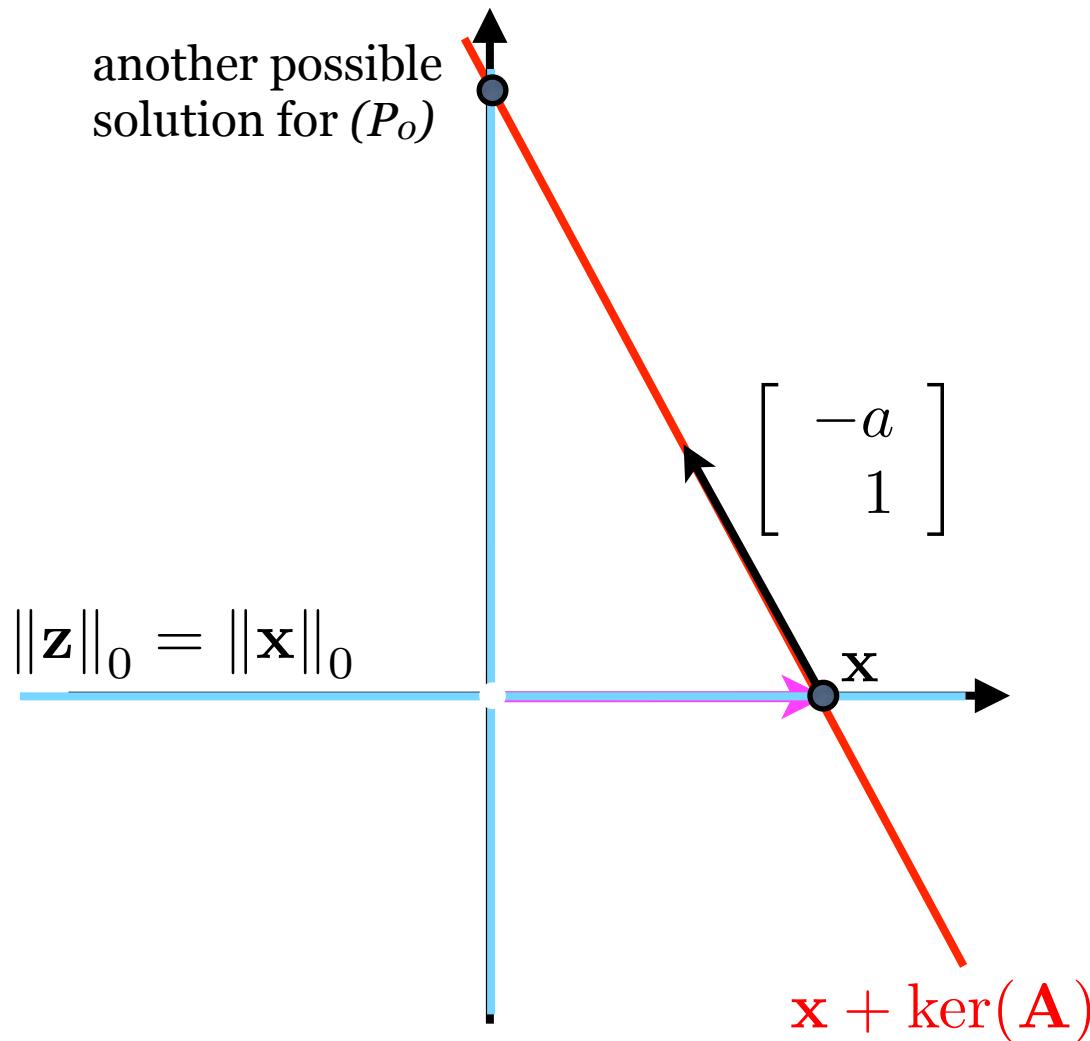
Graphical illustration with $0 < p < 1$ and \mathbf{x} sparse



$$\text{NSP}_p(S) : |a|^p < 1^p$$

$\text{NSP}_p(S)$ OK!

Graphical illustration with $p=0$ and \mathbf{x} sparse



$$\text{NSP}_p(S) : |a|^p < 1^p$$

$$p = 0 : 1 < 1$$

NSP₀(S) KO!