
STATISTIQUE MATHÉMATIQUE - MS ENSAI
ÉLEMENTS DE CORRECTION (chapitre 1, sept. 2025)

Échantillon gaussien et modèle exponentiel

Vous pouvez vous reporter au corrigé de l’exercice 1.3
(dans les corrigés scannés).

Considérons un n-échantillon gaussien
X = (X1, ...,Xn) de loi N (m,σ2). On va considérer trois
cas de figures : si m est inconnu et σ connu, en ce cas
notre paramètre d’intérêt est θ= m ; si σ est inconnu
et m connu, en ce cas notre paramètre d’intérêt est
θ=σ2 ; si σ et m sont inconnus, en ce cas notre
paramètre d’intérêt est vectoriel, égal à
θ= (m,σ2) = (m, v).

• Le troisième cas θ= (m,σ2) est traité dans l’exercice
1.3. Dans le corrigé, on choisit comme statistique
T = (T1,T2) où T1(X) =∑n

i=1 Xi et T2(X) =∑n
i=1 X2

i .

La vraisemblance s’écrit, pour x ∈Rn ,

L(x,θ) =
n∏

i=1

(
1p

2πσ2
exp

(
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2σ2

n∑
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(xi −m)2

))
(1)

= (2π)−n/2︸ ︷︷ ︸
h(x)

exp

 m

σ2 T1(x)− 1

2σ2 T2(x)−
[

n

2
lnσ2 + nm2

2σ2

]
︸ ︷︷ ︸

β(θ)


(2)

On obtient la deuxième ligne en développant la
première, puis en regroupant les termes qui ne
dépendent pas de m et σ (et qui vont constituer h(x)),
ensuite en regroupant les termes qui ne dépendent
que de m et σ (et qui vont constituer β(θ)). Ce qui
reste doit pouvoir se mettre sous la forme d’un
produit scalaire de termes en x et de termes en θ.

On aurait tout aussi bien pu choisir comme

statistique T = (T1,T2) avec T1(X) = X et T2(X) = X2.
On aurait alors eu comme décomposition

L(x,θ) = (2π)−n/2︸ ︷︷ ︸
h(x)

exp

nm

σ2 T1(x)− n

2σ2 T2(x)−
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n

2
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2σ2

]
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β(θ)


(3)

On aurait pu encore choisir T = (T1,T2) = (X,S2).

• Le cas θ= m peut se déduire du cas précédent. Il
suffit de regrouper les termes qui ne dépendent pas
de m (car σ est supposé connu). On obtient, par
exemple :

L(x,θ) = (2πσ2)−n/2 exp

(
− n

2σ2

n∑
i=1

x2
i

)
︸ ︷︷ ︸

h(x)

exp

nm

σ2
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2σ2

]
︸ ︷︷ ︸

β(θ)


(4)

La statistique naturelle est alors donnée par
T(x) =∑n

i=1 xi .

• Le cas θ=σ2 peut se déduire directement de
l’expression initiale de la vraisemblance. Il faut
regrouper les termes qui ne dépendent pas de σ :

L(x,θ) = (2π)−n/2︸ ︷︷ ︸
h(x)

exp

− 1

2σ2

n∑
i=1

(xi −m)2 − n

2
lnσ2︸ ︷︷ ︸
β(θ)


(5)

La statistique naturelle est alors T(x) =∑n
i=1(xi −m)2.

Loi multinomiale comme modèle exponentiel

On rappelle que la vraisemblance s’écrit, pour
x = (x1, ..., xp ) et n fixé :

L(x,θ) = h(x)exp

(
p−1∑
i=1

xi ln
(
θi /θp

)− (−n lnθp )

)
(6)

On a donc β(θ) =−n lnθp .

Avant toute chose, nous devons reparamétrer pour
mettre le modèle sous forme canonique. Posons

λi = ln
θi

θp
= ln

θi

1−∑p−1
j=1 θ j

(7)

En effet,
∑p

i=1θi = 1. On a alors

β̃(λ) = β(θ) (8)

=−n ln

(
1−

p−1∑
i=1

θi

)
(9)

=−n ln

 eλi

1+∑p−1
j=1 eλ j

 (10)

La vraisemblance est alors sous forme canonique :

L(x,λ) = h(x)exp

(
p−1∑
i=1

xiλi − β̃(λ)

)
(11)

On peut alors calculer les moments de Xi en dérivant
β̃ :

E[Xi ] = ∂β̃

∂λi
(λ) (12)

= neλi

1+∑
j eλ j

(13)

= nθi /θp

1+∑
j θ j /θp

(14)

= nθi (15)

et de la même façon,
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V(Xi ) = ∂2β̃

∂λ2
i

(λ) (16)

= nθi (1−θi ) (17)

puis pour i ̸= j ,

cov(Xi ,X j ) = ∂2β̃

∂λi∂λ j
(λ) (18)

=−nθiθ j (19)

Modèle exponentiel : v.a. binomiale, échantillon
exponentiel et de Bernoulli

À venir.

Échantillon gaussien dans un cadre bayésien

Le corrigé qui suit est différent de celui du polycopié
et essaie de minimiser le nombre de calculs ; pour
calculer la loi a posteriori, nous allons d’abord
calculer la vraisemblance avec une unique
observation et supposer que la loi a priori est
gaussienne, centrée et réduite. Dans un second
temps, nous changerons les hyperparamètres et
mettrons à jour la vraisemblance a posteriori, puis
dans un troisième temps, nous remplacerons
l’unique observation par un échantillon de taille n.

Supposons donc que θ suit une loi N (0,1). La densité
jointe de (X,θ) est alors

f (x,θ) = 1

2π
exp

[
− (x −θ)2

2
− θ2

2

]
(20)

La marginale en X (que l’on n’est pas obligé de
calculer si l’on raisonne proportionnellement aux
vraisemblance) est donnée par

fX(x) =
∫
R

f (x,θ)dθ= 1

2π

∫
R

exp−(x−θ)2/2−θ2/2 dθ (21)

De

(x −θ)2 +θ2 = 2(θ− x/2)2 −x2/2 (22)

on en déduit que

fX(x) = e−x2/4

2π

∫ +∞

−∞
exp−(θ−x/2)2

dθ (23)

= 1

2
p
π

e−x2/4 (24)

On en déduit alors la loi a posteriori en utilisant la
formule de Bayes :

L(θ|x) =
1

2πe−(θ−x/2)2−x2/4

1
2
p
π

e−x2/4
(25)

= 1p
π

exp−(θ−x/2)2
(26)

Il s’agit de la densité d’une loi normale de moyenne
x/2 et de variance 1/2.

Si maintenant on suppose que la loi a priori est
normale de moyenne a et de variance b2, on peut

utiliser les résultats précédents en utilisant le
changement de variables :

X = θ+σZ (27)

θ= a +bU (28)

où Z ∼N (0,1) et U ∼N (0,1). Alors X ∼N (θ,σ2). On
sait que la loi jointe de (X,θ) est gaussienne. Nous
cherchons la loi de θ/X. Or, la loi conditionnelle d’un
vecteur gaussien par un sous-vecteur gaussien est
elle-même gaussienne et sa moyenne et sa variance
sont données par les formules suivantes :{

E[X2|X1] = E[X2]+cov(X2,X1)V(X1)−1(X1 −E[X1])
V[X2|X1] =V[X2]−cov(X2,X1)V(X1)−1cov(X1,X2)

Ici, avecV(X) = b2 +σ2 et cov(θ,X) = b2 les deux
formules donnent :{

E[θ|X] = a +b2 1
a2+b2 (x −a)

V[X2|X1] = b2 −b4 1
a2+b2 = a2b2

a2+b2

(29)

On en déduit que la loi de θ|X est gaussienne, de
moyenne et variance respective :{

m = x b2

a2+b2 +a
(
1− b2

a2+b2

)
τ2 = a2b2

a2+b2

(30)

Enfin, nous remplaçons l’observation unique x par
un échantillon (x1, .., xn). Par linéarité, la moyenne de
la loi a posteriori et la variance sont données par

m = λx + (1−λ)a

λ= b2

σ2/n+b2

τ2 =
(

1
b2 + n

σ2

)−1
(31)
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