STATISTIQUE MATHEMATIQUE - MS ENSAI
ELEMENTS DE CORRECTION (chapitre 2, sept. 2024)

Estimateur du maximum de vraisemblance pour un
échantillon gaussien

Partant d'un n-échantillon gaussien X = (Xy, ..., X,;) de
loi N(m, 02), on souhaite estimer 6 = (m, 02). Dans
toute la suite, on posera v = o2.1a log-vraisemblance
de cet échantillon est
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Le gradient de cette fonction de deux variables en

0 = (m, v) est le vecteur colonne
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Le gradient s’annule en un unique point critique )
dont les coordonnées sont données par
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La matrice hessienne, en 0, de la fonction [ est
donnée par
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Ces expressions s’entendent a x fixé, x étant une
observation du n-échantillon.

Si nous évaluons maintenant cette matrice hessienne
au point critique 0 = (%, s2) ou ¥ et s2 sont
respectivement la moyenne et la variance empirique

de I'observation, alors
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Finalement,
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Cette matrice est clairement définie négative et par
conséquent 0 est 'unique maximum de
vraisemblance. L'estimateur du maximum de
vraisemblance est donc

By = (X.5?) (16)
Estimateur du maximum de vraisemblance pour la
loi uniforme sur [0,0 + 1]

La vraisemblance d’'un échantillon de cette loi s’écrit

L(x, e) = 1[6 SX1) =X = 0+ 1] (x) a7

Cette fonction (de 6) vaut 1 ou 0. Pour une
observation fixée x de I’échantillon, elle est nulle si

0 > x(1) ou bien si 0 < x(;;) — 1. Elle est constante et
vaut 1 dans l'intervalle [x(,;) — 1, x(1y]. Ainsi, toute
valeur de 0 dans cet intervalle réalise le maximum de
la vraisemblance:

Tout § choixit dans l'intervalle (aléatoire)
X —1,X(p)] est un estimtateur du maximum de
vraisemblance.

Estimateur gaussien de la moyenne a posteriori

Ala fin du chapitre 1, nous avons trouvé I’expression
de la loi a posteriori d’'un échantillon gaussien dont la
moyenne inconnue suit une loi a priori gaussienne,
d’hyperparamétres a (pour sa moyenne) et b* (pour

sa variance). La loi a posteriori est gaussienne, de
2

moyenne m et de variance T- avec :
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m est une combinaison linéaire convexe de la
moyenne de I'échantillon et de la moyenne a priori.
Les coefficients de cette combinaison linéaire sont
proportionnels aux variances de I’échantillon et
variance a priori.

Lestimateur de la moyenne a posteriori est donc )
défini par :
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Estimateur du coefficient de corrélation linéaire
empirique

X1,Y1),..., X, Y,) estun n-échantillon d’'un vecteur
gaussien (X,Y) dont le coefficient de corrélation
linéaire est noté p. Le coefficient de corrélation
empirique est par définition égal a
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Montrons que v/7n(p, — p) est asymptotiquement
normale et que
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La méthode de stabilisation de la variance améne a
chercher une fonction différentiable v dont la
dérivée vaut (1 - p?)~!. On pose donc naturellement
Y(p) = arctanh p et une nouvelle application de la
méthode delta montre que
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