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Estimateur du maximum de vraisemblance pour un
échantillon gaussien

Partant d’un n-échantillon gaussien X = (X1, ...,Xn) de
loi N(m,σ2), on souhaite estimer θ= (m,σ2). Dans
toute la suite, on posera v =σ2. La log-vraisemblance
de cet échantillon est
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Le gradient de cette fonction de deux variables en
θ= (m, v) est le vecteur colonne
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Le gradient s’annule en un unique point critique θ̂
dont les coordonnées sont données par

m = x et v = 1

n

n∑
i=1

(xi −x)2 = s2 (4)

La matrice hessienne, en θ, de la fonction l est
donnée par
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Ces expressions s’entendent à x fixé, x étant une
observation du n-échantillon.

Si nous évaluons maintenant cette matrice hessienne
au point critique θ̂= (x, s2) où x et s2 sont
respectivement la moyenne et la variance empirique
de l’observation, alors
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Finalement,
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Cette matrice est clairement définie négative et par
conséquent θ̂ est l’unique maximum de
vraisemblance. L’estimateur du maximum de
vraisemblance est donc
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Estimateur du maximum de vraisemblance pour la
loi uniforme sur [θ,θ+1]

La vraisemblance d’un échantillon de cette loi s’écrit

L(x,θ) = 1[θ≤ x(1) ≤ x(n) ≤ θ+1](x) (17)

Cette fonction (de θ) vaut 1 ou 0. Pour une
observation fixée x de l’échantillon, elle est nulle si
θ> x(1) ou bien si θ< x(n) −1. Elle est constante et
vaut 1 dans l’intervalle [x(n) −1, x(1)]. Ainsi, toute
valeur de θ dans cet intervalle réalise le maximum de
la vraisemblance:

Tout θ̂ choixit dans l’intervalle (aléatoire)
[X(n) −1,X(1)] est un estimtateur du maximum de
vraisemblance.

Estimateur gaussien de la moyenne a posteriori

À la fin du chapitre 1, nous avons trouvé l’expression
de la loi a posteriori d’un échantillon gaussien dont la
moyenne inconnue suit une loi a priori gaussienne,
d’hyperparamètres a (pour sa moyenne) et b2 (pour
sa variance). La loi a posteriori est gaussienne, de
moyenne m et de variance τ2 avec :
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m est une combinaison linéaire convexe de la
moyenne de l’échantillon et de la moyenne a priori.
Les coefficients de cette combinaison linéaire sont
proportionnels aux variances de l’échantillon et
variance a priori.

L’estimateur de la moyenne a posteriori est donc θ̂
défini par :
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Estimateur du coefficient de corrélation linéaire
empirique

(X1,Y1), ..., (Xn ,Yn) est un n-échantillon d’un vecteur
gaussien (X,Y) dont le coefficient de corrélation
linéaire est noté ρ. Le coefficient de corrélation
empirique est par définition égal à
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Montrons que
p

n(ρ̂n −ρ) est asymptotiquement
normale et que
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La méthode de stabilisation de la variance amène à
chercher une fonction différentiable ψ dont la
dérivée vaut (1−ρ2)−1. On pose donc naturellement
ψ(ρ) = arctanh ρ et une nouvelle application de la
méthode delta montre que
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