
STATISTIQUE MATHÉMATIQUE - MS ENSAI 2023-2024
EXERCICE 1.9. CORRIGÉ

On considère un échantillon (X1, ...,Xn) de loi
uniforme sur l’intervalle [θ,θ+1] où θ est inconnu.
On pose :

θ̂1 = Xn − 1

2
(1)

θ̂2 = min(X1, ...,Xn) (2)

θ̂3 = max(X1, ...,Xn)−1 (3)

1°. Par symétrie, la moyenne théorique de Xi est
θ+1/2 (vous pouvez aussi faire le calcul de
l’espérance). La moyenne empirique vaut X et
l’estimateur des moments est obtenu en identifiant
les deux :

Xn = θ̂1 + 1

2
(4)

par construction il est sans biais car
E[X] = E[Xi ] = θ+1/2 et donc E[θ̂1] = θ.

Son erreur quadratique est

E[(θ̂1 −θ)2] =V(θ̂1) =V(X−1/2) =V(X) =σ2/n = 1

12n

qui tend vers 0 quand n tend vers l’infini. Comme
l’erreur quadratique tend vers 0 avec n, on en déduit
que l’estimateur est convergent au sens des moindres
carrés (convergence en norme L2).

La loi forte des grands nombres (LFGN) s’applique
car l’échantillon est i.i.d. et possède un moment
d’ordre 1 fini :

X −→ θ+1/2 p.s. (5)

On applique alors le théorème de l’application
continue à X avec la fonction ψ(x) = x −1/2. On en
déduit que ψ(X) tend presque sûrement vers
ψ(θ+1/2), c’est à dire que :

θ̂1 −→ θ p.s. (6)

Le théorème de la limite centrale s’applique
également car les Xi possèdent un moment d’ordre 2
fini (la variance vaut 1/12). On a donc :

p
n(X− (θ+1/2)) N (0,1/12) (7)

Le symbole indique une convergence en loi
lorsque n tend vers l’infini. On applique alors la
méthode delta à X avec la fonction ψ(x) = x −1/2 qui
est clairement dérivable et de dérivée constante égale
à 1. Il vient :

p
n(θ̂1 −ψ(θ)) N (0,1/12ψ(θ)2) (8)

⇐⇒ p
n(θ̂1 −θ) N (0,1/12) (9)

de sorte que la convergence vers θ se fait à vitesse
p

n.

2°. Si l’on note F(x) la fonction de répartition de
n’importe lequel des Xi , on a :

θ= sup{x ∈R : F(x) = 0} (10)

En effet, θ est la plus grande valeur réelle à partir de
laquelle la fonction de répartition peut prendre une
valeur non nulle (faire un dessin pour s’en
convaincre). L’estimateur plug-in associé s’obtient en
remplaçant la fonction de répartition théorique par la
fonction de répartition empirique Fn(x) de
l’échantillon :

θ̂2 = sup{x ∈R : Fn(x) = 0} (11)

avec

Fn(x) = 1

n

n∑
i=1

1[Xi<x] (12)

Mais cette somme est nulle si, et seulement si, toutes
les indicatrices de la somme sont nulles, c’est à dire si
tous les Xi sont supérieurs à x. Ceci est équivalent à
dire que le minimum des Xi est supérieur à x et donc
que

θ̂2 = min(X1, ...,Xn) = X(1) (13)

θ̂2 est donc bien un estimateur plug-in.

3°.

P
[
n(θ̂2 −θ) ≤ x

]=P[
θ̂2 ≤ θ+x/n

]
(14)

= 1−P[
Xi ≥ θ+x/n]n = 1− (1−x/n)n (15)

si 0 ≤ x ≤ n. Si x < 0 la probabilité vaut 0 et si x ≥ n
elle vaut 1. Ainsi,

lim
n→+∞P

[
n(θ̂2 −θ) ≤ x

]= (1−e−x )1[0,+∞[(x) (16)

On rappelle que (1−x/n)n → e−x pour tout x réel. On
reconnait dans la formule précédente la fonction de
répartition d’une loi exponentielle de paramètre 1.
Ainsi,

n(θ̂2 −θ) E (1) (17)

La vitesse de convergence est en n, ce qui est
beaucoup plus rapide que la vitesse classique en

p
n

du théorème de la limite centrale. On parle de
super-convergence. Il n’était pas possible ici
d’appliquer la LFGN ou le TLC car l’estimateur n’est
pas une fonction de la moyenne empirique, mais une
statistique d’ordre. Et de fait, la loi limite n’est pas
gaussienne.

4°. En reprenant le calcul précédent, on voit
facilement que

P
[
θ̂2 ≤ x

]= 1− (1−x +θ)n (18)

si x ∈ [θ,θ+1] et 0 dans le cas contraire. La densité de
θ̂2 est donc la dérivée de la fonction de répartition
ci-dessus :

fn(x) = n(1+θ−x)n−11[θ,θ+1](x) (19)

On en déduit (après calculs que vous devez effectuer
vous-même) que :

1



E[θ̂2] = θ+ 1

n +1
(20)

E[θ̂2
2] = θ2 + 2θ

n +1
+ 2

(n +1)(n +2)
(21)

V(θ̂2) = 2

(n +1)(n +2)
− 1

(n +1)2 (22)

qui tend vers 0 quand n tend vers l’infini. On en
déduit alors que :

E[(θ̂2 −θ2)2] =V(θ̂2)+b(θ)2 → 0 (23)

quand n tend vers l’infini. Ceci prouve que la
convergence de cet estimateur a lieu également en
moyenne quadratique.

5°. Pour θ̂3, on utilise la même démarche que dans la
question 3°. θ̂3 est un estimateur plug-in et l’on a :

θ̂3 = inf{x ∈R : Fn(x) = 1}−1 (24)

La fonction de répartition vaut 1 si, et seulement si,
tous les Xi sont plus petits que x donc si, et seulement
si, leur maximum est plus petit que x. Ainsi,

θ̂3 = X(n) −1 (25)

De la même façon que dans la question 3°, on voit
facilement que

lim
n→+∞P

[
n(θ̂3 −θ) ≤ x

]= ex1]−∞,0](x) (26)

et donc n(θ̂3 −θ) −E (1) lorsque n tend vers l’infini.
La vitesse de convergence est encore en n.

6°. La vraisemblance de l’échantillon peut se mettre
sous la forme

L(x,θ) =1[θ≤x(1)≤x(n)≤θ+1] (27)

dont la valeur maximale égale à 1 est atteinte si, et
seulement si, tous les xi sont compris entre θ et θ+1.
Ceci est équivalent à dire que θ doit être dans
l’intervalle [x(n) −1; x(1)] et toute valeur de cet
intervalle est donc un estimateur du maximum de
vraisemblance. On en déduit qu’il en existe une
infinité. On peut, par exemple, choisir le milieu de
l’intervalle comme EMV :

θ̂MV = 1

2
(X(1) −X(n) +1) (28)

Notez bien les lettres minuscules qui indiquent une
observation de l’échantillon et les lettres majuscules
qui indiquent des variables aléatoires.
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