STATISTIQUE MATHEMATIQUE - MS ENSAI 2023-2024
EXERCICE 2.10. CORRIGE

On considere un n-échantillon X = (X, ...,X;;) suivant
une loi de Poisson £2(A) de parameétre A. On note
S=Y" Xjets=Y7" x;.

1°. Préciser le modele statistique et calculer la
vraisemblance de I’échantillon.

Il s’agit d'un modele statistique homogene et
paramétrique. L'espace des obserations est N”
puisque chaque observation de I’échantillon est
constituée d'un vecteur de valeurs entieres (la loi de
Poisson prend ses valeurs dans N). Comme il s’agit
d’une loi discréete, on peut choisir comme tribu sur
N" I'’ensemble des parties de cet ensemble. Enfin, la
famille de loi de probabilités est 'ensemble des lois
produits de n variables aléatoires de poisson de
parametre A. La vraisemblance est :

12[ A AT AS
L(x1, .0, X, A) = (e_ —) —e ™ 1)
i=1 x;! T x;!

si tous les x; sont entiers, et 0 sinon (en notant
s=X0 %)

2°. Montrer que S est une statistique exhaustive de
I’échantillon pour le parametre A. Montrer qu’elle est
complete pour A.

Par soucis pédagogique, nous donnons trois
techniques pour démontrer I'exhaustivité. La
premiere est la plus longue et la plus calculatoire : on
se ramene a la définition et il faut montrer que la loi
conditionnelle de X sachant [S = s] ne dépend pas du
parametre. Pour toute observation x = (xy, ..., X;), on
a:

PIS = s|X = x]P[X = x]

PX=x|S=s]= PB =] (2)

d’apres la formule de Bayes. P[S = s|X = x] vaut soit 1
soit 0 selon que s =) x; oupas. Si s# ) x;, la
probabilité est nulle et dans le cas contraire, elle vaut
1. Finalement, cette probabilité peut s’écrire sous la
forme d’une indicatrice déterministe :

P[S = sIX = x] = L=y ;) 3)
On a alors :
PIX= xS =sl= =Xy 4)
=S =sI= gy e
AS !
=e > (5)

. 1 v
Hl(xl!) e_n)\(n)\)S [s=X xi]

car S suit une loi de Poisson de parametre nA (la
somme de deux lois de Poisson indépendantes suit
une loi de Poisson dont le parametre est la somme
des parametres des deux lois initiales). En simplifiant,
il vient :

197—S

PX=xS=s=—2 1
X = x| —S]—m [s=X x,] (6)

qui ne dépend pas de A. Ceci prouve que S est
exhaustive pour A.

La seconde méthode utilise le théoreme de
factorisation de Neyman-Fisher :

-1
n
L(x,A) = (H xi!) x gSInA—nA ™
i=1

Le premier terme du produit ne dépend que des
observations x tandis que le second, a I'intérieur de
I'exponentielle, ne dépend de x qu’au travers de la
somme s.

La troisieme méthode utilise le fait qu'un échantillon
de Poisson fait partie du modele exponentiel. Sa
vraisemblance a déja été calculée dans la formule
précédente et montre que la statistique naturelle est S
et le parametre canonique est InA. S est donc
exhaustive.

Montrons maintenant que la statistique S est
compléete pour le parametre A. Ici encore, nous
proposons deux démonstrations différentes. La plus
simple et la plus rapide est d'utiliser le fait que le
modele est exponentiel. Nous savons déja que la
statistique naturelle est S. Par ailleurs, I'espace des
parametres est ’ensemble des valeurs prises par InA
lorsque A varie dans ]0,00][. Ici, c’est simplement
I'image de la fonction logarithme népérien, donc R!
Cet ensemble posséde des ouverts (R est un ouvert
lui-méme) et 'on en déduit donc que la statistique
est compléte (pour A).

La seconde méthode pour démontrer la complétude
est de revenir a la définition. Il faut prouver que
quelque soit la fonction g(s) de N dans R (S estla
somme des X;, qui sont des entiers, elle prend donc
ses valeurs dans N),

E[g(S)]=0=g=0, YA>0. 8)
D’apres le théoreme de transfert,
—nk (nA)®
EAlg(s)] =F\) =) g(s)e — 9)
$=0 :

En tant que fonction de A, il s’agit d'une somme de
série entiere dont le rayon de convergence est infini.
Elle est donc définie et de classe C*™ sur R tout entier
et cette fonction est identiquement nulle (pour tout
A) si, et seulement si, tous ses coefficients sont nuls.
On doit donc avoir, pour tout A > 0 et pour tout §
entier,

N

(10)
s!

Lexponentielle et la fonction puissance ne sont pas
nulles pour tout s, il faut donc que g(s) = 0 pour tout
s, cC’est a dire que g doit étre identiquement nulle.

3°. Déduire des questions précédentes un estimateur
sans biais de variance minimale (VUMSB) du
parametre A.

Nous venons de voir que S est une statistique
complete et X = S/n est clairement un estimateur



sans biais de A. D’apres le théoréme de
Lehmann-Scheffé, I'estimateur

S* =E[X|S] =X (11
est sans biais et de variance miminale. L'espérance
conditionnelle est égale a X car cette v.a. est
mesurable par rapport a S.

4°. Le modele est-il régulier? Si oui, calculer
I'information Ix (A) au sens de Fisher et en déduire un
estimateur efficace.

Le modéle est régulier si, et seulement si, il est
dominé, homogeéne, © est ouvert, L(x,0) est de classe
C? en 0 pour tout x et deux fois dérivable sous le signe
somme. Ici, le modele est dominé par la mesure de
comptage (la loi est discréete), il est homogene car le
support est N” et ne dépend pas du parametre. © est
I’ensemble dans lequel varie le parametre et dans
I'exercice il est ouvert (c’est ]0,00[). En tant que
fonction de A, la vraisemblance est clairement de
classe C? (c’est une composée et un produit de
puissance et d’exponentielle). On admet la propriété
de dérivation sous le signe somme. Donc le modeéle
est régulier et 'on peut calculer I'information de
Fisher de I’échantillon :

ol
Ix(A) =VESXAN) =V (a(X, )\)) (12)

—\/(ﬂ(lnoHSln)\—n)\)) (13)

~laa

—\/(ﬁ—n)—ix)\xn—E (14)

VN A2 A
avec a = ([Tx;) L. Puisque VX) = A/n =Ix(\) 71,
I'estimateur atteint la borne de Cramer-Rao : il est
efficace.

A

5°. On s'intéresse maintenant au parametre 0 = e™".
Quelle est la signification de 8?2 Démontrer que
0= exp(X) est I'estimateur du maximum de
vraisemblance de 0 et qu'il est biaisé.

P[X; = 0] = e"* = 0. La loi de Poisson représente le
nombre d’apparitions d'un phénomene aléatoire
durant un laps de temps donné. 6 représente donc la
probabilité de ne pas voir le phénomeéne apparaitre
durant ce laps de temps.

On sait que X est 'EMV de A. D’aprés le théoréme de
reparamétrisation, 0; = exp(X) est 'EMV de 6 = e
Déterminons son espérance :

[E[ﬁl] = [E[eS/n] = H[E[e—X,'/n] — [E[e—XI/n]n

(15)
i=1
par indépendance et identique distribution des X;.
Mais d’apres le théoreme de transfert,
+00 Ak +00 (,—1/ny\\k
-Xi/ny _ —kin€ A _ A (e A)
Ele ™" =) e = > k! (16)
k=0 k=0
— e*)\+eil/n)\ (17)

Ainsi,

E@,=e et £ 18)

I'EMV 61 est donc un estimateur biaisé.

6°. Soient Y; = I x,-g] . Montrer que Y; est un
estimateur des moments de 0 et qu’il est non biaisé.

Y; est une fonction mesurable des seules
observations X;, c’est donc un estimateur de 0. Par
ailleurs, IE[Y;] = P[X; = 0] = 6 et donc Y; est sans biais.

7°. Déterminer la loi conditionnelle de Y; sachant S.
En déduire I’estimateur VUSMB de 6.

ELYLIS = k] = PX; = 0[S = k] = X1 =010 [S = kD)

P[S = k]
(19)
Si[X;=0l,onaS=%" X;=Y",X;quiestalors
indépendant de X;. On peut donc écrire :
PIX; =0] xP[X),X; = k]
EY,]S = k] = — =2 20)

P[S = k]

Y1 ,X; estlasomme de n— 1 v.a. indépendantes de
loi de Poisson de parametre A. Elle suit donc une loi
de Poisson de parametre (n — 1)A. De la méme facon,
au dénominateur, S suit une loi de Poisson de
parametre nA. Ainsi,

e Mo~ DA (- )N)K/ k!
e "M(n\)k/k!

=)
= =l1-=

n n
L'espérance conditionnelle de Y; sachant S est donc
1-1/n)s.

E[Y;IS =kl = (21)

(22

Y; est un estimateur sans biais de 0 et S est une
statistique compleéte. On est donc tenté de conclure
que, d’apres le théoreme de Lehmann-Scheffé,
E[Y;|S] est 'estimateur VUMSB de 0. Mais on ne peut
pas faire cela. En effet, S est une statistique complete
pour A et pour conclure, nous avons besoin d'une
statistique complete pour 0! Il faut donc démontrer
que S est aussi complete pour 6. Pour faire cela, il faut
reécrire la vraisemblance en fonction de 0, puis
redémontrer la complétude a I’aide de la définition.
En passant sur les calculs, on obtient :

(In6)*6"
I1x;!

et le théoreme de factorisation de Neyman-Fischer
permet de conclure. De la méme fagon que
précédemment, si g est une fonction mesurable de S
telle que

L(x1,...,X,,0) = (23)

E[g(S$)1=0, ¥O€]0,1], (24)

alors g =0 (la somme est une série entiere nulle, donc
tous ses coefs sont nuls).

S est donc exhaustive et compleéte pour 0 et d’apres le
théoreme de Lehmann-Scheffé, I’estimateur VUMSB
de B estdonc:



. 1\S
0, = (1 - —) (25)
n

8°. Lestimateur @2 est-il efficace?

Il faut calculer la borne de Cramer-Rao pour
0= e = y(A). On connait déja I(A) et les propriétés
de reparamétrisation de I'information au sens de
Fischer permettent d’écrire :

10) =M Y N = e”% (26)
Il faut comparer ce résultat a la variance de

I’estimateur. Pour conduire le calcul, nous aurons
besoin de la formule suivante :

E[eS] = o~M1-e" @7)
Ona:
R _1\28 .
EwﬁzE(” ) =E[e®5) | (28)
n
= @RIy ok (=2n4 1)/ _ ~2\+Ain
(29)
Par ailleurs,
E[6;] =e* (30)
On en déduit que
V(0,) = e MM -1) 31)
Cette expression est différente de 1(0) ! = e’”‘% et

I'estimateur n’est donc pas efficace. Il est par contre
asymptotiquement efficace car les deux expressions
sont équivalentes en I'infini.

9°. On considére maintenant I’estimateur 53 =Y, avec
Y la moyenne arithmétique des Y;. Démontrer qu’il
est VUMSB et efficace pour 0.

Y est un estimateur sans biais de 0 et puisque Y; suit
une loi de Benoulli de parametre 0, le modele est
exponentiel et la moyenne empirique est une
statistique exhaustive. On sait également qu’elle est
complete pour 0. On peut donc appliquer le
théoréeme de Lehmann-Scheffé et conclure que :

Y =E[Y|Y] (32)

est VUMSB. C’est un estimateur efficace car I'inverse
de I'information de Fisher est égale a la variance 0/n
deY.



