
STATISTIQUE MATHÉMATIQUE - MS ENSAI 2023-2024
EXERCICE 2.10. CORRIGÉ

On considère un n-échantillon X = (X1, ...,Xn) suivant
une loi de Poisson P (λ) de paramètre λ. On note
S =∑n

i=1 Xi et s =∑n
i=1 xi .

1°. Préciser le modèle statistique et calculer la
vraisemblance de l’échantillon.

Il s’agit d’un modèle statistique homogène et
paramétrique. L’espace des obserations estNn

puisque chaque observation de l’échantillon est
constituée d’un vecteur de valeurs entières (la loi de
Poisson prend ses valeurs dansN). Comme il s’agit
d’une loi discrète, on peut choisir comme tribu sur
Nn l’ensemble des parties de cet ensemble. Enfin, la
famille de loi de probabilités est l’ensemble des lois
produits de n variables aléatoires de poisson de
paramètre λ. La vraisemblance est :

L(x1, ..., xn ,λ) =
n∏

i=1

(
e−λ

λxi

xi !

)
= e−ns λs∏n

i=1 xi !
(1)

si tous les xi sont entiers, et 0 sinon (en notant
s =∑n

i=1 xi ).

2°. Montrer que S est une statistique exhaustive de
l’échantillon pour le paramètre λ. Montrer qu’elle est
complète pour λ.

Par soucis pédagogique, nous donnons trois
techniques pour démontrer l’exhaustivité. La
première est la plus longue et la plus calculatoire : on
se ramène à la définition et il faut montrer que la loi
conditionnelle de X sachant [S = s] ne dépend pas du
paramètre. Pour toute observation x = (x1, ..., xn), on
a :

P[X = x|S = s] = P[S = s|X = x]P[X = x]

P[S = s]
(2)

d’après la formule de Bayes. P[S = s|X = x] vaut soit 1
soit 0 selon que s =∑

xi ou pas. Si s 6=∑
xi , la

probabilité est nulle et dans le cas contraire, elle vaut
1. Finalement, cette probabilité peut s’écrire sous la
forme d’une indicatrice déterministe :

P[S = s|X = x] =1[s=∑
xi ] (3)

On a alors :

P[X = x|S = s] = P[X = x]

P[S = s]
1[s=∑

xi ] (4)

= e−nλ λs∏
i (xi !)

s!

e−nλ(nλ)s
1[s=∑

xi ] (5)

car S suit une loi de Poisson de paramètre nλ (la
somme de deux lois de Poisson indépendantes suit
une loi de Poisson dont le paramètre est la somme
des paramètres des deux lois initiales). En simplifiant,
il vient :

P[X = x|S = s] = s!n−s

x1!...xn !
1[s=∑

xi ] (6)

qui ne dépend pas de λ. Ceci prouve que S est
exhaustive pour λ.

La seconde méthode utilise le théorème de
factorisation de Neyman-Fisher :

L(x,λ) =
(

n∏
i=1

xi !

)−1

×e s lnλ−nλ (7)

Le premier terme du produit ne dépend que des
observations x tandis que le second, à l’intérieur de
l’exponentielle, ne dépend de x qu’au travers de la
somme s.

La troisième méthode utilise le fait qu’un échantillon
de Poisson fait partie du modèle exponentiel. Sa
vraisemblance a déjà été calculée dans la formule
précédente et montre que la statistique naturelle est S
et le paramètre canonique est lnλ. S est donc
exhaustive.

Montrons maintenant que la statistique S est
complète pour le paramètre λ. Ici encore, nous
proposons deux démonstrations différentes. La plus
simple et la plus rapide est d’utiliser le fait que le
modèle est exponentiel. Nous savons déjà que la
statistique naturelle est S. Par ailleurs, l’espace des
paramètres est l’ensemble des valeurs prises par lnλ
lorsque λ varie dans ]0,∞[. Ici, c’est simplement
l’image de la fonction logarithme népérien, donc R !
Cet ensemble possède des ouverts (R est un ouvert
lui-même) et l’on en déduit donc que la statistique
est complète (pour λ).

La seconde méthode pour démontrer la complétude
est de revenir à la définition. Il faut prouver que
quelque soit la fonction g (s) deN dans R (S est la
somme des Xi , qui sont des entiers, elle prend donc
ses valeurs dansN),

E[g (S)] = 0 ⇒ g ≡ 0, ∀λ> 0. (8)

D’après le théorème de transfert,

Eλ[g (s)] = F(λ) = ∑
s≥0

g (s)e−nλ (nλ)s

s!
(9)

En tant que fonction de λ, il s’agit d’une somme de
série entière dont le rayon de convergence est infini.
Elle est donc définie et de classe C∞ sur R tout entier
et cette fonction est identiquement nulle (pour tout
λ) si, et seulement si, tous ses coefficients sont nuls.
On doit donc avoir, pour tout λ> 0 et pour tout s
entier,

g (s)e−nλ (nλ)s

s!
= 0 (10)

L’exponentielle et la fonction puissance ne sont pas
nulles pour tout s, il faut donc que g (s) = 0 pour tout
s, c’est à dire que g doit être identiquement nulle.

3°. Déduire des questions précédentes un estimateur
sans biais de variance minimale (VUMSB) du
paramètre λ.

Nous venons de voir que S est une statistique
complète et X = S/n est clairement un estimateur
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sans biais de λ. D’après le théorème de
Lehmann-Scheffé, l’estimateur

S∗ = E[X|S] = X (11)

est sans biais et de variance miminale. L’espérance
conditionnelle est égale à X car cette v.a. est
mesurable par rapport à S.

4°. Le modèle est-il régulier ? Si oui, calculer
l’information IX(λ) au sens de Fisher et en déduire un
estimateur efficace.

Le modèle est régulier si, et seulement si, il est
dominé, homogène, Θ est ouvert, L(x,θ) est de classe
C2 en θ pour tout x et deux fois dérivable sous le signe
somme. Ici, le modèle est dominé par la mesure de
comptage (la loi est discrète), il est homogène car le
support estNn et ne dépend pas du paramètre. Θ est
l’ensemble dans lequel varie le paramètre et dans
l’exercice il est ouvert (c’est ]0,∞[). En tant que
fonction de λ, la vraisemblance est clairement de
classe C2 (c’est une composée et un produit de
puissance et d’exponentielle). On admet la propriété
de dérivation sous le signe somme. Donc le modèle
est régulier et l’on peut calculer l’information de
Fisher de l’échantillon :

IX(λ) =V(S(X,λ)) =V
(
∂l

∂λ
(X,λ)

)
(12)

=V
(
∂l

∂λ
(lnα+S lnλ−nλ)

)
(13)

=V
(

S

λ
−n

)
= 1

λ2 ×λ×n = n

λ
(14)

avec α= (
∏

xi !)−1. Puisque V(X) = λ/n = IX(λ)−1,
l’estimateur atteint la borne de Cramer-Rao : il est
efficace.

5°. On s’intéresse maintenant au paramètre θ= e−λ.
Quelle est la signification de θ? Démontrer que
θ̂1 = exp(X) est l’estimateur du maximum de
vraisemblance de θ et qu’il est biaisé.

P[X1 = 0] = e−λ = θ. La loi de Poisson représente le
nombre d’apparitions d’un phénomène aléatoire
durant un laps de temps donné. θ représente donc la
probabilité de ne pas voir le phénomène apparaître
durant ce laps de temps.

On sait que X est l’EMV de λ. D’après le théorème de
reparamétrisation, θ̂1 = exp(X) est l’EMV de θ= e−λ.
Déterminons son espérance :

E[θ̂1] = E[eS/n] =
n∏

i=1
E[e−Xi /n] = E[e−X1/n]n (15)

par indépendance et identique distribution des Xi .
Mais d’après le théorème de transfert,

E[e−X1/n] =
+∞∑
k=0

e−k/n e−λλk

k !
= e−λ

+∞∑
k=0

(e−1/nλ)k

k !
(16)

= e−λ+e−1/nλ (17)

Ainsi,

E[θ̂1] = e−λeλe−1/n 6= e−λ (18)

l’EMV θ̂1 est donc un estimateur biaisé.

6°. Soient Yi =1[Xi=0] . Montrer que Y1 est un
estimateur des moments de θ et qu’il est non biaisé.

Y1 est une fonction mesurable des seules
observations Xi , c’est donc un estimateur de θ. Par
ailleurs,E[Y1] =P[X1 = 0] = θ et donc Y1 est sans biais.

7°. Déterminer la loi conditionnelle de Y1 sachant S.
En déduire l’estimateur VUSMB de θ.

E[Y1|S = k] =P[X1 = 0|S = k] = P ([X1 = 0]∩ [S = k])

P[S = k]
(19)

Si [X1 = 0], on a S =∑n
i=1 Xi =∑n

i=2 Xi qui est alors
indépendant de X1. On peut donc écrire :

E[Y1|S = k] = P[X1 = 0]×P[
∑n

i=2 Xi = k]

P[S = k]
(20)

∑n
i=2 Xi est la somme de n −1 v.a. indépendantes de

loi de Poisson de paramètre λ. Elle suit donc une loi
de Poisson de paramètre (n −1)λ. De la même façon,
au dénominateur, S suit une loi de Poisson de
paramètre nλ. Ainsi,

E[Y1|S = k] = e−λe−(n−1)λ((n −1)λ)k /k !

e−nλ(nλ)k /k !
(21)

=
(

n −1

n

)k

=
(
1− 1

n

)k

(22)

L’espérance conditionnelle de Y1 sachant S est donc
(1−1/n)S .

Y1 est un estimateur sans biais de θ et S est une
statistique complète. On est donc tenté de conclure
que, d’après le théorème de Lehmann-Scheffé,
E[Y1|S] est l’estimateur VUMSB de θ. Mais on ne peut
pas faire cela. En effet, S est une statistique complète
pour λ et pour conclure, nous avons besoin d’une
statistique complète pour θ ! Il faut donc démontrer
que S est aussi complète pour θ. Pour faire cela, il faut
reécrire la vraisemblance en fonction de θ, puis
redémontrer la complétude à l’aide de la définition.
En passant sur les calculs, on obtient :

L(x1, ..., xn ,θ) = (lnθ)sθn∏
xi !

(23)

et le théorème de factorisation de Neyman-Fischer
permet de conclure. De la même façon que
précédemment, si g est une fonction mesurable de S
telle que

E[g (S)] = 0, ∀θ ∈]0,1[, (24)

alors g ≡ 0 (la somme est une série entière nulle, donc
tous ses coefs sont nuls).

S est donc exhaustive et complète pour θ et d’après le
théorème de Lehmann-Scheffé, l’estimateur VUMSB
de θ est donc :
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θ̂2 =
(
1− 1

n

)S

(25)

8°. L’estimateur θ̂2 est-il efficace ?

Il faut calculer la borne de Cramer-Rao pour
θ= e−λ =ψ(λ). On connaît déjà I(λ) et les propriétés
de reparamétrisation de l’information au sens de
Fischer permettent d’écrire :

I(θ) =ψ′(λ)−1I(λ)ψ′(λ)−1 = e2λ n

λ
(26)

Il faut comparer ce résultat à la variance de
l’estimateur. Pour conduire le calcul, nous aurons
besoin de la formule suivante :

E[e tS] = e−λ(1−e t ) (27)

On a :

E[θ̂2
2] = E

[(
n −1

n

)2S
]
= E

[
e2S ln( n−1

n )
]

(28)

= enλ(e2ln((n−1)/n)−1) = enλ(−2n+1)/n2 = e−2λ+λ/n

(29)

Par ailleurs,

E[θ̂2] = e−λ (30)

On en déduit que

V(θ̂2) = e−2λ(eλ/n −1) (31)

Cette expression est différente de I(θ)−1 = e−2λ λ
n et

l’estimateur n’est donc pas efficace. Il est par contre
asymptotiquement efficace car les deux expressions
sont équivalentes en l’infini.

9°. On considère maintenant l’estimateur θ̂3 = Y, avec
Y la moyenne arithmétique des Yi . Démontrer qu’il
est VUMSB et efficace pour θ.

Y est un estimateur sans biais de θ et puisque Yi suit
une loi de Benoulli de paramètre θ, le modèle est
exponentiel et la moyenne empirique est une
statistique exhaustive. On sait également qu’elle est
complète pour θ. On peut donc appliquer le
théorème de Lehmann-Scheffé et conclure que :

Y = E[Y|Y] (32)

est VUMSB. C’est un estimateur efficace car l’inverse
de l’information de Fisher est égale à la variance θ/n
de Y.
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