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1 Modèles statistiques et estimateurs

1.1 Révisions sur les lois et quelques calculs
classiques.

1°. Soit X une variable aléatoire de loi exponentielle de
paramètre λ. Déterminer la loi de Y = [X], partie entière
de X.

2°. Soit X1, ...,Xn , n v.a.i.i.d. de loi exponentielle de
paramètre λ et Mn = Min(X1, ...,Xn). Déterminer la loi de
Mn .

3°. Déterminer la loi du minimum de deux lois uniformes
sur [0,1], indépendantes.

4°. Soit X une variable aléatoire suivant une loi de
Laplace. Déterminer la loi de Y = |X| et calculer P[X ≥ 2],
P[X < 0], P[X = 0].

5°. Soit X une variable aléatoire de loi uniforme sur
[−π/2,π/2]. Déterminer la loi de Y = tanX.

1.2 Moyenne et variance de la moyenne et de
la variance empirique d’un échantillon.

On considère X1, ...,Xn , n v.a.i.i.d. et l’on note X leur
moyenne empirique et S2 leur variance empirique :

X =
1

n

n∑

i=1
Xi et S2 =

1

n

n∑

i=1
(Xi −X)2 (1)

1°. Déterminer la moyenne et la variance de X.

2°. Déterminer la moyenne et la variance de S2.

1.3 Calculs sur un échantillon uniforme

Soit X une variable aléatoire de loi uniforme sur [0,2a] et
X1...,Xn un n échantillon de X. Soit X la moyenne
empirique des Xi et M le maximum.

1°. Calculer E[X] et V(X).

2°. Calculer E[X] et V(X).

3°. Calculer E[M] et V(M).

4°. Comparer les résultats des questions 2° et 3°.

1.4 Moyenne et variance empirique d’un
échantillon gaussien.

On considère le modèle d’échantillonnage gaussien
X1, ...,Xn de n v.a.i.i.d. de loi N (m,σ2) et l’on note X la
moyenne empirique et S2 la variance empirique :

X =
1

n

n∑

i=1
Xi et S2 =

1

n

n∑

i=1
(Xi −X)2 (2)

1°. Parmi les variables aléatoires suivantes, lesquelles
sont des statistiques ?

X ? S2 ? nS2/σ2 ? T =
p

n −1(X−m)/S ?

2°. Déterminer le modèle image par la moyenne
empirique.

3°. Déterminer le modèle image par la statistique (X,S2)
en opérant de la façon suivante : écrivez S2 comme
fonction de Yi = Xi −X puis en déduire que S2 est
indépendante de X ; déterminer la loi de nS2/σ2. Enfin,
écrivez le modèle image sous la forme d’un triplet.

4°. Déterminer la loi de T.

1.5 Statistiques d’ordre.

On considère le modèle statistique d’échantillonnage où
P est l’ensemble des lois de probabilités définies sur
(R,B(R)). Soit F la fonction de répartition d’une loi P ∈P .

1°. Quel est le modèle image par la statistique d’ordre
X(1) = mini=1..n Xi ? Par X(n) = maxi=1...n Xi ?

2°. Soit Fn la fonction de répartition empirique du
n-échantillon. Déterminer le modèle image par la
statistique nFn(x).

3°. Déterminer le modèle image par la statistique d’ordre
X(i ), pour i = 1, ...,n.

1.6 Exemples de modèles exponentiels.

Pour les différents modèles proposés, on note X la
variable des observations. Exhibez pour chacun une
mesure dominante, spécifiez si les modèles sont
exponentiels et dans l’affirmative, déterminez une
statistique canonique, un paramètre canonique, puis
calculer l’espérance et la variance de la statistique
canonique.

1°. (X1, ...,Xn) est un n-échantillon gaussien.

2°. X est issu d’un modèle hypergéométrique.

3°. X est issu d’un modèle binomial négatif.

4°. X = ǫ+ (1−ǫ)Y où ǫ∼ b(α) suit une loi de Bernoulli de
paramètre α et Y ∼N (0,1) est indépendante de ǫ.

1.7 Statistiques de rang.

Soit X = (X1, ...,Xn) un n-échantillon issu d’un modèle P

de loi sans atome sur R. Le rang de Xi est

Ri (X) = card{ j : X j ≤ Xi } (3)

On note R(X) = (R1(X), ...,Rn(X)).
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1°. Faites le lien entre le rang et les statistiques d’ordre.

2°. Montrer que pour tout i = 1, ...,n, on a

Ri (X) =
n∑

j=1
1[Xi−X j ≥0] (4)

3°. Montrer que pour tout x ∈R
n , R(x) est une

permutation de (1,2, ...,n) P-p.s.

4°. Quel est le modèle image par R?

1.8 Loi uniforme : différents estimateurs

Soit (X1, ...,Xn) un n-échantillon de loi uniforme sur [0,θ].

1°. Déterminez un estimateur θ1 de θ par la méthode des
moments. Étudiez son biais, son erreur quadratique, sa
convergence.

2°. Déterminez un estimateur θ2 de θ par la méthode du
maximum de vraisemblance. Étudiez son biais, son
erreur quadratique, sa convergence. En déduire un
estimateur θ3 de θ, sans biais.

3°. On suppose que n = 2m +1. Déterminez un
estimateur plug-in θ4 de θ. Étudiez son biais, son erreur
quadratique, sa convergence.

4°. Quel est le meilleur des estimateurs précédents ?

5°. On muni le modèle d’une loi a priori de densité :

π(θ) =
1

θ2 1]1,∞[(θ) (5)

Déterminez la loi a posteriori du modèle et proposer un
estimateur θ5 de θ.

1.9 Loi uniforme : encore d’autres
estimateurs.

On considère un échantillon (X1, ...,Xn) de loi uniforme
sur l’intervalle [θ,θ+1] où θ est inconnu. On pose :

θ̂1 = Xn −
1

2
(6)

θ̂2 = min(X1, ...,Xn) (7)

θ̂3 = max(X1, ...,Xn)−1 (8)

1°. Démontrer que θ̂1 est l’estimateur des moments de θ.
En déduire qu’il est sans biais ; déterminer son erreur
quadratique et démontrer qu’il converge au sens des
moindres carrés. Démontrer qu’il est fortement
consistant, puis qu’il est asymptotiquement normal
(A.N.) en précisant la loi limite et la vitesse de
convergence.

2°. Démontrer que θ̂2 est un estimateur plug-in de θ.

3°. Déterminer

P
[
n(θ̂2 −θ) ≤ x

]
(9)

pour x variant dans R et en déduire la loi limite de
n(θ̂2 −θ) lorsque n tend vers l’infini. Préciser la vitesse de
convergence.

4°. Déterminer la fonction de répartition de θ̂2 et sa
fonction de densité. En déduire son espérance et sa
variance. θ̂2 converge-t-il au sens des moindres carrés ?

5°. Démontrer que θ̂3 est un estimateur plug-in de θ,
déterminer

P
[
n(θ̂3 −θ) ≤ x

]
(10)

pour x variant dans R et en déduire la loi limite de
n(θ̂3 −θ) lorsque n tend vers l’infini. Préciser la vitesse de
convergence.

6°. Démontrer que la vraisemblance de l’échantillon est
maximale sur l’intervalle [x(n) −1; x(1)]. En déduire un
estimateur du maximum de vraisemblance. Est-il
unique?

1.10 Loi de Poisson : comparaison de deux
estimateurs.

Soit X une va suivant une loi de Poisson de paramètre θ.
Soit (X1, ...,Xn) un n-échantillon de X.

1°. Déterminer deux estimateurs de θ à partir de la
moyenne et de la variance de l’échantillon.

2°. Comparer ces estimateurs.

1.11 Loi de Pareto : estimation du paramètre
de position par trois estimateurs.

Soit θ> 0 et soit X une variable aléatoire de densité

f (t ) =
3t 2

θ3 1[0,θ](t )

Soit (X1, ...,Xn) un n-échantillon de X. On pose :

Sn =
1

n

n∑

k=1
Xk , Tn = max(X1, ...,Xn)

et Zn = (X1...Xn)1/n

1°. Déterminer la fonction de répartition de X, puis
calculer l’espérance et la variance de Sn .

2°. Déterminer un estimateur sans biais Ŝn de θ de la
forme αSn . Calculer sa variance et montrer qu’il
converge en moyenne quadratique vers θ.

3°. Donner une densité de Tn et démonter qu’il converge
en moyenne quadratique vers θ.

4°. Calculer E
[
X1/n

]
, E[Zn] et déterminer a tel que

limn→+∞E[Ẑn] = θ où Ẑn = aZn . Calculer la variance et
en déduire la convergence en moyenne quadratique.

5°. Lequel de ces trois estimateurs est-il préférable de
choisir ?

1.12 Loi de Pareto : différents estimateurs.

Soit n ≥ 3 un entier et α,β deux réels strictement positifs.
Soit X la variable aléatoire réelle de densité

f (t ) =
αβα

tα+1
1[t≥β] (11)
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On dit que X suit une loi de Paréto notée P (α,β).

1°. Déterminer la fonction de répartition F de X, son
espérance et sa variance.

2°. Déterminer la loi de la variable Y = ln(X/β).

3°. On suppose α> 2 connu et on veut estimater β. On
pose Zn = min(X1, ...,Xn). Déterminer la loi de Zn , son
espérance, sa variance, puis déterminer un réel cn tel que
Ẑn = cnZn soit un estimateur sans biais de β.

4°. Montrer que Ẑn converge en moyenne quadratique
vers β.

On suppose maintenant β connu et on souhaite estimer
α. on pose

Wn =
n∑n

k=1 ln(Xk /β)
(12)

5°. Déterminer la densité de
∑n

k=1 ln(Xk /β), calculer

E[Wn] et en déduire que Ŵn = n−1
n

Wn est un estimateur
sans biais de α.

6°. Calculer sa variance.

7°. On suppose dans cette question que 1 <α< 2. On
effectue 402 observations de X et on trouve que
Ŵ402 = 1,4. Donner un intervalle de confiance pour α au
risque 0,05.

1.13 Loi uniforme : risques de différents
estimateurs.

Soit X une variable aléatoire de loi uniforme sur [0,θ] et
(X1, ...,Xn) un n-échantillon de X.

1°. À l’aide de l’inégalité de Markov, montrer que si Tn est
un estimateur de θ asymptotiquement de risque nul,
alors la suite (Tn)n converge en probabilité vers θ. En
déduire une condition suffisante sur l’espérance et la
variance de Tn pour que cette suite converge en
probabilité vers θ.

2°. Soit Sn la moyenne empirique des Xi . Montrer que
Wn = 2Sn est un estimateur sans biais de θ. Déterminer
sa variance et en déduire le risque quadratique. Montrer
qu’il converge en probabilité.

3°. Soit Zn = max(X1, ...,Xn). Déterminer sa fonction de
répartition, sa densité et son biais en tant qu’estimateur
de θ. En déduire un estimateur Yn de θ sans biais,
déterminer son risque quadratique et donner un
équivalent de ce risque quand n tend vers l’infini. En
déduire que Yn converge en probabilité vers θ.

4°. On pose In = min(X1, ...,Xn). Déterminer sa fonction
de répartition Fn . Montrer que

E[In] = θ−
∫θ

0
Fn(t )d t (13)

Cacluler E[In], E[I2
n] et en déduire V(In).

5°. On pose

An =
nZn − In

n −1
(14)

et Dn = Zn − In . Démontrer qu’une densité de Dn est
donnée par

hn(t ) =
n(n −1)

θn

[
θt n−2 − t n−1]

1[0,θ](t )

Vérifier que An est un estimateur sans biais de θ, calculer
E[Dn], calculer

J =
∫+∞

0
t 2hn(t )d t (15)

et en déduire V(Dn). Calculer cov(Zn , In), V(An) et
donner un équivalent du risque quadratique de An .

6°. On pose, pour tout entier naturel n non nul,

Ln =
1

n

n∑

k=1
lnXk et Tn = exp(Ln +1) (16)

On pose également Y = lnX. Montrer que Y possède une
espérance et la calculer. Montrer que Ln +1 est un
estimateur sans biais de lnθ.

7°. Montrer que

E[Tn] = e ×E

[
n∏

k=1
X1/n

k

]
(17)

Monter que pour tout k = 1, ...,n,

E
[
X1/n

k

]
=

n

n +1
θ1/n (18)

et en déduire limn→+∞E[Tn] = θ. Montrer que

E[T2
n] = e2 ×E

[
n∏

k=1
X2/n

k

]
(19)

En déduire que le risque quadratique de Tn vaut

rθ(Tn) = θ2
[

e2

(1+2/n)n
−

2e

(1+1/n)n
+1

]
(20)

puis que

rθ(Tn) =
θ2

n
+o

(
1

n

)
(21)

et déduire de ce qui précède que (Tn)n converge en
probabilité vers θ.

8°. Donner pour chacun des estimateurs un équivalent
de leur risque quadratique et comparer les vitesses de
convergence, en probabilité, vers θ.

1.14 Loi demi-gaussienne : différents
estimateurs.

Soit X ∼N (0,σ2), où σ est un paramètre inconnu que
l’on va chercher à estimer. Soit (X1, ...,Xn) un
n-échantillon de X. On note Y = |X| et Yi = |Xi |. On pose
également

Dn =
1

n

n∑

i=1
Yi et S2

n =
1

n

n∑

i=1
Y2

i (22)

Soit enfin Vn l’estimateur du maximum de
vraisemblance.

1°. Calculer E[Y] et V(Y).
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2°. Déduire de Dn un estimateur Tn , sans biais, de σ, puis
montrer que Tn converge en moyenne quadratique vers
σ. Déterminer la loi limite de Tn et construire pour σ un
intervalle de confiance asymptotique de niveau 1−α,
avec α ∈ [0,1[.

3°. Rappeler la loi de probabilité de S2
n , calculer son

espérance et sa variance. Démonter que

E[Sn] =σ

√
1−

1

2n
+o

(
1

n

)
(23)

En déduire une valeur approchée de V(Sn).

4°. Expliciter la vraisemblance de l’échantillon et en
déduire l’expression de Vn . Monter qu’il est
asymptotiquement sans biais et qu’il converge en
probabilité vers σ.

5°. Comparer Tn et Vn .

6°. Construire un intervalle de confiance de niveau 1−α

pour σ.

1.15 Durée de vie d’un système.

Un système fonctionne en utilisant deux machines de
types différents. Les durées de vie X1 et X2 des deux
machines suivent des lois exponentielles de paramètre
respectif λ1 et λ2. Les variables aléatoires X1 et X2 sont
supposées indépendantes.

1°. Soit X une variable aléatoire réelle. Montrer que

X ∼ E (λ) ⇒∀x > 0, P(X > x) = exp(−λx)

2°. Soit t ≥ 0. Calculer la probabilité pour que le système
ne tombe pas en panne avant la date t . En déduire la loi
de la durée de vie Z du système. Calculer la probabilité
pour que la panne du système soit due à une défaillance
de la machine 1.

3°. On dispose de n systèmes identiques et fonctionnant
indépendamment les uns des autres, et dont on observe
les durées de vie Z1, . . . ,Zn .

a. Écrire le modèle statistique correspondant et la
vraisemblance associée. Le paramètre bidimensionnel
(λ1,λ2) est-il identifiable?

b. Supposons que l’on observe à la fois les durées de vie
des systèmes et la cause de la défaillance (machine 1 ou
2), notée Ti . Écrire la vraisemblance associée au nouveau
modèle statistique. Le paramètre bidimensionnel (λ1,λ2)
est-il identifiable?

Dans cette question, on considère un seul système
utilisant une machine de type 1 et une machine de type
2, mais on suppose que l’on dispose d’un stock n1 de
machines de type 1, de durées de vie X1

1, ...,Xn1
1 et d’un

stock de n2 machines de type 2, de durées de vie
X1

2, ...,Xn2
2 . Quand une machine tombe en panne, on la

remplace par une machine de même type, tant que le
stock correspondant n’est pas épuisé. Quand cela arrive,
on dit que le système tombe en panne. On note toujours

Z la durée de vie du système. Le cas n1 = n2 = 1
correspond donc à la première question (pas de stock).

a. Donner la loi de la somme de n variables aléatoires
i.i.d. de loi exponentielle de paramètre λ> 0.

b. Écrire Z en fonction des Xi
j
, j = 1,2, i = 1, ...,n j et en

déduire P[Z ≥ t ]., en fonction de t ,n1,n2,λ1,λ2.

On note N le nombre de machines (des deux types
confondus) sorties du stock quand le système tombe en
panne et Z0 la durée écoulée avant la première panne
d’une machine. On note Zi la durée écoulée entre la
i -ème panne et la (i +1)-ième panne. La durée de vie
totale du système est donc :

Z =
N∑

i=0
Zi (24)

La (N+1)-ème panne est donc la panne fatale au
système.

c. Montrer que les variables Zi sont i.i.d. et donner leur
loi. On pourra utiliser (après l’avoir démontré et
interprété) le résultat suivant : si X est une variable
aléatoire de loi exponentielle de paramètre λ> 0, alors

∀s, t ≥ 0, P[X ≥ s + t |X ≥ s] =P[X ≥ t ] = e−λt (25)

d. Préciser l’ensemble des valeurs possibles pour la
variable N et en donner la loi.

e. Montrer que N et Zi sont indépendantes. Calculer
E[Z|N] en fonction de N,λ1,λ2 et en déduire l’expression
de E[Z] en fonction de E[N], λ1 et λ2.

1.16 Loi exponentielle : différents
estimateurs.

Soit (X1, ...,Xn) un n-échantillon de loi exponentielle de
paramètre 1/θ.

1°. Expliciter le modèle.

2°. Estimer θ par la méthode du maximum de
vraisemblance. Quelles sont les propriétés non
asymptotiques et asymptotiques de l’estimateur ?

3°. Proposez un estimateur de θ par la méthode des
moments.

4°. Soit Z le nombre d’observations de l’échantillon qui
sont supérieures ou égales à 2. Déterminez la loi de Z et
déduisez-en un estimateur dont vous étudierez la
convergence.

1.17 Loi de Cauchy : différents estimateurs.

Soit (X1, ...,Xn) un n-échantillon de loi de Cauchy de
densité

fθ(x) =
1

π
×

1

1+ (x −θ)2 (26)

1°. On veut estimer θ par la moyenne empirique. Est-ce
un bon estimateur ?

2°. Proposez un estimateur de θ par la méthode des
moments.
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3°. Proposez un estimateur plug-in de θ à partir de la
médiane de l’échantillon.

4°. Étudiez l’estimateur du maximum de vraisemblance
de θ. Existe-t-il une solution explicite? Comment peut-on
établir sa consistance? Sa vitesse de convergence?

Soit Yn la v.a. représentant le nombre d’observations de
l’échantillon négatives ou nulles. On pose également
p(θ) =Pθ[X1 ≤ 0].

5°. Déterminer le modèle image par Yn et en déduire un
estimateur pn de p = p(θ).

6°. Proposez ensuite un estimateur de θ à partir de pn .
Étudiez ses propriétés asymptotiques.

1.18 Comportement asymptotique de la
variance empirique.

Soient (X1, . . . ,Xn) un n-échantillon d’une variable
aléatoire X, telle que E[X4] <∞ (on notera µ= E[X],
σ2 =V(X) et V=V((X−µ)2)). On considère les
statistiques suivantes :

Xn =
1

n

n∑

i=1
Xi

Vn =
1

n

n∑

i=1
(Xi −µ)2

S2
n =

1

n

n∑

i=1
(Xi −Xn)2

On notera que Vn est la variance empirique dans le cas
où l’espérance est connue mais est incalculable. Le but
de l’exercice est de montrer que Vn et S2

n ont le même
comportement asymptotique.

1°. Montrer que

p
n

(
Vn −σ2)

 N (0,V)

2°. Montrer que S2
n = 1

n

∑n
i=1 X2

i
−X

2
n

3°. Montrer que S2
n

P−−−−→
n→∞

σ2.

4°. On suppose E[X] = 0, quitte à travailler sur les
variables centrées. Montrer, grâce au théorème de
Slutsky, que

p
n

(
S2

n −σ2)
 N (0,V)

5°. En travaillant sur le TCL appliqué au couple aléatoire

(Xn ,X2
n) et en utilisant la delta-méthode, retrouver le

résultat précédent.

6°. Construire un intervalle de confiance à 95% pour σ2.

1.19 Modèle à variable cachée.

On considère un ensemble de n individus donnés, au
sein d’une population. À chacun de ces n individus est
envoyé un questionnaire, sur lequel il est demandé
d’indiquer depuis combien de temps l’individu n’est pas

tombé malade (sans compter une éventuelle maladie
actuelle). On modélise cette durée par une variable
aléatoire Xi , de loi exponentielle de paramètre inconnu
θ. Cependant, tous les individus ne renvoient pas le
questionnaire. Pour chaque individu i , on considère une
variable aléatoire Zi , non observée, qui prend la valeur 1
si l’individu i a répondu au questionnaire, et la valeur 0
sinon. On suppose que pour chaque individu i , les
variables Xi et Zi sont indépendantes, et que les couples
(X1,Z1), . . . , (Xn ,Zn) sont i.i.d. On note p le paramètre
(inconnu) de la loi de Bernoulli des Zi .

On suppose qu’après un traitement informatique des
réponses obtenues, on observe les variables
Yi = Zi Xi + (1−Zi )a, i = 1, . . . ,n où a est un réel positif
donné, arbitraire. En particulier, si l’individu i n’a pas
répondu au questionnaire, la valeur a est observée. On
notera Pθ,p la mesure de probabilité associée à la loi
d’une observation.

1°. Montrer que Pθ,p est absolument continue
par-rapport à µ= δa +λ, où δa est la mesure de Dirac en
a et λ est la mesure de Lebesgue sur R. Calculer la densité
de Pθ,p par-rapport à µ.

2°. Ecrire le modèle statistique associé aux observations
(Y1, . . . ,Yn) et calculer la vraisemblance du modèle par
rapport à la mesure dominante µ.

3°. Le couple (p,θ) est-il identifiable?

1.20 Processus de Poisson.

Soient τ1, ...,τn n v.a.i.i.d. de loi exponentielle de
paramètre θ. Soit Tn = τ1 + ...+τn et

Nt =
∑

n≥1
1[Tn≤t ] = inf{n : Tn > t } (27)

t ≥ 0, θ> 0, n ∈N
∗.

1°. Déterminer la loi de Tn et celle de Nt .

2°. Soit T(t )
0 = 0 et T(t )

n = TNt+n . Monter que les variables

aléatoires
(
T(t )

n+1 −T(t )
n

)
n≥1

sont des v.a.i.i.d. de loi

exponentielle de paramètre θ.

On appelle processus de Poisson un processus de
comptage (Xt )t≥0 stationnaire et à accroissements
indépendants, c’est à dire tel que :

• Xt+s −Xs a même loi que Xt , ∀s, t ≥ 0.
• Xt+s −Xt indépendant de (Xu)u≤s , ∀s, t ≥ 0.

3°. Démontrer que (Nt )t≥0 est un processus de Poisson.

On souhaite estimer l’intensité θ d’un processus de
Poisson, de deux manières différentes.

4°. On suppose que l’on a observé le processus jusqu’au
temps t . Calculer la vraisemblance de l’observation et la
valeur θ̂ de θ qui maximise cette vraisemblance. Montrer
que θ̂ est un estimateur sans biais de θ. En remarquant
que

Nt = Nt −N[t ] +
[t ]−1∑

i=1
(Ni+1 −Ni ) (28)
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Montrer que

Nt

t

t→+∞−→
P−p.s.

θ (29)

puis que
√

t

θ

(
Nt

t
−θ

)
t→+∞
 N (0,1) (30)

5°. On suppose que l’on observe uniquement le n-ième
instant. Calculer la vraisemblance de cette observation et
en déduire que l’estimateur du maximum de
vraisemblance est n/Tn . En remarquant que
Tn =

∑n−1
i=1 (Ti+1 −Ti ), montrer que

n

Tn

n→+∞−→
P−p.s.

θ (31)

puis que

p
n

(
θ

Tn

n
−1

)
n→+∞
 N (0,1) (32)

1.21 Taux de hasard d’un processus.

On considère des temps d’arrivées (moments
d’occurrence d’un phénomène, par exemple).
0 = T0 < T1 < T2 < . . . et Xi := Ti −Ti−1, i ≥ 1, les durées
inter-arrivées correspondantes. On parle d’un processus
de renouvellement quand les Xi sont i.i.d. Dans ce cas,
on suppose alors que les Xi admettent une densité f (x)
et l’on note F(x) leur fonction de répartition et
R(x) = 1−F(x) leur fonction de survie. On s’intéresse au
taux de hasard (hazard rate) définit par

B(x) =
f (x)

1−F(x)
(33)

On souhaite estimer B(x) pour x ∈]0,+∞[.

1°. Exprimer B(x) en fonction de R(x) et montrer que

P[x < X ≤ x +h]

P[X > x]
= B(x)h +o(h) (34)

2°. En déduire une interprétation de B(x).

On suppose à partir de maintenant que les Xi sont i.i.d.
de loi exponentielle de paramètre θ et l’on considère les
deux schémas d’observation suivants :

Schéma d’observation 1 : on observe les n premières
arrivées, (Xi ;1 ≤ i ≤ n).

Schéma d’observation 2 : On observe les arrivées jusqu’à
un temps T > 0 donné,

(NT ; Xi ;1 ≤ i ≤ NT) avec NT :=
∞∑

i=1
1[Ti≤T]

3°. Définir les deux modèles statistiques correspondant.

4°. Calculer B(x) et interpréter le résultat.

5°. Pour le schéma 1, construire l’estimateur du
maximum de vraisemblance B̂1 de B et expliciter la
vitesse de convergence de son risque quadratique
lorsque n →+∞.

6°. On se place dans le schéma 2. Quelle est la loi de NT ?
Écrire la vraisemblance et trouver un estimateur B̂2 de B.

7°. On pose

B̃2 =
(

1

NT

NT∑

i=1
Xi

)−1

(35)

Interpréter cet estimateur et expliciter la vitesse de
convergence de son risque quadratique quand T →+∞.

8°. En déduire la vitesse de convergence de B̂2 quand
T →+∞.

1.22 Sondages et estimateur de
Horvitz-Thompson.

On considère une population U = {1, ...,k, ...,N}. Un
sondage aléatoire consiste à sélectionnner dans U dans
un certain nombre d’individus, avec ou sans remise.
Dans toute la suite de cet exercice, nous supposerons que
la sélection se fait sans remise. Un échantillon s est donc
un sous-ensemble de U. On appelle plan de sondage,
une probabilité sur l’ensemble S de tous les échantillons
s possibles, obtenus à partir de la population U.

On notera S un échantillon aléatoire, c’est à dire une
variable aléatoire à valeurs dans S et l’on notera

p(s) =P[S = s] (36)

La taille n(S) = card(S) d’un échantillon aléatoire est une
variable aléatoire.

On définit les variables aléatoires de Cornfield (1944)
par : quelque soit k ∈ U,

δk =1[k∈S] (37)

et l’on définit les probabilités d’inclusion simples et
doubles par : quelques soient k, l ∈ U,

πk =P[k ∈ S] =
∑

s∈S :k∈s

p(s) (38)

πk,l =P[k ∈ S; l ∈ S] (39)

1°. Démontrer que pour un échantillon sans remise, de
taille fixe n (on parle alors de sondage aléatoire simple),
on a

∑

k∈U
πk = n (40)

2°. Calculer E[δk ], E[δkδl ], V(δk ) et ∆kl = cov(δk ,δl ).

3°. En déduire que
∑

k,l∈U:k 6=l

πk,l = n(n −1) et
∑

k∈U
∆kl = 0 (41)

On considère un caractère x que l’on souhaite mesurer
dans la population. Ce caractère va être estimé à partir
des valeurs qu’il prend dans l’échantillon. On peut donc
considérer que x est la réalisation d’une variable
aléatoire X définie sur U. On notera T (pour total) la
statistique

T =
∑

k∈U
Xk (42)

Le paramètre θ que l’on va estimer est donc le nombre
réel (déterministe) θ= t =

∑
k∈U xk . En 1952, Horvitz et
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Thompson ont proposé l’estimateur suivant pour
estimer la somme T

T̂(X) =
∑

k∈S

Xk

πk
(43)

4°. Qu’est-ce qui est aléatoire dans la formule
précédente? Interpréter cet estimateur.

5°. Démontrer que si πk > 0 ∀k, alors T̂(X) est sans biais.

6°. Démontrer que

V
(
T̂(X)

)
=

∑

k∈U

∑

l∈U

Xk Xl

πkπl
∆kl (44)

7°. Montrer que si le plan de sondage est de taille fixe, on
a également la formule de Yates-Grundy (1953) suivante :

V
(
T̂(X)

)
=−

1

2

∑

k,l∈U:k 6=l

(
Xk

πk
−

Xl

πl

)2

∆kl (45)

8°. Dans la population U = {1,2,3} dans laquelle on
définit le plan de sondage p({1,2}) = 1/2, p({1,3}) = 1/4 et
p({2,3}) = 1/4, on considère une variable X définie sur U
par x1 = x2 = 3 et x3 = 6 dont on veut estimer le total T.

Déterminer les probabilités d’inclusion simples et
doubles, donner la distribution de l’estimateur de
Horvitz-Thompson T̂, calculer la variance de cet
estimateur. Donner la distribution de probabilité
d’un estimateur de la variance de T̂.

1.23 Estimateur du coefficient de corrélation
empirique.

Soit (X1,Y1), ..., (Xn ,Yn) un n-échantillon d’un vecteur
(X,Y) dont le coefficient de corrélation linéaire est noté ρ.
Le coefficient de corrélation empirique est par définition
égal à

ρn =

∑n
i=1

(
Xi −X

)(
Yi −Y

)

[∑n
i=1

(
Xi −X

)2
×

∑n
i=1

(
Yi −Y

)2
]1/2

(46)

où X et Y sont respectivement les moyennes empiriques
des Xi et des Yi .

1°. On suppose que X et Y ont des moments d’ordre 4.
Montrer que

p
n(ρn −ρ) N

(
0,c2)

(47)

où c est une constante à déterminer en fonction des
moments de X et Y.

2°. Si (X,Y) est gaussien, montrer que c = 1−ρ2.
Déterminer une fonction différentiable ψ dont la dérivée
vaut (1−ρ2)−1 et montrer que

p
n(ψ(ρn)−ψ(ρ)) N (0,1) (48)

3°. Si X et Y sont indépendants et gaussiens, montrer que
la densité de ρn est donnée par

f (t ) =
1
p
π

Γ
(

n−1
2

)

Γ
(

n−2
2

)
(
1− t 2)(n−4)/2

1]−1,1[(t ) (49)

Retrouver le résultat de la première question en
appliquant le théorème de Scheffé à la densité de

p
nρn .

1.24 Loi exponentielle et variable inobservée

On considère un n-échantillon X = (X1, ...,Xn) d’une
variable aléatoire dont la loi a pour densité :

f (x) = θe−θx
1[0,+∞[(x) (50)

avec θ> 0 paramètre inconnu. On suppose que les Xi ne
sont pas observés directement. La seule information
connue est le fait que Xi soit supérieur à 2 ou non. On
pose Yi =1[Xi>2] pour i = 1, ...,n et

Yn =
1

n

n∑

i=1
Yi . (51)

1°. Préciser la loi de Y1 ainsi que celle de nYn . Calculer
E[Y1] en fonction de θ.

On souhaite estimer le paramètre θ. On pose λ= e−2θ et

θ̂n =
{

− 1
2 lnYn si Yn > 0

0 sinon.
(52)

2°. Calculer P
[

Yn 6= 0
]

et en déduire

lim
n→+∞

P

[
Yn 6= 0

]
. (53)

3°. Démontrer que Yn converge presque sûrement vers λ
et que

p
n(Yn −λ) est asymptotiquement normal.

Préciser la variance de la loi limite en fonction de θ.

4°. Expliquer pourquoi Yn est différent de 0, presque
sûrement, lorsque n suffisamment grand.

5°. Démontrer que θ̂n est fortement consistant et
asymptotiquement normal. Préciser la variance de la loi
limite en fonction de θ.

1.25 Loi exponentielle : estimation d’un
couple de paramètres

Dans tout cet exercice, n est un entier naturel non nul.
Soient θ≥ 0, β> 0 et f la fonction définie sur R par

f (x) =





1

β
e
−

x −θ

β si x ≥ θ,

0 sinon.

(54)

Soit (X1, ...,Xn) un n-uplet de variables aléatoires réelles
mutuellement indépendantes et identiquement
distribuées, dont la loi a pour densité f .

1°. Vérifier que f est une densité d’une loi de probabilité.

2°. Calculer E[X1] et V(X1) en justifiant leur existence.

3°. On pose Yn = min(X1,X2, ...,Xn). Déterminer une
densité de Yn . Calculer son espérance et sa variance.

4°. Yn est-il un estimateur sans biais de θ?
Asymptotiquement sans biais ?

5°. Déduire des questions précédentes l’erreur
quadratique moyenne E

[
(Yn −θ)2

]
.

La suite (Yn)n converge-t-elle dans L2 ? En probabilité?.
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Soient Sn =
n∑

i=1
Xi et Zn =

1

n
Sn −Yn .

6°. Calculer E[Zn]. Zn est-il un estimateur sans biais de β?
Asymptotiquement sans biais ?

7°. Calculer V(Zn) en fonction de cov(Sn ,Yn) et montrer
que V(Zn) tend vers zéro quand n tend vers l’infini. La
suite (Zn)n converge-t-elle dans L2 ? En probabilité?

8°. Démontrer que le couple (θ̂n , β̂n) donné par




θ̂n =
1

n −1

(
nYn −

Sn

n

)

β̂n =
1

n −1
(Sn −nYn)

(55)

est un estimateur sans biais du couple (θ,β). Calculer la
variance de θ̂n et celle de β̂n .

9°. Démontrer que
p

n

β

(
Sn

n
− (θ+β)

)
(56)

converge en loi vers une variable aléatoire dont on
précisera la loi.

10°. Soit

Tn =
p

n

β
(Yn −θ) . (57)

Déterminer une fonction de densité de Tn et étudier la
convergence en probabilité de Tn .

11°. Démontrer que
p

n

β

(
Zn −β

)
(58)

converge en loi vers une variable aléatoire dont on
précisera la loi.

On suppose θ connu et l’on souhaite à nouveau estimer
β. Soit Vi la variable aléatoire définie par Vi = 1 si
Xi ≥ θ+1 et 0 sinon. On note Vn la moyenne empirique
des Vi .

12°. Déterminer la loi de
∑n

i=1 Vi en précisant ses

paramètres. Démontrer que Vn est un estimateur de
ψ(β), où ψ est une fonction à préciser. En déduire un
estimateur de β, fonction de Vn .

1.26 Loi puissance

On considère un n-échantillon X1, ...,Xn d’une v.a. X dont
la loi a pour densité

f (x) =
1

2
p

xθ
1]0,θ](x) (59)

où θ> 0 est un paramètre que l’on souhaite estimer. On
note X la moyenne empirique de l’échantillon.

1°. Montrer que la fonction de répartition de X est,
quelque soit x ∈]0,θ],

F(x) =
√

x

θ
(60)

2°. Calculer la vraisemblance L(x1, ..., xn ,θ) du
n-échantillon.

3°. Déterminer l’estimateur du maximum de
vraisemblance de θ. Le modèle est-il régulier ?

4°. On pose

θ̂1 = X(n) =
n

max
i=1

Xi (61)

Déterminer la fonction de répartition Fn de θ̂1 et montrer
que sa densité est donnée par

fn(x) =
n

2θn/2
x(n−2)/2

1]0,θ](x) (62)

5°. Démonter que θ̂1 est biaisé, mais asymptotiquement
sans biais. Calculer son risque quadratique et étudier la
consistance de cet estimateur.

6°. Démontrer que n
(
θ̂1 −θ

)
converge en loi, quand n

tend vers l’infini, vers une loi de densité

h(x) =
1

2θ
exp

( x

2θ

)
1]−∞,0](x) (63)

Expliquer pourquoi θ̂1 n’est pas asymptotiquement
normal.

7°. Calculer Eθ[X] et démontrer que l’estimateur des
moments de θ est θ̂2 = 3X.

8°. Démontrer que θ̂2 est un estimateur sans biais de θ et
que

Vθ(θ̂2) =
4θ2

5n
(64)

En déduire que cet estimateur est consistant et que

p
n

(
θ̂2 −θ

)
 N

(
0,

4θ2

5

)
(65)

9°. Déterminer la limite en loi de la suite de v.a.

p
n

(p
5

2
ln(3X)−

p
5

2
lnθ

)
(66)

1.27 Loi binomiale négative et loi de Pascal :
estimations de paramètres

Dans tout cet exercice, n est un entier naturel non nul.
On considère une suite de v.a.i.i.d. (Xn)n≥1 de loi de
Bernoulli de paramètre p ∈]0,1[. On notera q = 1−p.
L’événement [Xn = 1] représente un succès au n-ième
tirage.

1°. Soit Y la variable aléatoire égale au nombre de tirages
nécessaires avant d’obtenir un premier succès.
Démontrer que

∀k ≥ 1, P[Y = k] = qk−1p.

Déterminer l’expression de l’espérance E[Y] et de la
variance V(Y) de Y, en fonction de p et q .

2°. On considère deux v.a. indépendantes Y1 et Y2 de
même loi géométrique de paramètre p. On note
S = Y1 +Y2. Démontrer que
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∀n ≥ 2, P[S = n] = (n −1)p2qn−2.

3°. Déterminer la probabilité conditionnelle
P[Y1 = k|S = n]. Interpréter le résultat.

On note Sn = X1 + ...+Xn la somme des n premiers
tirages et Tn le nombre de tirages nécessaires pour
obtenir n succès. On dit que Tn suit une loi de Pascal de
paramètres n et p.

4°. Reconnaître la loi suivie par Sn , puis démontrer que
pour tout k ≥ n,

[Tn = k] = [Sk−1 = n −1]∩ [Xn = 1].

5°. En déduire que

∀k ≥ n, P[Tn = k] =
(

k −1
n −1

)
pn qk−n .

6°. On pose Y1 = T1 et pour tout i ≥ 2, Yi = Ti −Ti−1.
Montrer que les (Yi )i forment une suite de variables de
loi géométrique de paramètre p. Montrer qu’elles sont
mutuellement indépendantes et que

Tn = Y1 + ...+Yn .

7°. Déterminer E[Tn] et V(Tn).

8°. On note Vn le nombre d’échecs dans la séquence (Xi )i

nécessaires avant d’obtenir n succès. On dit que Vn suit
une loi binomiale négative de paramètres n et p.
Démontrer que pour tout n ≥ 1, Vn et Tn sont liées par la
relation suivante :

Tn = Vn +n.

En déduire que

∀k ≥ 0, P[Vn = k] =
(

k +n −1
k

)
pn qk .

On considère un couple de v.a. (X,Λ) dont la loi
conditionnelle de X sachant [Λ= λ] suit une loi de
Poisson de paramètre λ> 0. On suppose que Λ suit une
loi gamma γ(n,θ) de paramètres n ∈N

∗ et θ> 0, dont la
densité g est définie par

∀t > 0, g (t ) =
t n−1

Γ(n)θn
e−t/θ, (67)

et Γ est la fonction Gamma d’Euler, définie pour z > 0 par

Γ(z) =
∫+∞

0
t z−1e−t d t . (68)

On dit que la loi de X est un mélange Poisson-Gamma.

9°. Démontrer que la densité jointe du couple (X,Λ)
s’écrit :

∀λ> 0, ∀k ≥ 0, f (k,λ) =
λn+k−1

k ! Γ(n) θn
e−λ(1+1/θ). (69)

Déterminer et reconnaître la loi marginale de X en
précisant ses paramètres.

10°. Démontrer que

E

[
n −1

Tn −1

]
= p et E

[
n

Tn

]
> p,

après avoir justifié de l’existence de ces espérances.

11°. On suppose p inconnu et on souhaite l’estimer à
partir des observations. Démontrer que la suite de v.a.
(n/Tn)n converge en probabilité et préciser sa limite. En
déduire un estimateur p̂ de p. Est-il biaisé? Proposer un
estimateur p̃ non biaisé.

1.28 Convergences en loi et en probabilité de
suites de v.a.

Soit θ un réel strictement positif. Toutes les variables
aléatoires sont définies sur un même espace probabilisé
(Ω,F ,P). Soit (Xn)n≥1 une suite de variables aléatoires
réelles, mutuellement indépendantes, de même loi
uniforme sur le segment [−θ

p
3,θ

p
3]. Pour n ≥ 1, on

pose :

Sn = X2
1 + ...+X2

n , Tn =

√
Sn

n
,

Un =
p

n(Tn −θ), Vn =
p

n

2θ
(T2

n −θ2).

1°. Justifier le fait que X1 possède des moments d’ordre 4,
puis calculer E[X4

1] et V(X2
1).

2°. Démontrer que (Sn/n)n converge en probabilité vers
θ2 et en déduire que (Tn)n converge en probabilité.
Préciser sa limite.

3°. Montrer que (Vn)n converge en loi vers une variable
aléatoire Z suivant une loi normale centrée et de variance
θ2/5.

4°. Démontrer que pour tout a réel non nul fixé,

∀x ∈R tel que x 6= −a, x −a =
x2 −a2

2a
−

(x2 −a2)2

2a(x +a)2 .

5°. Montrer que Un = Vn −Wn où Wn est une variable
aléatoire vérifiant, pour tout n ≥ 1,

0 ≤ Wn ≤
p

n

2θ3

(
T2

n −θ2)2
.

6°. Montrer que

lim
n→+∞

E[Wn] = 0,

puis que (Wn)n converge vers 0 en probabilité.

Une fonction f : R−→R est à support compact s’il existe
un intervalle K = [α,β] ⊂R tel que pour tout x ∉ K,
f (x) = 0.

On rappelle qu’une suite de variables aléatoires réelles
(Un)n converge en loi vers une variable aléatoire réelle U
si, et seulement si, pour toute fonction f continue sur R
et à support compact, on a

lim
n→+∞

E
[
| f (Un)− f (U)|

]
= 0.

7°. Soit f une fonction continue sur R, à support compact
K. Démontrer l’existence de
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M = sup
x∈R

| f (x)|.

8°. Soit ǫ> 0. Démontrer qu’il existe δ> 0 tel que

E
[
| f (Un)− f (Vn)|

]
≤

ǫ

2
+2M×P[|Wn | ≥ δ].

9°. En déduire que

lim
n→+∞

E
[
| f (Un)− f (Vn)|

]
= 0.

10°. En déduire que (Un)n converge en loi vers une
variable aléatoire U dont on donnera la loi.

1.29 Analyse statistique d’un réseau social :
estimation du nombre d’amis dans
facebook.

2 Information, exhaustivité,
optimalité

2.1 Exemples de statistiques exhaustives.

Dans chaque question, (X1, ...,Xn) un n-échantillon
d’une va X dont la loi est donnée. On cherche à
déterminer une statistique exhaustive.

1°. X est une va de loi uniforme sur [0,θ]. Déterminer une
statistique exhaustive pour θ. Montrer qu’elle est
complète. Est-elle admissible? Efficace?

2°. X est une va de loi exponentielle de paramètre λ.
Démontrer que

∑
Xi est une statistique exhaustive pour

λ.

3°. X est une va de loi de Poisson de paramètre θ.
Démontrer, de trois façons différentes, que S =

∑n
i=1 Xi

est une statistique exhaustive minimale pour θ.
Démontrer que deux façons différentes qu’elle est
complète.

4°. X ∼N (m,σ2). Soient X la moyenne empirique et
S =

∑n
i=1 X2

i
la somme des carrés. Soit T = (X,S). Montrer

que T est une statistique exhaustive pour le couple
(m,σ2).

5°. Soit θ> 0 et X une variable aléatoire de densité

f (x,θ) =
θeθx

eθ
2 −1

1[0,θ](x) (70)

La statistique S =
∑n

i=1 Xi est-elle exhaustive?

2.2 Variables inobservées.

On dispose d’observations binaires (Y1, . . . ,Yn) i.i.d. qui
dépendent d’un phénomène sous-jacent. On modélise
cela par des variables aléatoires (Y∗

1 , . . . ,Y∗
n ) inobservées

qui sont des tirages i.i.d. suivant une loi normale (m,σ2).
On a donc :

∀i , Yi =
{

1 si Y∗
i
> 0

0 si Y∗
i
≤ 0

Y∗
i
∼ N (m,σ2)

1°. On note Φ la fonction de répartition de la loi N (0,1).
Exprimer la loi de Yi en fonction de Φ.

2°. Ecrire le modèle statistique associé aux observations
(Y1, . . . ,Yn).

3°. Montrer que le couple (m,σ2) n’est pas identifiable.
Quel paramètre peut-on identifier ? Ce paramètre est
noté θ. Réécrire le modèle statistique, avec θ comme
nouveau paramètre d’intérêt.

4°. Trouver une statistique exhaustive et complète.

2.3 Procédé de capture / recapture.

On veut compter le nombre θ de poissons dans un lac
fermé. Pour cela, on tire un poisson au hasard, on le
marque et on le remet dans le lac. On tire un second
poisson. S’il est déjà marqué, on en prend note et on le
remet dans le lac. Sinon, on le marque à son tour et on le
remet dans le lac. Et ainsi de suite.

On tire n poissons selon la procédure ci-dessus. Au
n-ième tirage, l’observation consiste en une variable
aléatoire Yn qui vaut 1 si le poisson est déjà marqué, 0
sinon. Par définition, on a Y1 = 0. Le but de l’exercice est
de montrer que :

Rn =
n∑

i=1
Yi

est une statistique exhaustive pour θ.

1°. Montrer que :

P
[
Yn = yn , ...,Y1 = y1

]
=





P
[
Yn = yn |Yn−1 = yn−1, . . . ,Y1 = y1

]

× P
[
Yn−1 = yn−1|Yn−2 = yn−2, ...,Y1 = y1

]

...
× P

[
Y1 = y1

]

2°. Montrer que la loi conditionnelle de Yn sachant
Yn−1 = yn−1, . . . ,Y1 = y1 est une loi de Bernoulli de
paramètre :

n − rn−1 −1

θ

et en déduire que la vraisemblance est proportionnelle à :

n∏

i=1

(θ− i +1+ ri−1)1−yi

θ
(71)

3°. Montrer que l’expression précédente se reécrit :

1

θn−1

(θ−1)!

(θ−n + rn)!

4°. En déduire que Rn est une statistique exhaustive pour
θ.
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2.4 Information de Fisher.

Calculer, lorsqu’elle existe, l’information de Fisher dans
les modèles statistiques associés aux échantillons
suivants :

1°. Un échantillon de n v.a.i.i.d. de loi de Poisson de
paramètre λ :

P [X = k] = e−λ
λk

k !
pour k ∈N

2°. Un échantillon de n v.a.i.i.d. de loi de Pareto de
paramètres α et θ avec α> 1 et θ> 0, de densité :

f (x) =
α−1

θ

(
θ

x

)α
1[x≥θ]

3°. Un échantillon de n v.a.i.i.d. de loi de Weibull de
paramètres α et θ avec α> 0 et θ> 0 de densité :

f (x) =αθxα−1e−θxα

4°. Un échantillon de n v.a.i.i.d. de loi uniforme sur [0,θ]
avec θ> 0 inconnu.

2.5 Score.

On étudie une variable aléatoire réelle X, de densité
f (·,θ) où θ ∈R

d est un paramètre vectoriel inconnu, et f

est supposée connue, de classe C1 sur R×R
d .

1°. Quelle est le score du modèle, noté SX(x,θ) ? Donner
l’expression de l’information de Fisher IX(θ).

2°. Supposons que l’on ne parvient pas à observer X,
mais que seule est disponible la variable Y, définie par :

Y =1[X≥s]

où s est un seuil connu. En supposant que l’on peut
intervertir

∫
X

et ∂
∂θ , donner le score du nouveau modèle,

noté SY(y ;θ). En déduire que

SY(y ;θ) = E[SX(X;θ)|Y = y], y ∈ {0,1}.

3°. En déduire alors que IX(θ) >> IY(θ), où IY(θ) est
l’information de Fisher associée à Y. Cette inégalité
s’entend au sens des matrices symétriques réelles. Quelle
interprétation pourriez-vous donner à l’inégalité
ci-dessus, dans le cas où d = 1 ?

2.6 Estimation d’une fonction de survie.

On dispose de n observations indépendantes des durées
de vie de certains composants industriels. On suppose
que les variables aléatoires Y1, . . . ,Yn associées sont i.i.d.
de densité

f (t ) = θe−θt
1[t≥0] (72)

où θ> 0 est un paramètre inconnu. Soit F la fonction de
répartition de Y1. On cherche à estimer la fonction de
survie de Y1, c’est-à-dire F(t ) = 1−F(t ), à un instant t

donné et connu.

1°. Proposer un estimateur F̂(t ) qui soit sans biais et
convergent quelle que soit la loi des (Yi )i . Intuitivement,
cet estimateur est il optimal (parmi les estimateurs sans
biais)?

2°. Calculer F(t ) en fonction de t et θ.

3°. Calculer l’estimateur du maximum de vraisemblance
de θ et en déduire un estimateur convergent F̂(t ) de F(t ).

On admettra par la suite que F̂(t ) est biaisé.

4°. Calculer la loi limite de
p

n
(
F̂(t )−F(t )

)
.

5°. Soit T la variable aléatoire définie par :

T =1[Y1≥t ] (73)

On note par ailleurs S = Y1 + ...+Yn .

Déterminer la loi de Y1 conditionnellement à S. Calculer
T∗ = E[T|S]. Comment s’appelle cet estimateur ? Montrer
que T∗ est l’estimateur sans biais de F(t ) optimal (parmi
les estimateurs sans biais). T∗ est-il efficace?

2.7 Loi de Poisson : estimateur de la
probabilité que X = 0.

On s’intéresse à l’estimation de θ= e−λ =Pθ[X = 0] basée
sur un échantillon (X1, ...,Xn) de variables aléatoires i.i.d.
de loi de Poisson X ∼P (λ). On considère les trois
estimateurs suivants :





θ̂1 = e−X

θ̂2 = 1
n

∑n
i=11[Xi=0]

θ̂3 =
(
1− 1

n

)S
(74)

avec S =
∑n

i=1 Xi .

1°. Montrer que ces trois estimateurs sont convergents.

2°. Montrer que

E

[
θ̂2

∣∣∣
n∑

i=1
Xi

]
= θ̂3 (75)

2.8 Estimation par maximum de
vraisemblance

1°. Calculer l’estimateur du maximum de vraisemblance
(e.m.v.) p̂ de p dans le modèle Xi ∼ B(p) et calculer la loi
limite de

p
n

(
p̂ −p

)
.

2°. Calculer l’e.m.v. (m̂, σ̂2) de (m,σ2) dans le modèle
Xi ∼N

(
m,σ2

)
et donner la loi limite du vecteur

p
n

(
m̂ −m

σ̂2 −σ2

)
(76)

3°. Calculer l’e.m.v. (â, b̂) de (a,b) dans le modèle
Xi ∼U[a,b] d’une loi uniforme sur [a,b]. Donner la loi
limite du vecteur

n

(
â −a

b̂ −b

)
(77)
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2.9 Coordonnées polaires d’un vecteur
gaussien.

Soit (X1,X2) un 2-échantillon de loi N (0,σ2) où σ2 est un
paramètre inconnu. Soit (R,θ) le vecteur des
coordonnées polaires de (X1,X2) ; c’est à dire que
X1 = Rcosθ et X2 = Rsinθ.

1°. Préciser le modèle statistique, le modèle image par T.

2°. T(X) est-elle une statistique exhaustive? Complète?

3°. Montrer que R(X) est une statistive exhaustive par
deux méthodes différentes. Montrer qu’elle est complète.
Montrer que θ(X) est une statistique libre.

4°. Montrer que deux façons différentes que R et θ sont
indépendantes.

5°. Calculer l’information de Fisher du modèle.

2.10 Estimation du paramètre d’une loi de
Poisson.

On considère un n-échantillon X = (X1, ...,Xn) suivant
une loi de Poisson P (λ) de paramètre λ. On note
S =

∑n
i=1 Xi et s =

∑n
i=1 xi .

1°. Préciser le modèle statistique et calculer la
vraisemblance de l’échantillon.

2°. Montrer que S est une statistique exhaustive de
l’échantillon pour le paramètre λ. Montrer qu’elle est
complète pour λ.

3°. Déduire des questions précédentes un estimateur
sans biais de variance minimale (VUMSB) du paramètre
λ.

4°. Le modèle est-il régulier ? Si oui, calculer
l’information IX(λ) au sens de Fisher et en déduire un
estimateur efficace.

5°. On s’intéresse maintenant au paramètre θ= e−λ.
Quelle est la signification de θ? Démontrer que
θ̂1 = exp(X) est l’estimateur du maximum de
vraisemblance de θ et qu’il est biaisé.

6°. Soient Yi =1[Xi=0] . Montrer que Y1 est un estimateur
des moments de θ et qu’il est non biaisé.

7°. Déterminer la loi conditionnelle de Y1 sachant S. En
déduire l’estimateur VUSMB θ̂2 de θ.

8°. L’estimateur θ̂2 est-il efficace?

9°. On considère maintenant l’estimateur θ̂3 = Y, avec Y
moyenne arithmétique des Yi . Démontrer qu’il est
VUMSB et efficace pour θ.

2.11 Estimation du paramètre d’une loi
uniforme.

Soit X une variable aléatoire de loi uniforme sur [0,θ] et
(X1, ...,Xn) un n-échantillon de X.

1°. Déterminer une statistique exhaustive du modèle et
montrer qu’elle est complète.

2°. Expliquer pourquoi l’estimateur du maximum de
vraisemblance est fonction d’une statistique exhaustive
du modèle.

3°. Déduisez-en un estimateur θ̂ qui soit admissible pour
le risque quadratique parmi les estimateurs sans biais.

2.12 Maximumu de vraisemblance et
reparamétrisation.

Soit (X1, ...,Xn) un n-échantillon d’une variable aléatoire
X de densite

f (x,θ) = θ(1−x)α1[0,1](x) (78)

où θ> 0 est le paramètre inconnu.

1°. Déterminer α en fonction de θ et calculer la
vraisemblance du modèle.

2°. Déduisez-en un estimateur du maximum de
vraisemblance de θ et de 1/θ.

3°. Soit Zi =− ln(1−Xi ). Déterminer la loi des Zi . Précisez
si les estimateurs obtenus précédemment sont biaisés ou
non. Sont-ils UMVUE ?

4°. Calculer les bornes de Cramer-Rao associées à θ et
1/θ. Discuter l’efficacité des estimateurs.

2.13 Paradoxe de Basu

Exercice inspiré de Basu D.(1988) Stastical Information

and Likelihood, Springer-Verlag, N.Y.

Dans une urne contenant 1000 tickets, 20 sont marqués θ
et 980 sont marqués 10θ, où θ est un nombre rationnel
strictement positif.

1°. Donner l’estimateur du maximum de vraisemblance θ̂

de θ lorsque l’on tire un unique ticket de valeur X, et
montrer que P[θ̂= θ) = 0.98. Expliquer pourquoi on ne
pouvait supposer que θ était un réel quelconque pour
calculer un estimateur du maximum de vraisemblance.

2°. On renumérote les tickets marqués 10θ par aiθ

(1 ≤ i ≤ 980) où les ai sont des nombres rationnels
connus, deux à deux distincts, et compris dans
l’intervalle [10,10.1]. Donner le nouvel estimateur du
maximum de vraisemblance θ̃ et montrer que
P[θ̃< 10θ] = 0.02. Ce résultat vous semble-t-il paradoxal ?

2.14 Paramètres de position et d’échelle
d’une loi exponentielle

Soit f la densité de la loi exponentielle de paramètre
θ> 0, translatée de α ∈R,

f (x,α,θ) =
1

θ
exp

[
−

x −α

θ

]
1[α,+∞[(x) (79)

On considère un échantillon de n variables aléatoires
i.i.d. de densité f (x,α,θ), où θ> 0 et α ∈R sont des
paramètres inconnus.

1°. Donner l’e.m.v. (α̂n , θ̂n) de (α,θ).

2°. Calculer la loi de n(α̂n −α), pour n ∈N.
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3°. Déterminer la loi limite de
p

n(θ̂n −θ).

4°. Rappeler l’expression de la loi de la statistique d’ordre
X• = (X(1), . . . ,X(n)) en fonction de f . En déduire la loi du
n-uplet

(X(1),X(2) −X(1), . . . ,X(n) −X(n−1)) (80)

et en déduire que θ̂n et α̂n sont indépendants, pour n ∈N.

2.15 Loi de Weibull et modèle du taux de
chômage

On souhaite évaluer et analyser le phénomène du
chômage. Pour cela, on dispose de n observations sur les
durées yi ,1 ≤ i ≤ n, pendant lesquelles des individus
sont restés sans emploi.

On suppose dans la suite que les variables aléatoires
correspondantes (Yi )i∈J1,nK sont i.i.d. et suivent une loi
de Weibull de paramètres a et b. On rappelle que cette loi
est continue sur R+ et admet la fonction de répartition
pour y > 0

F(y ; a,b) = 1−exp
(
−ayb

)
(81)

On définit la fonction de survie par

S(y) = 1−F(y) (82)

1°. Donner l’expression de la fonction de hasard du
modèle.

2°. Quelle est en terme de chômage l’interprétation de la
fonction de hasard ? Expliquer alors pourquoi il est
important de considérer le cas particulier où cette
fonction est constante. Pour quelles valeurs des
paramètres, la fonction de hasard est-elle constante?
Quelles sont alors les lois des durées de chômage?

3°. Étudier l’évolution de la fonction de hasard en
fonction de a, puis en fonction de b.

On suppose que b = 1. Le modèle est alors uniquement
paramétré par a.

3°. Le modèle est-il exponentiel ? Si oui, expliciter une
statistique exhaustive.

4°. Déterminer le vecteur du score et vérifier directement
qu’il est centré.

5°. Quel est l’estimateur du maximum de vraisemblance
â0 de a ? Est-il sans biais, y a-t-il surestimation ou
sous-estimation systématique?

6°. Déterminer la variance asymptotique de cet
estimateur â0.

On considère maintenant le cas où a et b sont
quelconques (positives).

7°. Le modèle est-il exponentiel avec une statistique
exhaustive dont la taille est indépendante du nombre n

d’observations ? Si oui, expliciter une telle statistique.

8°. Ecrire les équations de vraisemblance. Sont-elles
résolubles sous forme analytique?

9°. Donner la forme de la variance asymptotique de
l’estimateur du maximum vraisemblance (â, b̂)′ du
paramètre (a,b)′.

10°. Comparer les estimateurs â et â0 lorsque b = 1.
Quelle conclusion en tirer ?

On considère maintenant le cas de T observations
Y1, . . . ,YT indépendantes, de lois respectives :

F(y ;eαt ,1) , t ∈ J1,TK , α ∈R (83)

11°. Déterminer la vraisemblance du modèle, et vérifier
qu’elle est concave en α à (y1, . . . , yT) fixé. En déduire
l’équation caractérisant l’estimateur du maximum de
vraisemblance α̂T de α.

12°. On note ut = yt −e−α̂T t . Donner l’interprétation de
ut .

13°. Montrer que l’équation de la vraisemblance
correspond à la condition d’orthogonalité de (u1, . . . ,uT)
et de 1, . . . ,T pour un certain produit scalaire que l’on
précisera.

2.16 Virus et variables inobservées

On considère une population de n individus infectés par
un virus ; on étudie leurs durées d’incubation (Ti )i=1..n ,
dont on suppose qu’elle est observable. Pour modéliser
l’hétérogénéité de la population, on suppose qu’on peut
caractériser chaque individu i par un « facteur de risque
» inobservable, réalisation de la variable aléatoire Λi , de
telle sorte que :

— La loi de Ti , conditionnellement à Λi , est la loi
exponentielle de paramètre Λi .

— Les variables (Λi )i=1..n sont identiquement
distribués de loi Γ(r,α), avec r > 2.

— les couples (Ti ,Λi ) sont indépendants entre eux.

1°. Donner la vraisemblance de (T1, . . . ,Tn).

2°. Calculer, lorsqu’il existe, le moment d’ordre k E[Tk
1 ].

3°. Calculer l’information de Fisher du modèle. Dans le
cas où α est connu, calculer l’estimateur du maximum de
vraisemblance de r . Que se passe-t-il si α et r sont tous
deux inconnus ?

4°. On suppose α connu. Déterminer au moyen de la
méthode des moments un estimateur convergent de r .
Cet estimateur est-il sans biais ? Est-il asymptotiquement
efficace?

5°. On suppose α et r inconnus. En utilisant les deux
premiers moments de Ti , trouver des estimateurs
convergents α̃ et r̃ de α et r . Donner la loi limite du
vecteur

p
n

(
T−E[T]

T2 −E[T2]

)
(84)

En déduire la loi asymptotique du vecteur (α̃, r̃ ).
13



2.17 Paramètres d’une loi de Laplace

Soit X une v.a. de densité

h(x) = k exp

(
−
|x −λ|

µ

)
(85)

où µ> 0, k > 0, λ ∈R.

1°. Déterminer k et donner la fonction de répartition de
X.

2°. On pose Y = (X−λ)/µ. Déterminer la densité de Y,
calculer E[X] et V(X).

3°. Soit (X1, ...,Xn) un n-échantillon de X. Déterminer des
estimateurs de λ et µ par la méthode du maximum de
vraisemblance, puis par la méthode des moments.
Étudier les propriétés de ces estimateurs.

4°. On suppose que λ= 0 et l’on pose σ= 1/µ. σ est
supposé aléatoire, de loi a priori γ(1,α). Si α est connu,
déterminer un estimateur bayésien de σ. Dans le cas
contraire, proposé un estimateur de α basé sur
l’échantillon (X1, ...,Xn).

2.18 Introduction à l’apprentissage
supervisé.

On considère un n-échantillon de v.a.i.i.d.
Dn = {Z1, ...,Zn} avec Zi = (Xi ,Yi ). Les Xi sont des
observations issues d’une v.a. X, ce sont les données que
l’on souhaite classer. Les Yi sont issues d’une v.a. Y et
sont les catégories auxquelles appartiennent les Xi (on
dit également étiquettes ou labels). L’objectif de
l’apprentissage supervisé est de déterminer au mieux la
catégorie Y à laquelle appartient la donnée X
correspondante, à partir des seules observations de
l’échantillon Z1, ...Zn .

On suppose que les v.a. X sont issues d’un espace X, que
les v.a. Y sont issues d’un espace Y et l’on se donne une
loi de probabilité (inconnue) P sur l’espace E =X×Y.

Une fonction de prédiction est un élément
g ∈F =F (X,Y) qui associe une étiquette à une
observation. Pour mesurer la qualité de g , on définit
différentes fonctions de perte l : Y2 −→R+ telles que
l (Y, g (X)) mesure l’écart entre la vraie valeur Y
correspondant à X et la valeur g (X) prédite à partir de la
fonction g . Le risque de g est la valeur moyenne des
réalisations de toutes les pertes possibles. Autrement dit,

R(g ) = RP(g ) = E
[
l (Y, g (X)

]
(86)

Le prédicteur de Bayes est l’élément g⋆ de F qui
minimise la perte R(g ).

Dans cet exercice, nous nous limitons au problème de
classification binaire, c’est à dire que Y ne peut prendre
que deux valeurs : 0 ou 1. La fonction de perte naturelle
associée est alors la fonction

l (Y,Y′) =1[Y 6=Y′] (87)

On note enfin

η(x) =P[Y = 1|X = x] = E[Y|X = x] (88)

Nous allons démontrer que

g⋆(x) =1[η(x)>1/2] (89)

1°. Montrer que

P[Y = g (X)|X = x] = (90)

η(x)1[g (x)=1] + (1−η(x))1[g (x)=0] (91)

2°. En déduire que

P[Y 6= g⋆(X)|X = x] ≤P[Y 6= g (X)|X = x] (92)

et conclure.

3°. Montrer que le risque de Bayes R⋆ = R(g⋆) vérifie

R⋆ = E[η(X)∧ (1−η(X))] (93)

=
1

2

(
1−E[|2η(X)−1|]

)
(94)

avec x ∧ y = inf(x, y).

4°. Montrer de façon plus générale que quelque soit la
fonction f de X dans R, η(X) minimise l’erreur
quadratique lorsque f (X) prédit Y. C’est à dire, montrer
que

E
[
(η(X)−Y)2]

≤ E
[
( f (X)−Y)2]

(95)

5°. On prédit la réussite d’un étudiant à un examen en
fonction du nombre d’heures X passées à travailler. Y = 1
signifie que l’étudiant réussit son examen. On suppose
que

η(x) =
x

x + c
(96)

où c > 0. Si X suit une loi uniforme sur [0,4c], calculer R⋆.

2.19 Famille exponentielle sous forme
naturelle

On considère un n-échantillon X1, ...,Xn de X, v.a. de
carré intégrable et de densité

f (x,θ) = h(x)exp(θx −ψ(θ)) (97)

où θ ∈Θ⊂R, x ∈X, h(x) > 0 et ψ de classe C∞.

1°. Montrer que ψ vérifie

ψ(θ) = ln

(∫

X

h(x)eθx dµ(x)

)
(98)

où µ est une mesure dominante.

2°. Montrer que

ψ′(θ) = Eθ[X] et ψ′′(θ) =Vθ(X) (99)

3°. Déduire de la question précédente que ψ′ est
strictement croissante, puis qu’elle est inversible.

4°. Démontrer que l’e.m.v. θ̂n est un estimateur des
moments, dont on donnera l’expression.

5°. En déduire une preuve directe de la convergence et de
la normalité asymptotique de θ̂n .
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6°. Retrouver le fait que l’e.m.v. est asymptotiquement
efficace.

7°. Montrer qu’une loi a priori de la forme

π(θ) = C(a,λ)exp
(
aθ−λψ(θ)

)
(100)

pour des hyperparamètres a > 0,λ> 0, est conjuguée
pour le modèle.

8°. On suppose que X suit une loi de Poisson de
paramètre ν. Montrer que le n-échantillon
correspondant est bien un modèle exponentiel,
déterminer l’e.m.v. de θ et en déduire l’e.m.v. de ν.
Reconnaître la famille de loi a priori.

9°. On suppose que X suit une loi Gamma de paramètres
α (connu) et β (inconnu) :

f (x,β) =
Γ(α)

βα
xαe−βx

1[0,∞[(x) (101)

Calculer l’e.m.v. de β.

2.20 Loi binomiale négative

On considère un n-échantillon (X1, ...,Xn) de N, variable
aléatoire à valeurs entières de loi binomiale négative de
paramètres p ∈ [0,1] et r ∈N

∗ :

P[N = k] =
(

k + r −1
k

)
(1−p)r pk (102)

k ∈N. On rappelle que N mesure le nombre de lancers à
pile ou face avec probabilité de faire pile égale à p, avant
d’obtenir exactement r piles.

1°. Démontrer que

E[N] =
pr

1−p
et V(N) =

pr

(1−p)2 (103)

On suppose r fixé et connu et l’on cherche à estimer p.

2°. Proposer un estimateur des moments de p et donner
son comportement asymptotif.

3°. Montrer que le modèle est exponentiel.

4°. Calculer l’e.m.v. de p. Déduire des questions
précédentes l’information de Fisher du modèle (sans la
calculer).

5°. Montrer que l’e.m.v. est biaisé. Est-il néanmoins
possible d’en déduire un estimateur sans biais ?

Montrer que la famille des lois Béta dont la densité est
donnée par

f (t ) =
Γ(a +b)

Γ(a)Γ(b)
t a−1(1− t )b−1

1]0,1[(t ) (104)

pour a > 0,b > 0 est conjuguée pour ce modèle. Donner
la loi a posteriori correspondant à un a priori de type
Béta.

On cherche maintenant à estimer p et r .

6°. Peut-on estimer ce vecteur par maximum de
vraisemblance? Pourquoi ?

7°. On suppose maintenant que r est un réel positif et
l’on rappelle que les factorielles peuvent s’étendre aux
réels via la loi Gamma d’Euler en posant

(
k + r −1

k

)
=

Γ(k + r )

k !Γ(r )
(105)

Donner les équations de vraisemblance vérifiées par
l’e.m.v. de (p,r ). Admet-il une expression explicite?

2.21 Échantillon de Bernoulli : estimateurs
du carré du paramètre

On considère un n-échantillon X = (X1, ...,Xn) d’une v.a.
de loi de Bernoulli de paramètre inconnu θ ∈]0,1[.

On note Sn =
∑n

i=1 Xi .

1°. Expliquer succintement pourquoi le modèle est
régulier.

2°. Calculer la log-vraisemblance l (x,θ) de l’échantillon
et en déduire l’estimateur du maximum de
vraisemblance θ̂n de θ.

3°. Montrer que cet estimateur est fortement consistant
et converge en moyenne quadratique. Démontrer que θ̂n

est asymptotiquement normal et que
p

n
(
θ̂n −θ

)
 N (0,θ(1−θ)) (106)

4°. On s’intéresse maintenant au paramètre λ= θ2.
Démontrer que l’estimateur du maximum de
vraisemblance de λ est λ̂n = (Sn/n)2.

5°. Démontrer que λ̂n est biaisé et calculer son biais.

6°. Démontrer que λ̂n est fortement consistant,
asymptotiquement normal et préciser la loi limite dep

n(λ̂n −λ).

7°. Calculer l’information de Fisher associée à λ, puis
démontrer que λ̂n est asymptotiquement efficace.

8°. On cherche à construire un estimateur sans biais de λ.
Pour tout i = 1, ...,n, on note
X•i = (X1, ...,Xi−1,Xi+1, ...,Xn) le vecteur formé des (n −1)
observations différentes de la ième. On note λ̂n(i )
l’estimateur du maximum de vraisemblance du modèle
associé à X•i . Montrer que

λ̂n(i ) =
(

Sn −Xi

n −1

)2

(107)

9°. Calculer V(Sn −Xi ), en déduire E[(Sn −Xi )2], puis
démontrer que l’estimateur

Tn = nλ̂n −
n −1

n

n∑

i=1
λ̂n(i ) (108)

est sans biais pour λ.

2.22 Échantillon de Bernoulli : estimateurs
bayésiens du paramètre et de son carré

On considère un n-échantillon X = (X1, ...,Xn) d’une
variable aléatoire de loi de Bernoulli de paramètre
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θ ∈]0,1[. On note Sn =
∑n

i=1 Xi et X = Sn/n la moyenne
empirique de l’échantillon.

1°. Déterminer la vraisemblance du n-échantillon
X1, ...,Xn . Le modèle est-il exponentiel ?

2°. Déterminer un estimateur θ̂n de θ par la méthode du
maximum de vraisemblance, puis par la méthode des
moments. Que constatez-vous ?

3°. Montrer que cet estimateur est fortement consistant
et converge en moyenne quadratique. Démontrer que θ̂n

est asymptotiquement normal et déterminer la variance
de la loi limite.

4°. Déterminer un intervalle de confiance asymptotique
pour θ, de niveau 1−α.

5°. θ̂n est-il exhaustif ? Minimal ? Complet ?

6°. Le modèle est-il régulier ?

7°. Démontrer que θ̂n est un estimateur VUMSB (sans
biais de variance minimale) de θ.

8°. Calculer l’information de Fisher relative à θ et
montrer que θ̂n est un estimateur efficace de θ.

On considère que la loi a priori de θ est une loi bêta
B(a,b), avec a,b ∈ [0,1], dont la densité est donnée par

f (θ) =
Γ(a +b)

Γ(a)Γ(b)
θa−1(1−θ)b−1

1[0,1](θ) (109)

où Γ est la fonction Gamma d’Euler donnée par

Γ(a) =
∫+∞

0
xa−1e−x d x (110)

On rappelle que l’espérance d’une variable aléatoire H de
loi bêta est donnée par

E[H] =
a

a +b
(111)

9°. Déterminer la loi a posteriori de θ sachant [X = x]. En
déduire que l’estimateur de la moyenne a posteriori peut
s’exprimer au travers de la statistique Sn . Montrer que cet
estimateur est biaisé, mais asymptotiquement sans biais.

10°. On suppose n > 2. On souhaite estimer la valeur de
θ2. Démontrer que Y = X1X2 est un estimateur sans biais
de θ2. Démontrer que Tn = E[Y|Sn] est un estimateur
sans biais de variance minimale pour θ2.

11°. On se propose de calculer explicitement l’expression
de Tn . Calculer P[Y = 1|Sn = s] (on distinguera les cas
s < 2 et s ≥ 2). En déduire que

Tn =
Sn(Sn −1)

n(n −1)
1[Sn≥2]. (112)

2.23 Loi expontielle anglo-saxonne :
estimation non biaisée du paramètre
d’échelle

On considère un n-échantillon X = (X1, ...,Xn) d’une v.a.
de loi exponentielle de paramètre inconnu θ> 0.

On note S =
∑n

i=1 Xi et X = S/n la moyenne empirique de
l’échantillon.

1°. Déterminer l’estimateur des moments θ̂ de θ.

2°. Calculer la log-vraisemblance l (x,θ) de l’échantillon
et en déduire l’estimateur du maximum de
vraisemblance θ̂MV de θ, en fonction de X.

3°. Montrer que cet estimateur est fortement consistant.

4°. À l’aide des rappels, démontrer que

E

[
1

S

]
=

θ

n −1
(113)

et en déduire E[θ̂MV]. Déduire que l’estimateur
Tn = (n −1)/S est non biasé.

5°. En calculant E[1/S2] comme précédemment,
démontrer que

V(Tn) =
θ2

n −2
(114)

En déduire que Tn converge en moyenne quadratique.

6°. Démontrer que θ̂MV est asymptotiquement normal et
que

p
n

(
θ̂MV −θ

)
 N (0,θ2) (115)

7°. Déterminer une statistique exhaustive et complète
pour θ puis en en déduire que Tn est VUMSB pour θ.

8°. Expliquez pourquoi le modèle est régulier (on ne
justifiera que les propriétés évidentes sans calcul) et
calculer l’information de Fisher IX(θ) associée à θ pour
l’échantillon X = (X1, ...,Xn).

9°. Tn est-il un estimateur efficace? Asymptotiquement
efficace?

10°. On suppose maintenant que θ suit une loi a priori

Γ(α,β). Calculer la vraisemblance a posteriori du modèle
et reconnaître la loi de θ sachant les observations. À
partir de la moyenne a posteriori E[Π|X] déterminer un
estimateur bayésien de θ. Quelle est sa limite lorsque n

tend vers l’infini ?

2.24 Échantillon de Bernoulli : estimation
bayésienne des puissances du
paramètre

On considère un n-échantillon X = (X1, ...,Xn) d’une v.a.
de loi de Bernoulli de paramètre θ ∈]0,1[. On note X la
moyenne empirique de l’échantillon.

1°. Déterminer la vraisemblance du n-échantillon
X1, ...,Xn . Le modèle est-il exponentiel ? (2 points).

2°. Déterminer un estimateur θ̂ de θ par la méthode du
maximum de vraisemblance, puis par la méthode des
moments. Que constatez-vous ? (2 points).

3°. Montrer que θ̂ est fortement convergent, sans biais et
asymptotiquement normal. (3 points).

4°. Est-il exhaustif ? Minimal ? Complet ? (1 point).

5°. Le modèle est-il régulier ? (1 point).

6°. Démontrer que X est un estimateur VUMSB (sans
biais de variance minimale) de θ. (2 points).
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7°. Calculer l’information de Fisher relative à θ (1 point).

8°. Montrer que X est un estimateur efficace de θ. (1
point).

9°. On considère que la loi a priori de θ est une loi bêta
B(a,b), avec a,b ∈ [0,1], dont la densité est donnée par

f (θ) =
Γ(a +b)

Γ(a)Γ(b)
θa−1(1−θ)b−1

1[0,1](θ) (116)

où Γ est la fonction Gamma d’Euler donnée par

Γ(a) =
∫+∞

0
xa−1e−x d x (117)

On rappelle que l’espérance d’une v.a. H de loi bêta est
donnée par

E[H] =
a

a +b
(118)

Déterminer la loi a posteriori de θ sachant [X = x]. En
déduire que l’estimateur de la moyenne a posteriori peut
s’exprimer au travers de la statistique S =

∑n
i=1 Xi .

Montrer que cet estimateur est biaisé, mais
asymptotiquement sans biais. (2 points).

10°. On souhaite estimer, pour un entier k tel que
1 < k ≤ n, la valeur de θk . Démontrer que

Yk =
k∏

i=1
Xi (119)

est un estimateur sans biais de θk . Exprimer, sous la
forme d’une espérance conditionnelle, un estimateur
T = Tk,n(X) sans biais de variance minimale pour θk . (3
points).

11°. Démontrer que

Tk,n(X) =

(
n −k

S −k

)

(
n

S

) 1[S≥k] (120)

(
n

k

)
représente le nombre de combinaisons de k

éléments parmi n. (2 points).

2.25 Modèle de Hardy-Weinberg

Un modèle génétique des états attribue aux trois
génotypes aa (état 1), Aa (état 2) et AA (état 3) les
probabilités suivantes d’apparaître :





p1 = (1−θ)2

p2 = 2θ(1−θ)
p3 = θ2

(121)

où θ ∈ [0,1] est la proportion de l’allèle A dans la
population. On considère un échantillon de n

d’individus dans la population. On dénombre les effectifs
X1, X2 et X3 des génotypes dans l’échantillon.

1°. Montrer que (p1, p2, p3) définit une mesure de
probabilité sur X= {1,2,3}.

2°. On suppose que X = (X1,X2,X3) suit une loi
multinomiale M (n, p1, p2, p3). Décrire le modèle
statistique considéré.

3°. Quel est le modèle image par X1 ? En déduire le
modèle image par X2, puis X3. Montrer que X2 et X3 ne
sont pas indépendantes. Le modèle est-il dominé?

4°. Montrer que l’estimateur du maximum de
vraisemblance de θ est

θ̂=
X2 +2X3

2n
(122)

5°. Cet estimateur est-il de variance uniformément
minimale parmi les estimateurs sans biais ? Est-il
efficace?

6°. Déterminer l’estimateur du maximum de
vraisemblance de p = (p1, p2, p3). Est-il sans biais ?

2.26 Loi de Paréto et estimateur de Hill

Économiste et sociologiste italien né à Paris en 1848,
Vilfredo Pareto est à l’origine de la loi de probabilité que
nous allons présenter dans cet exercice. Alors titulaire de
la chaire d’économie politique de l’université de
Lausanne (il succède à Léon Walras), Pareto s’intéresse à
la distribution et à la répartition des revenus dans les
différents pays d’Europe.

Disposant des données fiscales pour la France,
l’Angleterre, la Suisse, l’Italie, la Russie et la Prusse, il
remarque que les inégalités de revenus varient fortement
d’un pays à l’autre, mais il met également en lumière une
régularité statistique remarquable, vérifiée dans tous les
pays pour lesquels il dispose de données. Dans son «
essai sur la courbe de la répartition de la richesse » publié
en 1896, il écrit : « nous indiquerons par x un certain
revenu, et par N le nombre de contribuables ayant un
revenu supérieur à x (...). Traçons deux axes (AB) et (AC).
Sur (AB) portons les logarithmes de x, sur (AC) les
logarithmes de N. Il ressort une relation tout à fait
linéaire. » De ce constat empirique, l’auteur en déduit la
relation mathématique suivante :

log(N) = B−α× log(x) ⇔ N =
A

xα
(123)

Avec B = log(A). Finalement, selon Pareto, le pourcentage
de la population dont la richesse est supérieure à une
valeur x est toujours proportionnelle à A÷xα. C’est le
paramètre α qui varie entre les différents pays et explique
des différences dans la distribution des revenus.

Aujourd’hui, la loi de Pareto est encore couramment
utilisée en économie ou en sociologie pour étudier les
inégalités de revenus dans nos sociétés. Elle a également
fait l’objet de multiples applications en gestion des
risques, actuariat, dans le domaine du management des
entreprises ou dans la gestion des flux de données sur
internet.

La densité d’une loi de Pareto P (α,c) est donnée par

f (x) =
αcα

xα+1
1[c,+∞[(x) (124)
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1°. Déterminer sa fonction de répartition.

2°. Calculer E[X] et V(X).

3°. Soit X = (X1, ...,Xn) un n-échantillon de Pareto. La
notation signifie « converge en loi lorsque n tend vers
l’infini ». On pose

F(x) =P[Xi ≤ x] (125)

∀ i = 1, ...,n. Si Mn = max(X1, ...,Xn) et si Fn est la fonction
de répartition de Mn , déterminer le lien entre Fn et F.

4°. Le théorème de Fisher-Tippett assure qu’il existe deux
suites mn et σn > 0 telles que

Mn −mn

σn
 H (126)

Où H suit une distribution de Gumbel, de Weibull ou de
Fréchet.

Démontrer que la loi de Pareto est dans le domaine
d’attraction de la loi de Fréchet, qui caractérise les
distributions à queues épaisses. Précisément, montrer,
en posant mn = 0 et σn = (nc)1/α que

Fn(xσn +mn) φ (127)

avec

φ(x) = exp(−x−α)1]0,+∞[(x) (128)

φ est la fonction de répartition d’une loi de Fréchet.

On peut paramétrer cette loi limite à l’aide d’un
paramètre γ qui est l’indice de la loi et caractérise
l’épaisseur de sa queue :

H(x) = exp
(
−(1+γx)−1/γ) (129)

γ= 1/α> 0 et 1+γx > 0.

Finalement, l’indice γ de la loi extrême relative à une loi
de Pareto est exactement le paramètre 1/α.

5°. Démontrer que l’estimateur de c par la méthode du
maximum de vraisemblance est

ĉ =
n

min
i=1

Xi (130)

et déterminer sa loi.

6°. On suppose maintenant c connu. Démontrer que
l’estimateur du maximum de vraisemblance de α est

α̂= α̂n =
(

1

n

n∑

i=1
ln

Xi

c

)−1

(131)

7°. Montrer que Yi = ln(Xi /c) suit une loi exponentielle
de paramètre 1/α.

8°. Déterminer la loi de

T =
n∑

i=1
ln

Xi

c
(132)

9°. Déterminer l’espérance et la variance de α̂ et en
déduire un estimateur sans biais α⋆ de α. Calculer sa
variance.

10°. Montrer que T est une statistique exhaustive et que
cette statistique est complète. En déduire que α⋆ est
l’estimateur VUMSB de α.

11°. Montrer que α̂ et α⋆ sont des estimateurs consistants
de α. Déterminer la loi limite de

p
n(α̂n −α) etp

n(α⋆
n −α).

12°. Montrer que l’estimateur des moments de α (lorsque
α> 2) est

α=αn =
X

X− c
(133)

où X est la moyenne empirique de l’échantillon. Calculer
la loi limite de

p
n(αn −α).

On va donc supposer à partir de maintenant et sans perte
de généralité, que c = 1. Montrer que la fonction de
survie de X est donnée, pour x ≥ 1, par :

F(x) = x−α (134)

13°. X = (X1, ...,Xn) étant toujours un échantillon de loi de
Pareto, notons X • = (X(1), ...,X(n)) sa statistique d’ordre,
avec maxXi = X(n) > ... > X(1) = minXi .

Pour un entier k ∈ J1..n −1K, on définit l’estimateur de
Hill par

Hk =
1

k

k∑

i=1
ln

X(n−i+1)

X(n−k)
(135)

Il est défini à partir des k +1 valeurs les plus élevées de
l’échantillon et dépend également de n via la valeur de
k = kn qui doit être estimée. Formellement, on se donne
un seuil élevé s = X(n−k) et on ne garde que les k plus
grandes valeurs qui excèdent ce seuil. Lorsque k = n, que
s est fixe, déterministe et égal à c, on retrouve
l’expression de l’estimateur du maximum de
vraisemblance donnée à la section précédente.

L’estimation de l’indice de la queue d’une distribution
dans le domaine d’attraction de la loi de Fréchet est à la
source de nombreuses publications. Le problème est
alors l’estimation de γ= 1/α pour une loi vérifiant

F(x) = x−1/γL(x) (136)

où L(x) est une fonction à variation lente vérifiant, pour
tout x > 0,

lim
t→+∞

L(t x)

L(x)
= 1 (137)

Le cas qui nous intéresse est celui d’une loi de Pareto
stricte. On a alors L(x) = 1 qui correspond au cas le plus
simple de fonction à variation (très) lente. De façon
générale, on peut considérer des distributions pour
lesquelles, par exemple, L(x) = ln x. Dès que la
distribution s’éloigne de la loi de Pareto stricte, les
propriétés de l’estimateur de Hill ne sont plus les mêmes
et des biais apparaissent. Dans la suite, nous
présenterons à cet effet le « Hill horror plot » qui visualise
l’augmentation du biais au fur et à mesure que le nombre
d’observations retenues augmente.
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Lorsque la suite d’entiers kn →+∞ et kn = o(n) alors Hk

est un estimateur faiblement consistant de γ=α−1. Si la
convergence de kn vers l’infini est suffisamment lente
(par exemple si kn = ⌊nν⌋ avec 0 < ν< 1 ou si
kn/lnlnn →+∞) alors la consistance forte est également
acquise.

Par ailleurs, sous certaines conditions supplémentaires
appelées « hypothèses de variations régulières au second
ordre », l’estimateur est asymptotiquement normal :

√
kn

(
Hkn

−γ
)
 N (0,γ2) (138)

Ces conditions suffisantes portent à la fois sur la forme
de la fonction à variation lente L(x) et sur la suite kn .
L’une des conditions, appelée condition de Von Mises
impose à L de vérifier

lim
x→+∞

xF′(x)

1−F(x)
= α (139)

Cette condition est vérifiée, par exemple, lorsque F
appartient à la classe de Hall, c’est à dire lorsque

F(x) = cx−α
(
1+bx−β+o

(
x−β

))
(140)

avec c,α,β> 0.

Pour une loi de Pareto stricte, la condition de Von Mises,
est vérifiée pour tout x, et pas seulement à la limite (b et
le reste sont exactement nuls) et la loi de Pareto
appartient à la classe de Hall. Mais surtout, l’estimateur
de Hill associé est sans biais pour toute valeur de k (et
donc également asymptotiquement). Pour le démontrer,
on note

lnX(i ) = γY(i ) (141)

En considérant le vecteur Y = (Y(1), ...,Y(k+1)), montrer
que le vecteur des écarts entre deux coordonnées
successives Y(i ) −Y(i−1) possède des coordonnées
indépendantes qui suivent une loi exponentielle. En
utilisant la décomposition de Rényi des statistiques
d’ordre exponentielles, montrer que

Y(i ) =
i∑

j=1

Y j

n − j +1
(142)

En déduire que

Hk =
γ

k

k∑

i=1

(
Y(n−i+1) −Y(n−k)

)
=

γ

k

k∑

i=1

k∑

j=i

Y j

j
(143)

Puis démontrer que

⇒ Hk =
γ

k

k∑

j=1
Y j ∼

γ

k
Γ(k,1) (144)

Conclure que

E[Hk ] = γ (145)

Montrer que Hk converge presque sûrement vers γ et
déterminer la loi limite de

p
k(Hk −γ).

3 Estimation par régions de
confiance

3.1

On souhaite estimer la durée de vie d’un composant
électronique. On dispose d’un échantillon des durées de
vie de 10 composants. La moyenne empirique de cet
échantillon est de x = 1.3 années, et la variance
empirique non biaisée est de s2 = 0.0796.

1°. En considérant que la durée de vie d’un composant
suit une loi normale N (m,σ2), déterminer un intervalle
de confiance de niveau 1−α= 0.99 de la valeur moyenne
m de la durée de vie de ce composant.

2°. Déterminez un intervalle de confiance de σ2 au risque
0.9.

3°. On considère le modèle bayésien X1, ...,Xn de v.a.i.i.d.
∼N (m, s2) où m est un paramètre dont la loi a priori est
N (1,1). Construisez un intervalle de crédibilité de
niveau 0.99 pour m.

3.2

Deux candidats A et B se présentent à un scrutin. Tous les
inscrits votent et le bulletin blanc est proscrit. Un
sondage sur n = 100 personnes est alors effectué afin
d’anticiper l’issue du vote. Sur les 100 personnes, x = 60
pensent (et disent qu’ils vont) voter pour A. On veut
inférer le pourcentage de votants pour A.

1°. Proposer un modèle statistique adapté.

2°. Donner un intervalle de confiance de niveau 0.99 sur
le pourcentage de votant pour le candidat A. Cet
intervalle est-il informatif pour vonnaître l’issue du vote?

3°. Quelle serait la taille minimale de l’échantillon pour
qu’un intervalle de confiance de niveau 0.95 soit de
longueur inférieure à 0.6 ?

3.3

On considère le modèle d’échantillonnage X1, ...,Xn ,
v.a.i.i.d. ∼P (λ), λ> 0.

1°. Étudiez la vitesse de convergence de l’e.m.v.
Déduisez-en un intervalle de confiance asymptotique de
niveau 1−α pour λ.

2°. On considère maintenant le modèle bayésien d’un
n-échantillon X1, ...,Xn de loi de Poisson P (λ) où λ suit
une loi a priori γ(a,b). Construire un intervalle de
crédibilité pour λ.

3°. Application numérique : n = 10, y = 6, α= 0.1,
a = b = 1. Comparer les deux procédures.

3.4

On considère le modèle d’échantillonnage X1, ...,Xn de
v.a.i.i.d. dont la densité est

f (x,θ) = e−x+θ
1]0,∞[(x) (146)
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θ ∈R.

1°. Montrer que θ est un paramètre de position pour
∑

Xi

et en déduire un pivot dont on précisera la loi. À partir de
ce pivot, construisez un intervalle de confiance de niveau
α pour θ.

2°. Même question pour T = X(1), minimum de
l’échantillon.

3°. Quel intervalle de confiance est meilleur ?

3.5

Au sein d’une population donnée, on s’intéresse à la
probabilité p d’être contaminé par une personne
contagieuse. On note q = 1−p et ǫ> 0. On considère un
n-échantillon (Y1, ...,Yn) d’une v.a. de Bernoulli Y de
paramètre p. On note Yn la moyenne empirique de
l’échantillon.

1°. Démonter l’inégalité de Tchebychev.

2°. Monter que Yn est un estimateur sans biais de p et
déterminer son risque quadratique.

3°. Monter que
[

Yn −
p

5/n,Yn +
p

5/n
]

est un intervalle

de confiance de p de niveau 0,95.

4°. Soit θ> 0. Établir que :

P[Yn −p ≥ ǫ] =P[enθYn ≥ enθ(p+ǫ)] (147)

5°. Soit g la fonction définie sur [0,∞[ par

g (x) = ln
(
pex +q

)
(148)

Démontrer que

P[Yn −p ≥ ǫ] ≤ eng (θ)−θ(p+ǫ) (149)

6°. Montrer que g est de classe C2 et vérifier pour tout
x ≥ 0, l’inégalité |g ′′(x)| ≤ 1/4. En déduire que

g (θ) ≤ θp +θ2/8 (150)

7°. À l’aide des questions précédentes, établir l’inégalité

P[Yn −p ≥ ǫ] ≤ e−2nǫ2
(151)

8°. On pose

Wn =
1

n

n∑

i=1
(1−Yi ) (152)

Majorer P
[
|Wn −q| ≥ ǫ

]
.

9°. Déduire des questions précédentes l’inégalité

P[|Wn −p| ≥ ǫ] ≤ e−2nǫ2
(153)

10°. Pour ǫ=
p

1,844n, en déduire une nouvel intervalle
de confiance au niveau 0,95 et le comparer à l’intervalle
de confiance obtenu précédemment. Conclure.

3.6

Soit (X1, ...,Xn) un n-échantillon d’une variable aléatoire
X de densité

g (x) =
1

2
(1+θx)1]−1,1[(x) (154)

θ ∈]−1,1[.

1°. Construire un estimateur θ̂ de θ en utilisant la
méthode des moments. Calculer son biais et son risque
quadratique moyen.

2°. Déterminer la loi limite de θ̂ et en déduire un
intervalle de confiance asymptotique pour θ au niveau
1−α.

3.7

Soit (X1, ...,Xn) un n-échantillon d’une variable aléatoire
X de densité exponentielle de paramètre λ.

1°. Montrer que Mn = λmaxn
i=1 Xi est une variable

pivotale pour λ. En déduire un intervalle de confiance au
niveau 1−α pour ce paramètre.

2°. Construire un intervalle de confiance pour λ au
niveau 1−α en utilisant la moyenne empirique X.

3°. Déterminer la loi limite et la vitesse de convergence
vers cette loi de l’estimateur 1/X. En déduire un
intervalle de confiance asymptotique pour le paramètre
λ , au niveau 1−α.

3.8

Soit (X1, ...,Xn) un n-échantillon d’une variable aléatoire
X dont la densité est

g (x) =
x lnθ

θx2/2
1[0,+∞[(x) (155)

où θ> 1. On pose également

θ̂= exp

(
2n

∑n
i=1 X2

i

)
(156)

1°. Calculer les moments d’ordre 2 et 4 de la loi de X.

2°. Montrer que θ̂ est biaisé et consistant.

3°. Déterminer sa loi limite et la vitesse de convergence
vers cette loi.

4°. Déterminer un intervalle de confiance asymptotique
pour θ au niveau 1−α.

3.9

Comme test de fiabilité de composants électroniques, on
effectue n tirages indépendants avec remise, dans
différents lots, jusqu’à sélectionner un composant
défectueux. On passe alors au lot suivant. On cherche à
estimer le pourcentage de composants défectueux.

1°. Déterminer le modèle statistique associé et construire
un estimateur de la proportion de composants
défectueux. En déduire un intervalle de confiance
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asymptotique (sur le nombre d’expériences) pour la
proportion de composantes défectueux.

2°. Donner un estimtateur sans biais du nombre moyen
de composants tirés au cours des n expériences. En
déduire un intervalle de confiance asymptotique (sur le
nombre d’expériences) pour le nombre moyen de
composants tirés.

3.10

Soit (X1, ...,Xn) un n-échantillon de loi exponentielle de
moyenne λ.

1°. Déterminer un pivot fondé sur la statistique
S =

∑n
i=1 Xi .

2°. En déduire un intervalle de confiance de niveau 1−α

pour λ.

3.11

Soient (X1, ...,Xn) et (Y1, ...,Ym) deux échantillons de
v.a.i.i.d. indépendants entre eux, de lois normales
respectives N (m1,σ2

1) et N (m2,σ2
2). On souhaite

estimer le rapport des variances r =σ2
1/σ2

2, les moyennes
étant également inconnues.

1°. Donner un pivot suivant une loi de Fisher.

2°. En déduire un intervalle de confiance au niveau 1−α

pour r .

3.12

On considère une v.a. X de densité

f (x,θ) = θxθ−1
1]0,1[(x) (157)

1°. Construire un intervalle de confiance pour θ> 0 en
utilisant un pivot calculé à partir de la fonction de
répartition de X.

2°. Montrer que l’intervalle le plus petit de niveau 1−α a
nécessairement une borne inférieure nulle.

3.13

On considère une variable aléatoire X de loi de Poisson
de paramètre λ, une variable aléatoire Y suivant une loi
gamma Γ(y +1, z) et une variable aléatoire Z suivant une
loi du χ2 à 2(y +1) degrés de liberté.

1°. Démontrer que

PX[0, y] =PZ[λz,+∞[ (158)

en déduire que

PX[0, y] =PZ[2λ,+∞[ (159)

2°. Soit (X1, ...,Xn) un n-échantillon de X dont le
paramètre λ est inconnu. Déterminer un intervalle de
confiance de niveau 1−α pour ce paramètre en utilisant
un pivot fondé sur la statistique S =

∑n
i=1 Xi .

3°. Montrer qu’un intervalle (1−α) crédible pour λ
peut-être aussi fondé sur les quantiles d’une loi du χ2

lorsque l’on prend pour loi a priori la loi exponentielle de
paramètre 1.

4°. A.N. au cas où n = 50, S a pour valeur observée s = 5 et
α= 0.1.

5°. Soient f (x,d) la densité d’une loi du χ2 à d degrés de
liberté. Montrer que pour tout a > 0, si p > q alors
f (a, p) > f (a, q).

6°. En déduire que si p > q , alors les quantiles supérieurs
d’ordre α de ces deux lois sont dans le même ordre.

7°. Comparer les longueurs des intervalles de confiance
et des intervalles de crédibilité correspondants.

3.14

Soit X une v.a. de Bernoulli de paramètre p ∈]0,1[. On
considère une suite de v.a.i.i.d. (Xn)n de même loi que X.
On note également Sn =

∑n
k=0 Xk .

1°. Soit φ(s) = E[e sX] la fonction génératrice de X.
Calculer φ en justifiant de son existence.

2°. Déterminer la loi de SN/N. Pour un réel s, montrer que

E

[
exp

(
s

SN

N

)]
=

(
φ

( s

N

))N
(160)

3°. Soit a ∈]0,1[. Soi s > 0. Montrer que

E

[
exp

(
s

SN

N

)]
≥ eas ×P

[
SN

N
≥ a

]
(161)

4°. Montrer que, pour tout s ≥ 0,

P

[
SN

N
≥ a

]
≤

(
φ

( s

N

))N
e−as (162)

5°. On suppose que a > p. Étudier les variations de
la(s) = as − lnφ(s) et donner la valeur du maximum
strictement positif h(a, p). Montrer que

P

[
SN

N
≥ a

]
≤ e−Nh(a,p) (163)

6°. On suppose que a < p. Déterminer la loi de la v.a.
N−SN. Montrer que

P

[
SN

N
≤ a

]
≤ e−Nh(1−a,1−p) = e−Nh(a,p) (164)

7°. Soit ǫ> 0. Déduire des questions précédentes que

8°. Déterminer

lim
N→+∞

P

[∣∣∣∣
SN

N
−p

∣∣∣∣≥ ǫ

]
(165)

9°. On effectue un test de fiabilité pour des composants
dont la probabilité d’être défectueux est p. On prélève un
échantillon de n ≥ 1 composants. Pour tout i = 1, ...,n, on
définit Xi qui vaut 1 lorsque l’objet est défectueux et 0
sinon. On suppose que les Xi sont indépendants.
Montrer que FN = SN/N est un estimateur sans biais de
p. Calculer le risque quadratique

rN = E
[
(FN −p)2] (166)

et déterminer limN→+∞ rN.
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10°. Soit α ∈]0,1[. On souhaite définir un intervalle de
confiance du paramètre p inconnu, au niveau de
confiance 1−α, à partir de l’échantillon. Quelle est la
limite en loi de la suite

(
p

N
Fn −p

√
p(1−p)

)

n>0

(167)

Soit fn la réalisation de FN sur l’échantillon considéré.
Soit t le quantile d’ordre 1−α/2 d’une loi normale
centrée réduite. Montrer qu’un intervalle de confiance de
p au niveau 1−α est donné par [UN,VN], avec
vskip-5mm

UN = fN −
t

2
p

N
et VN = fN +

t

2
p

N
(168)

3.15 Inégalité de Hoeffding

Dans cet exercice, n désigne un entier naturel non nul.
Soient a et b deux réels tels que a < b. Toutes les
variables aléatoires sont définies sur un même espace
probabilisé (Ω,F ,P). Soit X une variable aléatoire à
valeurs dans [a,b] et soit (X1, ...,Xn) un n-uplet de
variables aléatoires réelles mutuellement indépendantes
et identiquement distribuées, de même loi que X. On
note Xn la moyenne empirique de l’échantillon :

Xn =
1

n

n∑

k=1
Xk .

L’objectif de cet exercice est de démontrer l’inégalité de
Hoeffding :

∀t > 0, P
[∣∣∣Xn −E[Xn]

∣∣∣≥ t
]
≤ 2exp

(
−

2nt 2

(b −a)2

)
.

On note ψX la fonction définie pour tout s ∈R par

ψX(s) = E[e sX].

On suppose que X est centrée.

1°. Démontrer que pour tout x ∈]a,b[ fixé, s 7→ e sx est
convexe et en déduire que

e sx ≤
x −a

b −a
e sb +

b −x

b −a
e sa .

2°. Démontrer que pour tout s ∈R,

ψX(s) ≤
b

b −a
e sa −

a

b −a
e sb .

3°. On pose p = b/(b −a), q = 1−p et u = (b −a)s. On
considère la fonction

u 7→φ(u) = ln
(
pe sa +qe sb

)
.

Pour tout réel u > 0, expliciter φ(u) en fonction de u et en
déduire qu’il existe θ ∈]0,u[ tel que :

φ(u) =φ(0)+φ′(0)u +
1

2
φ′′(θ)u2.

4°. Déterminer φ(0), φ′(0), φ′′(u) et démontrer que
φ′′(θ) ≤ 1

4 .

5°. Démontrer que,

∀s > 0, ψX(s) ≤ exp

(
s2

8
(b −a)2

)
.

6°. Rappeler et démontrer l’inégalité de Markov.

7°. On suppose toujours X centrée. Démontrer que,

∀t > 0, ∀s > 0, P
[

Xn ≥ t
]
≤ e−st

(
ψX

( s

n

))n
.

8°. On ne suppose plus que X est centrée. Déduire des
questions précédentes que :

P

[
Xn −E[Xn] ≥ t

]
≤ exp

(
−

2nt 2

(b −a)2

)
,

puis que

P

[∣∣∣Xn −E[Xn]
∣∣∣≥ t

]
≤ 2exp

(
−

2nt 2

(b −a)2

)
.

9°. Soit δ ∈]0,1[. Démontrer que :

∀n ≥ 1, P

[∣∣∣Xn −E[Xn]
∣∣∣≤ |a −b|

p
2n

√
ln(2/δ)

]
≥ 1−δ.

3.16 Intervalles de confiance et de crédibilité
pour une loi exponentielle

Soient X1, ...,Xn un n-échantillon de X suivant une loi
exponentielle de paramètre θ inconnu.

1°. Décrire le modèle statistique. Démontrer que
Sn =

∑n
i=1 Xi est une statistique exhaustive de θ. Rappeler

sa loi.

2°. On veut estimer E[X]. Rappeler l’expression de cette
espérance en fonction de θ. Calculer le risque
quadratique associé à X, moyenne empirique des Xi .

3°. En déduire un estimateur sans biais.

4°. Déterminer un intervalle de confiance de θ au niveau
1−α pour n = 15 et α= 0,05 (on rappelle que si Y suit une
loi gamma de paramètres (a,θ), alors θY suit une loi
Gamma de paramètres (a,1)).

5°. On utilise une loi a priori Gamma de paramètres
(b,η). En déduire un estimateur bayésien de θ. Que
retrouve-t-on approximativement pour de grandes tailles
de l’échantillon ?

7°. En quoi les études précédentes auraient-elles été
modifiées si on avait observé n v.a. de loi Gamma de
paramètres (a,θ) avec a connu ?

3.17 Intervalles de confiance pour un
échantillon uniforme

Soient X1, ...,Xn un n-échantillon de X suivant une loi
uniforme sur [0,θ] avec θ inconnu.

1°. Décrire le modèle statistique. Démontrer que
Y = sup(X1, ...,Xn) est une statistique exhaustive de θ.
Préciser sa loi, son espérance et sa variance.

2°. Déterminer l’estimateur du maximum de
vraisemblance. Est-il sans biais ? En déduire un
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estimateur sans biais, calculer les deux risques
quadratiques associés.

3°. Trouver un estimateur sans biais fondé sur la
moyenne empirique et le comparer aux deux précédents.

4°. Pour α= 0,05 et n = 15, déterminer un intervalle de
confiance de niveau 1−α pour θ (utiliser le fait que θnY
suit une loi libre de θ).

3.18 Intervalles de confiance pour un
échantillon gamma

On considère un n-échantillon de X suivant une loi
γ(a,b) dont la densité est donnée par

f (x) =
b

Γ(a)
(bx)a−1e−bx

1[0,∞[(x) (169)

où Γ est la fonction Gamma d’Euler. On note X la
moyenne empirique de l’échantillon et S2 sa variance
empirique non biaisée. On suppose a connu.

1°. Déterminer l’estimateur b̂ du maximum de
vraisemblance de b.

2°. Montrer que la fonction caractéristique d’une loi
γ(a,b) est

φ(t ) =
(

b

b − i t

)a

(170)

En déduire la loi de la somme des observations. Calculez
le biais de l’estimateur du maximum de vraisemblance.
Peut-on en déduire un estimateur sans biais ?

3°. Établir la
p

n-consistance et la normalité
asymptotique de l’estimateur du maximum de
vraisemblance. En déduire que la variable aléatoire

p
an

(
b̂/b −1

)
(171)

est un pivot asymptotique.

4°. L’estimateur du maximum de vraisemblance est-il
asymptotiquement efficace? Déterminer un estimateur
admissible pour le risque quadratique parmi les
estimateurs sans biais ?

On suppose maintenant également a inconnu.

5°. Montrer que l’estimateur des moments de (a,b) est
(

X
2

S2 ,
X

S2

)
(172)

6°. Montrer que l’estimateur des moments est consistant.

7°. Déduire des questions précédentes que la variable
aléatoire

p
n

X

S

(
X

2
/S2

bX
−1

)
(173)

est un pivot asymptotique. En déduire un intervalle de
confiance asymptotique de niveau 1−α.

3.19 Intervalles de crédibilité pour un
échantillon uniforme

On considère un n-échantillon de X suivant une loi
uniforme sur [0,θ]. θ est inconnu et suit une loi a priori

de densité

π(θ) =
1

θ2 1[1,∞[(θ) (174)

1°. Montrer que la loi a posteriori du modèle s’écrit sous
la forme

L(θ|x) =
c(x)

θb(x)
1θ>s(x) (175)

avec x = (x1, ..., xn).

2°. Déterminer l’estimateur de Bayes de θ pour le risque
quadratique.

3°. Construire un intervalle de crédibilité pour θ à 90%.

4 Tests statistiques

4.1

On souhaite vérifier que la contenance de bouteilles en
provenance d’un producteur respecte bien en moyenne
la limite légale de 75 cL. On sélectionne au hasard un
échantillon de 10 bouteilles et l’on obtient une
contenance moyenne de 74,42 cL.

On suppose que la contenance des bouteilles (en cL) suit
une loi normale d’espérance θ inconnue et d’écart type
égal à 1.

1°. Décrire le modèle statistique correspondant.

2°. On effectue le test
{

H0 : θ= 75
H1 : θ< 75

(176)

Quel point de vue adopte-t-on en choisissant ces
hypothèses ?

3°. Construire, à l’aide d’une règle de décision intuitive
basée sur la moyenne empirique, un test pur de niveau
α= 1% de H0 contre H1. Quelle est la conclusion de ce
test ?

4°. Tracer l’allure de la courbe de puissance et de la
courbe d’efficacité de ce test.

5°. On veut pouvoir détecter, avec une probabilité de
99%, une contenance moyenne de 74,8 cL, tout en
gardant un test de niveau α= 0,1%. Que doit-on faire?

6°. Quelles sont les caractéristiques et la conclusion du
test suivant :

{
H0 : θ≥ 75
H1 : θ< 75

(177)

7°. On suppose maintenant que la contenance des
bouteilles suit une loi normale de moyenne 75 cL et
d’écart type inconnu θ. Décrire le modèle correspondant,
le test, et donner sa conclusion.
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4.2

Avant le second tour d’une élection présidentielle, un
candidat commande un sondage à une société
spécialisée, pour savoir s’il a une chance d’être élu.

Soit p, la proportion d’électeurs qui lui est favorable dans
la population. On pose

{
H0 : p = 0,48
H1 : p = 0,52

(178)

1°. Décrire le modèle statistique correspondant. Quelle
est la signification du choix p = 0,48 comme hypothèse
nulle? Quelle statistique de test peut-on considérer ?

2°. Construire un test de niveau 10%, puis un autre de
niveau asymptotique 10% lorsque le sondage est effectué
auprès de n = 100 personnes.

3°. Combien d’électeurs devra-t-on interroger si l’on
souhaite avoir un seuil asymptotique α et un risque de
second espèce asymptotique inférieur à β, avec α et β
donnés ?

4°. Le candidat souhaite maintenant tester
{

H0 : p ≤ 0,5
H1 : p > 0,5

(179)

Que peut-on conclure?

4.3

Le nombre annuel de pannes sur une voiture d’un
modèle donné, peut être modélisé par une v.a. qui suit
une loi de Poisson de paramètre λ= 2. Après avoir
souscrit un contrat d’entretien, on s’attend à ce que la
valeur du paramètre diminue.

1°. Construire un test, basé sur le nombre total de pannes
pour 6 ans de contrat, permettant de le vérifier.

2°. Que décide-t-on au seuil de 10% si le nombre total de
pannes sur les six dernières années est de 10 ?

3°. Tracer l’allure de la courbe d’efficacité du test.

4.4

Un programme de simulation d’une loi uniforme sur
[0,θ] a généré les nombres suivants : 95, 24, 83, 52, 68.

1°. Donner l’estimateur du maximum de vraisemblance
de θ et déterminer sa loi.

2°. En déduire un test de niveau 5% de la forme
{

H0 : θ= 100
H1 : θ> 100

(180)

Que peut-on conclure?

4.5

On admet que la durée de vie d’un matériel est modélisé
par une v.a. X de loi exponentielle « à l’anglo-saxonne »,
de paramètre θ. On considère un n-échantillon

(X1, ...,Xn) de X et une observation (x1, ..., xn) de cet
échantillon.

1°. Déterminer l’estimateur θ̂n du maximum de
vraisemblance de θ.

2°. On rappelle que la densité d’une loi du chi-deux à 2k

degrés de libertés est donnée par

gk (x) =
1

2k (k −1)!
xk−1e−x/2

1[0,∞[(x) (181)

Montrer que la variable 2X/θ suit une loi du chi-deux à 2
degrés de libertés. En déduire la loi de

Z =
2

θ

n∑

i=1
Xi (182)

3°. Des études passées avaient permis d’attribuer au
paramètre θ la valeur θ0. L’évolution des méthodes de
fabrication pouvant avoir entraîné une augmentation de
θ, on considère le test suivant :

{
H0 : θ= θ0

H1 : θ> θ0
(183)

Construire un test de niveau α à partir de ces hypothèses.

4°. On a relevé les durées de vie de n = 31 matériels et
l’on trouve

∑
xi = 67,68. Quelle est la conclusion du test

pour un niveau α= 5% et θ0 = 2 (durée de la garantie)?

5°. On suppose maintenant que l’on n’observe pas les
durées de vie Xi directement, mais seulement les
variables

Yi =1[Xi≥2] (184)

pour i = 1, ...,n. Proposer un nouveau test.

4.6

Les notes à l’examen de « statistique mathématique »
sont aléatoires et suivent une loi normale. On a relevé les
notes de 15 élèves deux années consécutives durant
lesquelles l’enseignant a changé et l’on souhaite savoir si
ce changement a eu un effet sur les résultats.

1°. Proposer un modèle statistique et un test.

2°. Quelles sont les conclusions du test si les notes
l’année n −1 et l’année n sont respectivement

12,8 15 8,5 12,7 10,4
15,5 9,6 10,3 8,5 8,1
7,8 14 12,5 8,6 7

et

10,1 8,9 6,1 4,8 9,1
11,9 14,2 13,5 16 12,9
11,1 11 8,8 10 9,2

On rappelle que si S2
1, S2

2, σ2
1 et σ2

2 représentent les
variances empiriques et théoriques des deux
échantillons de notes, alors la statistique

F =
S2

1/σ2
1

S2
2/σ2

2

(185)
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suit, sous l’hypothèse H0, une loi de Fisher F (14,14).

On rappelle également que si σ1 =σ2, la statistique
suivante suit une loi de Student de paramètre 28 :

T =
X1 −X2p

2/15×S(X1,X2)
(186)

avec X1 et X2 moyenne empirique respective de chaque
échantillon de note et S(X1,X2) écart type empirique de
l’échantillon global des 30 notes.

4.7

En juillet 2010, un sondage Ifop sur un échantillon
représentatif de 958 personnes donnait le résultat
suivant : 8 sympathisants PS sur 100 contre 6
sympathisants UMP sur 100 sont tatoués. Sur les 958
personnes interrogées, 249 se sont déclarées
sympathisantes PS, dont 20 tatoués, et 297
sympathisantes UMP, dont 19 tatouées, que peut-on
penser de la déclaration suivante faite dans les journaux :
« les sympathisants PS sont plus tatoués que les
sympathisants UMP » ?

4.8

Montrer que les modèles statistiques suivants sont à
rapport de vraisemblance monotone :

1°. Le modèle binomial B(n,θ).

2°. Le modèle d’échantillonnage gaussien N (θ,1).

3°. Le modèle d’échantillonnage de Poisson P (θ).

4°. Les modèles exponentiels.

4.9

Soit X une v.a. réelle dont la loi a pour densité

f (x) =
1

2θ
p

x
e−

p
x/θ

1[0,∞[(x) (187)

avec θ> 0 et X1, ...,Xn n-échantillon de cette loi.

1°. Montrer que Y = 2
p

X/θ suit une loi du chi-deux à 2
degrés de libertés. En déduire la loi de

Sn =
2

θ

n∑

i=1

√
Xi (188)

2°. On souhaite tester pour 0 < θ0 < θ1
{

H0 : θ= θ0

H1 : θ= θ1
(189)

Déterminer un test UPPα parmi les tests de niveau α et
expliciter la puissance de ce test.

2°. Décrire tous les tests UPP parmi les tests de seuil α.

3°. On souhaite maintenant tester
{

H0 : θ≤ θ0

H1 : θ> θ1
(190)

Existe-t-il un test UPPα pour ce nouveau problème?

4.10

La limite du taux X de présence d’un polluant contenu
dans les déchets d’usine est de 6 mg/kg. On effectue un
dosage sur 12 prélèvements de 1 kg, pour lesquels on
observe les taux xi , i = 1, ..,12 de présence du polluant.
On trouve

12∑

i=1
xi = 84 et

12∑

i=1
x2

i = 1413 (191)

On admet que X suit une loi normale N (m,σ2) avec
σ= 8.

1°. Donner un test UPP parmi les tests de seuil 5% de
{

H0 : m ≤ 6
H1 : m > 6

(192)

Détermine la puissance de ce test. L’usine est-elle
conforme à la législation ?

2°. Envisager le cas où l’écart-type σ est inconnu.

4.11

On dispose de l’observation (x1, ..., xn) d’un échantillon
de taille n = 15 d’une loi normale N (0,1/θ).

1°. Construire un test UPP parmi les tests de seuil α= 5%
de

{
H0 : θ= 1
H1 : θ> 1

(193)

et déterminer la puissance de ce test.

2°. Quelle décision prend-on si
∑

i x2
i
= 6,8 ? Pour quelles

valeurs de α prendrait-on la décision contraire?
Qu’a-t-on alors calculé?

3°. Existe-t-il un test UPP parmi les tests de seuil α= 5%
pour le problème

{
H0 : θ= 1
H1 : θ 6= 1

(194)

Expliquer.

4.12

Le revenu annuel des individus d’une population est
distribué suivant une loi de Pareto de densité

f (x) =
aka

xa+1 1[k,∞[(x) (195)

Les paramètres k > 0 (revenu minimum) et a > 0
(paramètre de forme) sont inconnus.

1°. Sur la base d’un échantillon de taille n, estimer (k, a)
par la méthode du maximum de vraisemblance.

2°. On voudrait tester
{

H0 : a = 1
H1 : a 6= 1

(196)

Montrer que tout test de rapport de vraisemblance
admet une région de rejet de la forme
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R = [T ≤ s1]∪ [T ≥ s2] (197)

où T est la statistique définie par

T(X) = T(X1, ...,Xn) = ln

( ∏n
i=1 Xi(

minn
i=1 Xi

)n

)
(198)

4.13

On considère une variable aléatoire X ∼N (m,σ2) et
(X1, ...,Xn) un n-échantillon de X.

1°. En utilisant la méthode de Neyman-Pearson, résoudre
le problème suivant :

{
H0 : m = m0

H1 : m = m1
(199)

2°. Calculer la puissance du test.

3°. Application numérique : n = 25, x = 2,7, m0 = 2,
m1 = 4. Conclure. Calculer la p-valeur.

4.14

On veut vérifier la précision d’une balance après un an
de fonctionnement. On suppose que la pesée d’un objet
de 1 gramme suit une loi normale N (m,σ2) avec m = 1.
Initialement, la précision de la balance est σ0 = 1,5 mg. Si
cette précision a augmenté en σ1 >σ0, on concluera que
la balance a perdu en précision. Le test proposé est donc :

{
H0 : σ=σ0 = 1,5
H1 : σ=σ1 = 2

(200)

1°. En utilisant la méthode de Neyman-Pearson,
déterminer la région critique du test.

2°. Application numérique : conclure lorsque n = 10 pour
un risque α= 0,1.

3°. Calculer la puissance du test.

4.15

Dans une population donnée, une proportion inconnue
p d’individus possède un caractère C. On effectue le test
suivant :

{
H0 : p = p0

H1 : p = p1 > p0
(201)

1°. Déterminer la région critique du test.

2°. Application numérique : conclure si n = 625

4.16

Déterminer la statistique du rapport de vraisemblance
lorsque l’on teste, pour une valeur m0 fixe,

{
H0 : m ≤ m0

H1 : m > m0
(202)

sur la base d’un échantillon i.i.d. de taille n de la loi
normale N (m,σ2), avec σ2 inconnu.

Montrer que ce test est fondé sur une statistique de loi de
Student.

4.17

Sur la base d’un échantillon de taille n de densité

f (x) =
1

σ
exp

(
−

x −θ

σ

)
1[θ,+∞[(x) (203)

où θ et σ> 0 sont inconnus, on désire effectuer le test
{

H0 : θ≤ θ0

H1 : θ> θ0
(204)

Déterminer la forme du test de rapport de
vraisemblance.

4.18

On considère un échantillon (X1, ...,Xn) d’une loi de
densité

f (x) = eθ−x
1[θ,+∞[(x) (205)

1°. Montrer que la statistique X(1) = mini Xi est
exhaustive pour θ.

2°. En se fondant sur cette statistique, déterminer la
forme de tout test de rapport de vraisemblance de

{
H0 : θ≤ θ0

H1 : θ> θ0
(206)

3°. Exprimer la puissance d’un tel test.

4°. Pour α ∈ [0,1], quel test est de niveau α?

4.19

Soit X ∼P (λ). On effectue un test bayésien
{

H0 : λ≤ 1
H1 : λ> 1

(207)

Autrement dit, on ne rejètera pas H0 si sa probabilité a

posteriori est supérieure à celle de H1.

1°. Calculer la loi a posteriori de H0 pour x = 1 avec pour
loi a priori λ∼ Γ(α,β).

2°. Montrer que lorsque α et β tendent vers 0, on obtient
la même loi a posteriori qu’en posant Π(λ) = 1/λ. Quelle
est alors la conclusion du test ? Montrer que cet a priori

n’est pas toujours valide selon l’observation x.

4.20

Soient X1, ...,Xn un n-échantillon de X de loi uniforme
sur [0,θ]. Soit M = X(n) = maxn

i=1 Xi . On cherche à tester
{

H0 : θ= 1
H1 : θ> 1

(208)

1°. Pourquoi ne peut-on pas utiliser le test du rapport de
vraisemblance (donner deux raisons)?

2°. On propose le test suivant : on rejette H0 lorsque
M > s, où s est une constante donnée. Calculer alors la
fonction de puissance.

3°. Quelle valeur doit prendre s pour un seuil de 5%.
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4°. Si n = 2 et que la valeur observée m de M est m = 0,96,
que vaut la p-valeur ? Quelle conclusion sur les
hypothèses ? Même question si m = 1,04.

5°. On se propose d’utiliser une approche bayésienne et
de poser pour loi a priori (impropre) :

Π(λ) =
1

θ
(209)

Ce choix est-il justifié? Calculer alors la probabilité a

posteriori que θ> 1.

4.21

On considère veux v.a. indépendantes U et V, de loi
normale centrée réduite et l’on pose Z = U/V.

1°. Déterminer la densité de Z et reconnaître cette loi.
Déterminer sa fonction caractéristique.

2°. Soit Z la moyenne empirique d’un n-échantillon de Z.
Déterminer sa loi.

3°. On appelle loi de Cauchy générale de paramètre de
position θ ∈R et de paramètre d’échelle σ> 0 la loi de la
v.a. X = θ+σZ. On notera cette loi C (θ,σ). Étant donné
un n-échantillon (X1, ...,Xn) de X, déterminer les lois des
variables aléatoires

X =
1

n

n∑

i=1
Xi et Y =

n∑

i=1
ai Xi (210)

ai ∈R ∀i .

4°. Quelle est la signification de θ?

5°. On suppose σ= 1 et l’on veut estimer θ. Utiliser la
méthode du maximum de vraisemblance pour construire
un estimateur θ̂ et calculer sa variance asymptotique.
Peut-on estimer θ par la méthode des moments ?
Proposer un estimtateur fondé sur l’interprétation de θ et
calculer son efficacité asymptotique.

6°. Soit Yi =1[Xi≤0]. Quelle est la loi de Yi ? Quelle est la loi
de Nn , nombre d’observations négatives ou nulles dans
l’échantillon initial ? En déduire de la vraisemblance de
Nn un estimateur de θ.

7°. Soient U ∼N (0,σ2
1) et V ∼N (0,σ2

1), deux v.a.
indépendantes. On pose λ=σ1/σ2 et l’on l’on définit la
v.a. Z par Z = U/V. déterminer la densité de Z ainsi que sa
fonction de répartition.

8°. On dispose de deux échantillons (U1, ...,Un) et
(V1, ...,Vn) de U et V. Déterminer la loi de

T =
∑n

i=1 Ui∑n
i=1 Vi

(211)

En déduire l’estimateur λ̂ du maximum de
vraisemblance de λ.

9°. On considère maintenant un vecteur gaussien (U,V)
avec U ∼N (m1,σ2

1) et V ∼N (m2,σ2
2). U et V ne sont pas

indépendantes et leur coefficient de corrélation linéaire
est noté ρ. On pose

Z =
(U−m1)/σ1

(V −m2)/σ2
(212)

Déterminer la loi de Z. Interpréter ρ. En déduire, à partir
d’un échantillon (Un ,Vn)n , un test asymptotique sur ρ de
la forme :

{
H0 : ρ= ρ0

H1 : ρ 6= ρ0
(213)

4.22

On considère une v.a. X de loi exponentielle (sous forme
anglo-saxonne) de paramètre θ.

1°. Calculer l’information de Fisher apportée par un
n-échantillon de X et déterminer la borne de FDCR
associée à θ.

2°. Estimer θ par maximum de vraisemblance et étudier
l’e.m.v. θ̂1. Faire de même avec l’estimateur des moments
θ̂2, puis avec un estimateur θ̂3 fondé sur la v.a. Z égale au
nombre d’observations supérieures ou égales à 2 dans
l’échantillon.

3°. Donner un intervalle de confiance au niveau 0.95
pour θ.

4°. Une observation du n-échantillon pour n = 31 donne∑
xi = 64.83 et

∑
x2

i
= 170.92. On pense que θ peut être

égale à 1,2 ou 3. Résoudre les trois problèmes de tests
suivants :

{
H0 : θ= 2
H1 : θ= 1

(214)

{
H0 : θ= 2
H1 : θ= 3

(215)

{
H0 : θ= 2
H1 : θ 6= 2

(216)

5°. θ étant toujours inconnu, on s’intéresse au paramètre
d =P[X ≥ 2]. Exprimer d en fonction de θ et déterminer
l’e.m.v. d̂1 de d . Quelle est sa loi asymptotique? Donner
un intervalle de confiance pour d au niveau de confiance
0.95.

6°. Pour un n-échantillon (X1, ...,Xn) de X, on considère
maintenant l’estimateur δ défini par

δ=1[X1≥2] (217)

Calculer E[δ] et V(δ).

7°. On pose S =
∑n

i=1 Xi et T = E[δ|S]. Calculer E[T] et
montrer que

T(X1, ...,Xn) =
(
1−

2

S

)n−1

1[S≥2] (218)

4.23 Loi de Fréchet

La loi de Fréchet de paramètres (m,σ,α) avec x ≥ m,
σ> 0, α> 0 a pour fonction de répartition

F(x) = exp
(
−

( x −m

σ

)−α)
1[m,+∞[(x) (219)

1°. Montrer que la densité correspondante est

F(x) =
α

σ

( x −m

σ

)−α−1
exp

(
−

( x −m

σ

)−α)
1[m,+∞[(x)

(220)
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Soit X1, ...,Xn un n-échantillon de X suivant une loi de
Fréchet définie précedemment. On suppose que m = 0 et
α= 1 et l’on veut estimer θ=σ.

1°. Le modèle est-il exponentiel ?

2°. Montrer que

β̂=
1

n

n∑

i=1

1

Xi
(221)

est un estimateur sans biais efficace de θ.

3°. Donner l’e.m.v. de θ et préciser son comportement
asymptotique (variance asymptotique, etc.).

4°. Montrer que cet estimateur est biaisé et qu’il n’existe
pas d’estimateur sans biais pour n = 1.

5°. Montrer que la famille de lois Gamma

f (s) = sa−1e−bs
1[0,∞[(s) (222)

pour a,b > 0 est conjuguée pour ce modèle.

On suppose maintenant que α= 1, σ= 1 et l’on cherche à
estimer θ= m.

6°. Est-ce que les conditions de régularité nécessaires au
comportement asymptotique standard de l’e.m.v. sont
satisfaites ici ?

7°. Posons m̂1 = minn
i=1 Xi . Montrer que pour tout c > 0,

lim
n→+∞

P
[
na(m̂1 −m) > c

]
=

{
0 si a = 0
1 si a > 0

(223)

8°. On cherche à construire un second estimateur plug-in
m̂2 basé sur la médiane me . Montrer que

p
n (m̂2 −me ) N

(
0,

1

4 f (me )

)
(224)

puis construire à partir de ce résultat un estimateur
estimateur asymptotiquement normal de m.

9°. À partir de la question précédente, construire un test
de H0 : m = 0 vs H1 : m 6= 0. Donner la statistique de test
et la région de confiance.

10°. Dans cette dernière question, on suppose que m = 0
et l’on cherche à estimer θ= (σ,α).

Proposer un test pour les hypothèses H0 : α= 1 vs

H1 : α 6= 1. Donner la statistique de test et la région de
confiance.

5 Applications

5.1 Un modèle de réseau social : stochastic
block models

Les stochastic block models (SBM) sont des modèles de
graphes aléatoires utilisés pour modéliser des réseaux
sociaux contenant des communautés (facebook, etc.).

5.2 Détection des virus informatiques par
analyse comportementale

Ce problème nécessite la lecture d’un chapitre du livre
d’Eric Filiol « techniques virales avancées », édité chez
Springer.

5.3 Quantité d’information et entropie au
sens de Shannon

Dans tout cet exercice, n est un entier naturel non nul.
Toutes les variables aléatoires sont définies sur un même
espace probabilisé (Ω,F ,P).
log2 représente le logarithme de base 2 et est défini, pour
tout x > 0, par

log2(x) =
ln x

ln2
. (225)

On considère une variable aléatoire discrète X à support
dans N. Le cardinal de X(Ω) peut être fini ou non. On
définit l’entropie de X, lorsqu’elle existe, par la formule

H(X) =−
∑

x∈X(Ω)
P[X = x] log2P[X = x]. (226)

1°. Démontrer que pour tout x > 0, ln x ≤ x −1 et préciser
les cas d’égalité.

2°. Soit φ la fonction définie sur [0,1] par
φ(x) =−x log2(x) si x > 0 et φ(0) = 0. Effectuer l’étude de
cette fonction en précisant sa monotonie et ses extrema.
Démontrer que φ est concave, puis donner l’allure de sa
courbe représentative.

Dans les questions 3° à 10°, on suppose X(Ω) et Y(Ω) de
cardinaux finis.

3°. Démontrer que, quel que soit X, H(X) ≥ 0. À quelle
condition sur X a-t-on H(X) = 0 ?

Soit X une variable aléatoire de Bernoulli de paramètre
p ∈]0,1[.

4°. Calculer H(X). H(X) est une fonction de p que l’on
notera h. Effectuer l’étude de h. En quelle valeur h

atteint-elle son maximum ? Interpréter le résultat.

5°. Déterminer H(X) lorsque X est une variable aléatoire
de loi uniforme sur X(Ω) = {1, ...,n}.

6°. À l’aide de la question 1°, démontrer l’inégalité de
Gibbs : si (p1, ..., pn) et (q1, ..., qn) sont des lois de
probabilités à support dans {1, ...,n} alors

n∑

k=1
pk log2(qk /pk ) ≤ 0. (227)

avec égalité si, et seulement si pk = qk pour tout k.

7°. Démontrer que pour toute variable aléatoire X sur
{1, ...,n}, H(X) ≤ log2 n. Interpréter ce résultat.

8°. L’entropie conjointe de deux variables aléatoires X et
Y se définit par la formule

H(X,Y) =−
∑

(x,y)∈X(Ω)×Y(Ω)
P[X = x,Y = y] log2P[X = x,Y = y].

(228)

Si X et Y sont deux variables aléatoires indépendantes,
démontrer que H(X,Y) = H(X)+H(Y).

9°. Les variables X et Y ne sont plus supposées
indépendantes. On définit l’entropie conditionnelle de Y
sachant X par la formule
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H(Y|X) =−
∑

(x,y)∈X(Ω)×Y(Ω)
P[X = x,Y = y] log2P[Y = y |X = x].

(229)

Démontrer que

H(X,Y) = H(Y|X)+H(X) = H(X|Y)+H(Y). (230)

Démontrer que H(X)+H(Y) ≤ 2H(X,Y). En utilisant la
concavité de φ, démontrer que

H(X) ≥ H(X|Y). (231)

En déduire que H(Y) ≥ H(Y|X), puis démontrer que
H(X,Y) ≤ H(X)+H(Y).

10°. Pour toute fonction f définie sur X(Ω), démontrer
que H( f (X)|X) = 0 et que H(X) ≥ H( f (X)).

On suppose maintenant X(Ω) de cardinal infini. On
admet que si E[X] <∞ alors H(X) existe. On admet
également que l’inégalité de Gibbs s’étend au cas où
X(Ω) est dénombrable, sous réserve de convergence de la
somme.

11°. Calculer l’entropie d’une variable aléatoire G de loi
géométrique de paramètre p ∈]0,1[, en justifiant son
existence. Montrer que pour toute variable aléatoire X
discrète telle que E[X] ≤ E[G], on a H(X) ≤ H(G).

On considère maintenant que X(Ω) est un intervalle de R

et X une variable aléatoire à densité continue f sur X(Ω).
On définit l’entropie différentielle de X, sous réserve
d’existence, par la formule :

H(X) =−
∫+∞

−∞
f (x) ln( f (x))d x. (232)

12°. Calculer l’entropie différentielle d’une variable
aléatoire X de loi uniforme sur [a,b].

13°. Calculer l’entropie différentielle d’une variable
aléatoire suivant une loi normale N (m,σ2).

14°. Soit X suivant une loi N (0,σ2) dont la densité sera
notée ψ et soit Y une variable aléatoire réelle, centrée, de
variance finie σ2, dont la densité sera notée f . En
supposant les deux intégrales suivantes convergentes,
démontrer que

H(Y) =
∫+∞

−∞
f (x) ln

ψ(x)

f (x)
d x −

∫+∞

−∞
f (x) lnψ(x)d x.

(233)

En déduire que H(Y) ≤ H(X). Interpréter ce résultat.

5.4 Introduction aux turbocodes

A. Rapport de vraisemblance logarithmique

Nous souhaitons transmettre des données binaires sur
un canal de communication bruité. Du point de vue du
canal ou du récepteur, on ne connait pas à l’avance la
valeur du bit qui va être transmis. Cette valeur peut donc
se modéliser par une variable aléatoire U de Bernoulli
pouvant prendre comme valeur 0 ou 1. Pour des raisons

d’efficacité, on préfère souvent transmettre comme
valeurs 1 et −1 au lieu de 0 ou 1 (c’est de la modulation
antipodale). On pose alors X = (−1)U qui est également
une variable aléatoire de Bernoulli, mais prenant comme
valeurs 1 ou −1 selon que que U vaut 0 ou 1.

Pour une variable de Bernoulli, on appelle rapport de
vraisemblance logarithmique ou LLR (log-likehood ratio)
la quantité

L(X) = log

(
P[X = 1]

P[X =−1]

)

Lorsque U est une variable aléatoire qui prend comme
valeur 0 ou 1, nous noterons de même

L(U) = log

(
P[U = 0]

P[U = 1]

)

Comme nous allons le voir, cette grandeur réelle permet
de connaître la valeur la plus probable de la variable
aléatoire et d’en mesurer la fiabilité. Dans toute la suite,
nous noterons p =P[X =−1].

1°. Effectuer l’étude complète de la fonction

f (x) = log
( x

1−x

)

2°. Démontrer que L(X) > 0 ⇐⇒ P[X = 1] >P[X =−1]

3°. Lorsque p varie de 0 à 1, déterminer les variations de
L(X). En quoi L(X) mesure-t-il la fiabilité des valeurs que
peut prendre X ?

4°. On définit la fonction sgn par

sgn(x) =





1 si x > 0
0 si x = 0
−1 si x < 0

Démontrer que L(X) = sgn(L(X))×|L(X)|, puis que
sgn(L(X)) est égal à la valeur la plus probable de X.

Lorsque l’on remplace L(X) par sgn(L(X)) pour donner la
valeur la plus probable de X, on dit que l’on a effectué
une décision ferme. La valeur obtenue est un entier.
Lorsque l’on travaille avec L(X) (qui est un nombre réel)
on dit que l’on effectue un décodage souple, car L(X)
conserve une information supplémentaire sur la fiabilité
de la valeur de X.

5°. Démontrer que





P[X = 1] =
eL(X)

1+eL(X)

P[X =−1] =
e−L(X)

1+e−L(X)
=

1

1+eL(X)

6°. En déduire que E[X] = tanh
L(X)

2
où tanh représente la

fonction tangente hyperbolique.

7°. On considère maintenant deux variables aléatoires
indépendantes U1 et U2, pouvant prendre comme
valeurs 0 ou 1. A ces deux variables correspondent deux
autres variables aléatoires X1 et X2 pouvant prendre
comme valeurs −1 et 1 et définies par X1 = (−1)U1 et
X2 = (−1)U2 . Expliquer rapidement pourquoi X1 et X229



sont indépendantes. Démontrer que l’addition modulo
deux de U1 et U2 (que nous noterons U1 ⊕U2)
correspond au produit des variables aléatoires X1 et X2.

8°. Déduire de la question 6° la règle des tangentes
hyperboliques :

tanh
L(X1X2)

2
= tanh

L(X1)

2
× tanh

L(X2)

2
Puis que

L(X1X2) = 2argtanh

(
tanh

L(X1)

2
× tanh

L(X2)

2

)

où argtanh représente la réciproque de la fonction
tangente hyperbolique. Afin de simplifier la formule
précédente, nous noterons plutôt L(X1X2) = L(X1)⊞L(X2)

Pour des variables aléatoires U1 et U2 prenant comme
valeurs 0 ou 1 nous noterons de la même façon
L(U1 ⊕U2) = L(U1)⊞L(U2).

9°. Dans le cas où p =P[X1 = 1] =P[X2 = 1] = 3/4, calculer
L(X1), L(X2) et L(X1X2).

10°. Montrer par ailleurs que L(X1X2) est égal à

log

(
P[X1 = 1]P[X2 = 1]+P[X1 =−1]P[X2 =−1]

P[X1 = 1]P[X2 =−1]+P[X1 =−1]P[X2 = 1]

)

B. Information extrinsèque.

Soit X la variable aléatoire représentant le bit émis à
l’entrée du canal et Y la variable aléatoire représentant le
bit reçu à la sortie du canal. Le lien entre X et Y est donné
par l’équation Y = X+B où B représente le bruit du canal.
Il s’agit souvent d’une variable aléatoire qui peut prendre
des valeurs discrètes (cas d’un canal binaire symétrique)
ou bien continues (cas d’un canal à bruit blanc
gaussien). Ainsi, la valeur du bit reçu pourra être
différente de la valeur du bit émis et n’est d’ailleurs pas
forcément égale à 1 ou −1 ; elle peut prendre comme
valeur 0.8, 1.2, −0.33, etc. Le récepteur aura pour tâche
d’essayer de retrouver la valeur émise [X = x] en ne
connaissant que la valeur reçue [Y = y]. Nous
introduisons à cet effet un peu de vocabulaire :

La vraisemblance a priori est la quantité

L(X) = log

(
P[X = 1]

P[X =−1]

)
. Elle ne dépend que du bit émis.

La vraisemblance a postériori est la quantité

L(X|Y) = log

(
P[X = 1|Y = y]

P[X =−1|Y = y]

)

Elle donne une information sur le bit réellement émis
sachant la valeur observée à la sortie du canal. C’est cette
quantité qui nous servira pour décoder les valeurs reçues
et décider des valeurs réellement émises.

La vraisemblance du canal est la quantité

L(Y|X) = log

(
P[Y = y |X = 1]

P[Y = y |X =−1]

)

1°. En utilisant la formule de Bayes, démontrer que
L(X|Y) = L(Y|X)+L(X) (⋆)

L’utilisation d’un code correcteur va permettre de
protéger l’information et d’essayer de retrouver les

valeurs émises, mêmes si celles-ci ont été modifiées par
le canal. Nous allons montrer que dans ce cas, apparait
dans le membre de droite de l’équation (⋆) un troisième
terme Le appelé information extrinsèque et représentant
le gain d’information, pour un bit reçu, apporté par le
décodage.

Pour illustrer le turbo décodage, nous allons utiliser un
code correcteur très simple que vous manipulez déjà : Le
bit de parité. Lorsque l’on doit transmettre deux bits U1

et U2 (qui peuvent prendre comme valeurs 0 ou 1), on
transmet également le bit U3 = U1 ⊕U2, qui permet de
vérifier que l’on a toujours U1 ⊕U2 ⊕U3 = 0. Ce faisant,
on crée une dépendance entre ces trois variables. En
terme de probabilité conditionnelle, la connaissance de
l’une d’elles modifiera donc la connaissance que l’on a
des autres.

Dans toute la suite, nous noterons EU l’évènement «
l’équation de parité (EU) est satisfaite », EV l’évènement «
l’équation de parité (EV) est satisfaite », etc. Par exemple
EU = [U1 ⊕U2 ⊕U3 = 0].

2°. Exprimer par une phrase en français l’évènement
EU |[U1 = 1] . Faire de même avec EU|[U1 = 0] et
[U1 = 1]|EU . la barre verticale signifie « sachant que ».

3°. Démontrer que

P (EU|[U1 = 1]) =P ([U2 = 1]∩ [U3 = 0]|[U1 = 1])+ ...

...+P ([U2 = 0]∩ [U3 = 1]|[U1 = 1])

et que

P (EU/[U1 = 0]) =P ([U2 = 1]∩ [U3 = 1]|[U1 = 0])+ ...

...+P ([U2 = 0]∩ [U3 = 0]|[U1 = 0])

Considérons les trois variables Y1,Y2,Y3 correspondants
aux valeurs reçues lorsque U1,U2,U3 sont émis sur le
canal. Les valeurs de Y1,Y2,Y3 sont donc les valeurs
observées à la sortie du canal. Afin de simplifier les
notations, nous noterons sous forme de vecteur
Y = (Y1,Y2,Y3) la loi conjointe de ces trois variables
aléatoires. Ainsi, si y = (y1, y2, y3) est un vecteur de R

3,

[Y = y] = [Y1 = y1]∩ [Y2 = y2]∩ [Y3 = y3]

Notons maintenant L(U1|Y) la vraisemblance a postériori

du bit U1, sachant les valeurs observées Y1,Y2,Y3 à la
sortie du canal et sachant que U1 vérifie l’équation de
parité U1 ⊕U2 ⊕U3 du code. La définition de L(U1|Y) est
la suivante :

L(U1|Y) = log

(
P[U1 = 0|EU ;Y = y]

P[U1 = 1|EU ;Y = y]

)

4°. A l’aide de la formule de Bayes et des questions
précédentes, démontrer que :

L(U1|Y) = L(Y1|U1)+L(U1)+Le (U1;EU)

avec

L(Y1|U1) = log

(
P[Y1 = y1|U1 = 0]

P[Y1 = y1|U1 = 1]

)

L(U1) = log

(
P[U1 = 0]

P[U1 = 1]

)
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Et le dernier terme qui représente l’information
extrinsèque apportée à U1 par U2 et U3 grâce à la
présence du code correcteur :

Le (U1;EU) =

log
(
P[Y2=y2;U2=1]×P[Y3=y3;U3=1]+P[Y2=y2;U2=0]×P[Y3=y3;U3=0]
P[Y2=y2;U2=1]×P[Y3=y3;U3=0]+P[Y2=y2;U2=0]×P[Y3=y3;U3=1]

)

5°. Si l’on omet les évènements relatifs aux valeurs
observées de Y2 et Y3, faites le lien entre cette formule et
celle de L(U2 ⊕U3) de la première partie et en déduire
que

Le (U1;EU) = [L(Y2|U2)+L(U2)]⊞ [L(Y3|U3)+L(U3)]

C. Le canal à bruit blanc gaussien additif.

C’est un modèle de canal de communication très utilisé.
On le note BABG en français et AWGN en anglais
(additive white gaussian noise). Le principe est le
suivant : On émet un bit, modélisé par une variable de
Bernoulli X, en entrée du canal et on suppose que la
sortie est donnée par une variable aléatoire Y = X+B où B
est une variable aléatoire qui représente le bruit du canal.
Dans le cas d’un canal BABG, B suit une loi gaussienne
dont la moyenne est nulle et la variance σ2 est
proportionnelle au rapport signal sur bruit du canal : Puis
le canal est brouillé, plus σ2 est important. Ceci signifie
que la valeur reçue après transmission sur le canal sera
un nombre réel plus ou moins éloigné de la valeur émise.

1°. Si X peut prendre comme valeur ±1, la densité φ1(y)
de B sachant X = 1 suit une loi N (1,σ2) et la densité
φ−1(y) de B sachant que X =−1 suit une loi N (−1,σ2)
(nous admettons ce résultat). Tracer soigneusement les
densités de ces deux variables aléatoires sur un même
graphique. Donner une interprétation géométrique à
l’évènement R1|E−1 =« le bit 1 a été reçu alors que −1
avait été émis ». Faire de même avec R−1|E1 =« le bit −1 a
été reçu alors que 1 avait été émis ». En déduire une
interprétation géométrique de l’évènement E =« il y a eu
erreur lors de la transmission ».

2°. Dans le cas où σ= 1, calculer, à l’aide de la table de la
loi normale, la probabilité qu’une erreur se produise.

3°. La formule de Bayes s’applique également aux lois
continues en remplaçant simplement les probabilités par
leur densité. Démontrer alors que





P[X = 1/Y = y] =
1

1+e−2y/σ2

P[X =−1/Y = y] =
1

1+e2y/σ2

Démontrer qu’il s’agit d’une loi de Bernoulli. Cette loi
conditionnelle permet de décider, au vue de la valeur de
y reçue sur le canal, si c’est un 1 ou un −1 qui a été émis.

4°. Démontrer que pour un canal BABG de variance σ2, la
vraisemblance du canal est

L(X|Y) =
2y

σ2

D. Principe du turbo-décodage.

Le principe du turbo-code est simple. On va présenter les
données en ligne et en colonne dans un tableau à deux
dimensions. On effectue un premier décodage en ligne
en réinjectant l’information extrinsèque obtenue par ce
décodage dans chaque bit. On effectue ensuite un
décodage en colonne en opérant de même. On itère ce
procédé en continuant à alterner décodage en ligne et
décodage en colonne jusqu’à que toutes les équations de
parité soient vérifiées. Une très bonne analogie est
donnée par un tableau de mots croisés. Vous pouvez lire
à cet effet l’article qui accompagne ce devoir.

Considérons alors les variables aléatoires de Bernoulli
indépendantes U1,U2,V1 et V2 qui représentent les
données à transmettre sur le canal. Définissons les
variables aléatoires U3,V3,S1 et S2 de telle sorte que :





U1 ⊕U2 = U3 (EU)
V1 ⊕V2 = V3 (EV)
U1 ⊕V1 = S1 (E1)
U2 ⊕V2 = S2 (E2)

Ainsi, U3 est le bit de parité de U1 et U2, V3 est le bit de
parité de V1 et V2, S1 est le bit de parité de U1 et V1, S2 est
le bit de parité de U2 et V2. Les équations précédentes
s’appellent des équations de parité. Nous les notons
respectivement (EU), (EV), (E1) et (E2). Disposons ces 8
variables aléatoires dans un tableau à double entrée :

U1 U2 U3

V1 V2 V3

S1 S2

Les équations de parité apparaissent à la fois en ligne et
en colonne. Nous pouvons également visualiser les
relations entre ces variables aléatoires à l’aide d’un
graphe, appelé graphe de Tanner du code :

U1

U2

U3

V1

V2

V3

S1

S2

EU

EV

E1

E2

•

•

•

•

•

•

•

•

⊞

⊞

⊞

⊞

Les symboles • indiquent les nœuds de variables et
représentent les bits, les symboles⊞ indiquent les
nœuds de parité et représentent les équations de parité.
La somme modulo 2 des bits reliés à une équation de
parité doit être nulle.

Aux 8 variables aléatoires émises correspondent 8
variables aléatoires reçues que nous noterons sous la
forme d’un tableau de nombre réels identique au tableau
précédent :

Y1 Y2 Y3

Y′
1 Y′

2 Y′
3

Y′′
1 Y′′

2

Les liens entre les vraisemblances des bits de données
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U1,U2,V1,V2 dûs aux codes de parité horizontaux sont
donnés par les relations suivantes :





L(U1|Y1) = L(Y1|U1)+L(U1)+Le (U1;EU)
L(V1|Y′

1) = L(Y′
1|V1)+L(V1)+Le (V1;EV)

L(U2|Y2) = L(Y2|U2)+L(U2)+Le (U2;EU)
L(V2|Y′

2) = L(Y′
2|V2)+L(V2)+Le (V2;EV)

avec





Le (U1;EU) = [L(Y2|U2)+L(U2)]⊞L(Y3|U3)
Le (V1;EV) =

[
L(Y′

2|V2)+L(V2)
]
⊞L(Y′

3|V3)
Le (U2;EU) = [L(Y1|U1)+L(U1)]⊞L(Y3|U3)
Le (V2;EV) =

[
L(Y′

1|V1)+L(V1)
]
⊞L(Y′

3|V3)

Les liens entre les vraisemblances des bits de données
U1,U2,V1,V2 dûs aux codes de parité verticaux sont
donnés par les relations suivantes :





L(U1|Y1) = L(Y1|U1)+L(U1)+Le (U1;E1)
L(V1|Y′

1) = L(Y′
1|V1)+L(V1)+Le (V1;E1)

L(U2|Y2) = L(Y2|U2)+L(U2)+Le (U2;E2)
L(V2|Y′

2) = L(Y′
2|V2)+L(V2)+Le (V2;E2)

avec





Le (U1;E1) =
[
L(Y′

2|V2)+L(V2)
]
⊞L(Y′′

1 |S1)
Le (V1;E1) = [L(Y1|U1)+L(U1)]⊞L(Y′′

1 |S1)
Le (U2;E2) =

[
L(Y′

2|V2)+L(V2)
]
⊞L(Y′′

2 |S2)
Le (V2;E2) = [L(Y1|U1)+L(U1)]⊞L(Y′′

2 |S2)

On remarque l’absence de L(U3),L(V3),L(S1),L(S2) dans
ces formules. En fait, comme nous allons le voir, ces
quantités sont nulles avec les hypothèses que nous allons
poser.

Il est temps de présenter l’algorithme de
turbo-décodage :

• 1°. Pour chaque variable T calculer la vraisemblance à
priori L(T), avec T = U1,U2,U3,V1,V2,V3,S1,S2.

• 2°. Effectuer un décodage de chacune des deux lignes
en calculant les informations extrinsèques horizontales
Leh(T) pour T = U1,U2,V1,V2.

• 3°. Mettre à jour l’information à priori de chaque
variable T = U1,U2,V1,V2 en posant L(T) = Le (T).

• 4°. Effectuer un décodage vertical de chacune des deux
colonnes en calculant les informations extrinsèques
verticales Lev (T) pour T = U1,U2,V1,V2.

• 5°. Mettre à jour l’information à priori de chaque
variable T = U1,U2,V1,V2 en posant L(T) = Le (T).

• 6°. Mettre à jour la vraisemblance à posteriori des
variables aléatoires T = U1,U2,V1,V2 en posant
L(Y|T) = L(T|Y)+Leh (T)+Lev (T).

• 7°. Calculer les valeurs les plus probables de
T = U1,U2,V1,V2 en prenant une décision ferme sur
L(Y|T).

• 8°. Si toutes les équations de parité sont vérifiées,
l’algorithme est fini, sinon retourner en 2°.

Passons maintenant aux questions de cette dernière
partie :

1°. On suppose les variables aléatoires U1,U2,V1,V2

équiprobables. Démontrer qu’alors les vraisemblances a
priori sont nulles :

L(Ui ) = L(V j ) = L(Sk ) = 0

∀i , j ,k.

2°. On souhaite émettre le message M = 1001 sur un canal
BABG dont la variance sera supposée égale à σ2 = 1. On
dispose ces quatre bits sous la forme d’un tableau à deux
lignes et deux colonnes en posant U1 = 1, U2 = 0, V1 = 0,
V2 = 1. Les transformer, par modulation antipodale, en
variables qui prennent comme valeurs ±1. Calculer les
bits de parité en ligne et en colonne et construire le
tableau correspondant (c’est une question facile).

3°. Après transmission sur le canal, les valeurs reçues
sont les suivantes :

−0.75 −0.05 −1.25
−0.1 −0.15 −1.0
−3.0 −0.5

Construire le tableau des vraisemblances à priori du
canal en utilisant les formules de la troisième partie.

4°. En faisant un petit programme sous Matlab, en
langage C ou Python, décoder le tableau reçu après
transmission et en déduire le message qui a été émis.
Vous donnerez l’évolution des valeurs du tableau de
vraisemblance au fur et à mesure des décodages
horizontaux et verticaux.
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