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1 Modeles statistiques et estimateurs

1.1 Révisions sur les lois et quelques calculs
classiques.

1°. Soit X une variable aléatoire de loi exponentielle de
parametre A. Déterminer la loi de Y = [X], partie entiére
deX.

2°. Soit Xy, ...,Xy, n va.i.i.d. deloi exponentielle de
parametre A et M, = Min(Xy, ..., X,;). Déterminer la loi de
M,,.

3°. Déterminer la loi du minimum de deux lois uniformes
sur [0, 1], indépendantes.

4°, Soit X une variable aléatoire suivant une loi de
Laplace. Déterminer la loi de Y = [X] et calculer P[X = 2],
PX<0], PIX=0].

5°. Soit X une variable aléatoire de loi uniforme sur
[-7t/2,m/2]. Déterminer laloi de Y = tanX.

1.2 Moyenne et variance de la moyenne et de
la variance empirique d’un échantillon.

On considere Xy, ...,X;;, n v.a.i.i.d. et 'on note X leur
moyenne empirique et S? leur variance empirique :

n

n
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(1)
1°. Déterminer la moyenne et la variance de X.

2°. Déterminer la moyenne et la variance de S2.

1.3 Calculs sur un échantillon uniforme

Soit X une variable aléatoire de loi uniforme sur [0,2a] et
Xj...,X;; un n échantillon de X. Soit X la moyenne
empirique des X; et M le maximum.

1°. Calculer E[X] et V(X).
2°, Calculer E[X] et V(X).
3°. Calculer E[M] et V(M).

4°. Comparer les résultats des questions 2° et 3°.

1.4 Moyenne et variance empirique d’'un
échantillon gaussien.

On considére le modele d’échantillonnage gaussien
Xi,..., X, de nv.a.ii.d. deloi A (m,c?) et 'on note X la
moyenne empirique et S? la variance empirique :
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1°. Parmi les variables aléatoires suivantes, lesquelles

sont des statistiques?

X2822nS%/022T=vn—-1X-m)/S?

2°. Déterminer le modeéle image par la moyenne
empirique.

3°. Déterminer le modeéle image par la statistique X,S%)
en opérant de la facon suivante : écrivez S2 comme
fonction de Y; = X; — X puis en déduire que S? est
indépendante de X; déterminer la loi de nS?/c?. Enfin,
écrivez le modele image sous la forme d’un triplet.

4°, Déterminer la loi de T.

1.5 Statistiques d’ordre.

On considére le modeéle statistique d’échantillonnage ot
2 est’ensemble des lois de probabilités définies sur
(R,B(R)). Soit F la fonction de répartition d'une loi P € £2.

1°. Quel est le modéle image par la statistique d’ordre
Xy =min;=; ,X; ? Par X = max;=1..,X;?

2°. Soit F, la fonction de répartition empirique du
n-échantillon. Déterminer le modele image par la
statistique nF,(x).

3°. Déterminer le modele image par la statistique d’ordre
Xy, pouri=1,..,n.

1.6 Exemples de modeles exponentiels.

Pour les différents modeles proposés, on note X la
variable des observations. Exhibez pour chacun une
mesure dominante, spécifiez si les modeles sont
exponentiels et dans I'affirmative, déterminez une
statistique canonique, un parametre canonique, puis
calculer I'espérance et la variance de la statistique
canonique.

1°. (X1,...,X;;) est un n-échantillon gaussien.
2°. X est issu d'un modele hypergéométrique.
3°. X est issu d'un modele binomial négatif.

4°. X =€+ (1 -€)Y o1 € ~ b(a) suit une loi de Bernoulli de
parametre a et Y ~ .A4'(0,1) est indépendante de €.

1.7 Statistiques de rang.

Soit X = Xy, ...,X;;) un n-échantillon issu d'un modele &2

de loi sans atome sur R. Le rang de X; est
R;(X) = card{j : X; = X;} 3)

) On note R(X) = (R; (X), ..., R X)).



1°. Faites le lien entre le rang et les statistiques d’ordre.
2°. Montrer que pour touti =1,...,n,0ona
n
RiX) =) Lix;—x;=20 4)
j=1
3°, Montrer que pour tout x € R”, R(x) est une
permutation de (1,2, ..., n) P-p.s.

4°. Quel est le modele image par R?

1.8 Loiuniforme : différents estimateurs
Soit (Xy,...,X;) un n-échantillon de loi uniforme sur [0, 0].

1°. Déterminez un estimateur 0; de 0 par la méthode des
moments. Ftudiez son biais, son erreur quadratique, sa
convergence.

2°. Déterminez un estimateur 0, de 0 par la méthode du
maximum de vraisemblance. Etudiez son biais, son
erreur quadratique, sa convergence. En déduire un
estimateur O3 de 6, sans biais.

3°. On suppose que n =2m+ 1. Déterminez un
estimateur plug-in 04 de 6. Ftudiez son biais, son erreur
quadratique, sa convergence.

4°. Quel est le meilleur des estimateurs précédents?
5°. On munile modele d'une loi a priori de densité :

1
n(0) = @]1]1,00[(9) (5)

Déterminez la loi a posteriori du modele et proposer un
estimateur 05 de 6.

1.9 Loiuniforme : encore d’autres
estimateurs.

On consideére un échantillon (X, ...,X;;) de loi uniforme
sur l'intervalle [0,0 + 1] ol1 6 est inconnu. On pose :

1
61 = Xn - E (6)
0, = min(Xy, ..., X,) @)
03 = max(Xy, ..., X,;) — 1 ®)

1°. Démontrer que 0, est'estimateur des moments de 6.
En déduire qu’il est sans biais; déterminer son erreur
quadratique et démontrer qu'’il converge au sens des
moindres carrés. Démontrer qu’il est fortement
consistant, puis qu'il est asymptotiquement normal
(A.N.) en précisant la loi limite et la vitesse de
convergence.

2°. Démontrer que 8 est un estimateur plug-in de 6.

3°. Déterminer
P[n®;-0) <x] €)

pour x variant dans R et en déduire la loi limite de
n(0, — 0) lorsque n tend vers 'infini. Préciser la vitesse de
convergence.

4°. Déterminer la fonction de répartition de 6, et sa
fonction de densité. En déduire son espérance et sa
variance. 8, converge-t-il au sens des moindres carrés?

5°. Démontrer que 03 est un estimateur plug-in de 6,
déterminer

P[n®;-6) < x] (10)

pour x variant dans R et en déduire la loi limite de
n(0s — 0) lorsque n tend vers 'infini. Préciser la vitesse de
convergence.

6°. Démontrer que la vraisemblance de I’échantillon est
maximale sur 'intervalle [x(,) — 1; x(1)]. En déduire un
estimateur du maximum de vraisemblance. Est-il
unique?

1.10 Loide Poisson : comparaison de deux
estimateurs.

Soit X une va suivant une loi de Poisson de parametre 6.
Soit (X, ...,X;) un n-échantillon de X.

1°. Déterminer deux estimateurs de 0 a partir de la
moyenne et de la variance de I’échantillon.

2°. Comparer ces estimateurs.

1.11 Loide Pareto : estimation du parametre
de position par trois estimateurs.
Soit 8 > 0 et soit X une variable aléatoire de densité
2

3t
f@= 9—3]1[0,9](1‘)

Soit (X3, ...,X5) un n-échantillon de X. On pose :

1 n
Sn==2 Xi, Tn=maxXy,... Xp)
i

etZ, = (X1..X,)""

1°. Déterminer la fonction de répartition de X, puis
calculer I'espérance et la variance de S,.

2°. Déterminer un estimateur sans biais S, de 0 de la
forme aS,,. Calculer sa variance et montrer qu’il
converge en moyenne quadratique vers 0.

3°. Donner une densité de T,, et démonter qu'’il converge
en moyenne quadratique vers 0.

4°. Calculer E [X'"], E[Z,] et déterminer a tel que
lim,— o E[Z,] =0 ou Z,, = aZ,. Calculer la variance et
en déduire la convergence en moyenne quadratique.

5°. Lequel de ces trois estimateurs est-il préférable de
choisir?

1.12 Loide Pareto : différents estimateurs.
Soit n = 3 un entier et o, § deux réels strictement positifs.
Soit X la variable aléatoire réelle de densité

(11

ap®
fo= m]l[tzﬁ]



On dit que X suit une loi de Paréto notée 22 (a, p).

1°. Déterminer la fonction de répartition F de X, son
espérance et sa variance.

2°. Déterminer la loi de la variable Y = In(X/p).

3°. On suppose o > 2 connu et on veut estimater 5. On
pose Z, = min(Xy, ...,X,). Déterminer la loi de Z,,, son
espérance, sa variance, puis déterminer un réel c, tel que
Z; = ¢, Zy, soit un estimateur sans biais de f.

4°. Montrer que Z, converge en moyenne quadratique
vers f.

On suppose maintenant § connu et on souhaite estimer
a. on pose

n

W,=——m— (12)
" Xr InXe/p)

5°. Déterminer la densité de ZZ=1 In(Xy/P), calculer

E[W,,] et en déduire que W, = ”T_IW,, est un estimateur

sans biais de a.

6°. Calculer sa variance.

7°. On suppose dans cette question que 1 <a < 2. On
effectue 402 observations de X et on trouve que

W2 = 1,4. Donner un intervalle de confiance pour o au
risque 0,05.

1.13 Loi uniforme: risques de différents
estimateurs.

Soit X une variable aléatoire de loi uniforme sur [0, 0] et
Xy, ...,X;) un n-échantillon de X.

1°. AT'aide de I'inégalité de Markov, montrer que si T, est
un estimateur de 6 asymptotiquement de risque nul,
alors la suite (T},),, converge en probabilité vers 0. En
déduire une condition suffisante sur I'espérance et la
variance de T, pour que cette suite converge en
probabilité vers 0.

2°. Soit S, la moyenne empirique des X;. Montrer que
W,, =2§,, est un estimateur sans biais de 6. Déterminer
sa variance et en déduire le risque quadratique. Montrer
qu'’il converge en probabilité.

3°. Soit Z,, = max(Xy, ..., X;). Déterminer sa fonction de
répartition, sa densité et son biais en tant qu’estimateur
de 0. En déduire un estimateur Y,, de 0 sans biais,
déterminer son risque quadratique et donner un
équivalent de ce risque quand n tend vers l'infini. En
déduire que Y,, converge en probabilité vers 0.

4°. On pose I, = min(Xy, ..., X,;). Déterminer sa fonction
de répartition F,,. Montrer que

0
Ell,] = e—f F,(t)dt (13)
0
Cacluler E[I,,], E[I2] et en déduire V(I,,).
5°. On pose
Zn—1
A, = nen—1in (14)
n-1

etD, =Z, —1,. Démontrer qu'une densité de D, est
donnée par

nn-1) 04"

hy (1) = on [

2" e ()

Vérifier que A, est un estimateur sans biais de 0, calculer
E[D,], calculer

+00
sz t*hp(Ddt (15)
0
et en déduire V(D). Calculer cov(Z,,1,), V(A,) et
donner un équivalent du risque quadratique de A,,.
6°. On pose, pour tout entier naturel z non nul,
1 n
n=— ZlnXk etT,=exp(L,+1) (16)

N

On pose également Y = InX. Montrer que Y posséde une
espérance et la calculer. Montrer que L, + 1 est un
estimateur sans biais de In®6.

7°. Montrer que

n
E[T,=exE|[]X}" a7
k=1
Monter que pour tout k=1,..,n,
n
E Xl/n — el/n 18
[ k ] n+1 (18)
et en déduire lim;,— ,» E[T;] = 0. Montrer que
n
E[T?] = e xE | [ X3 19)
k=1
En déduire que le risque quadratique de T, vaut
ro(Tp) =0 ¢ 2e +1] 20)
=T w2~ A+ 1n)n
puis que
02 1
rg(Tp)=—+o0|— 21)
n n

et déduire de ce qui précéde que (T,), converge en
probabilité vers 0.

8°. Donner pour chacun des estimateurs un équivalent
de leur risque quadratique et comparer les vitesses de
convergence, en probabilité, vers 6.

1.14 Loi demi-gaussienne : différents
estimateurs.

Soit X ~ .4 (0,02), ol1 ¢ est un paramétre inconnu que

I'on va chercher a estimer. Soit (X, ...,X;) un
n-échantillon de X. On note Y = [X] et Y; = |X;|. On pose
également
1 & 1 &
==YYets?== 22
= ; "= g (22)

Soit enfin V,, 'estimateur du maximum de
vraisemblance.

1°. Calculer E[Y] et V(Y).



2°. Déduire de D, un estimateur T, sans biais, de o, puis
montrer que T, converge en moyenne quadratique vers
0. Déterminer la loi limite de T, et construire pour ¢ un
intervalle de confiance asymptotique de niveau 1 —q,
avec € [0,1].

3°. Rappeler la loi de probabilité de S2, calculer son
espérance et sa variance. Démonter que

/ 1 1
E[S,]l=0 1——+0(—)
2n n

En déduire une valeur approchée de V(S,,).

(23)

4°. Expliciter la vraisemblance de I’échantillon et en
déduire I'expression de V,,. Monter qu’il est
asymptotiquement sans biais et qu’il converge en
probabilité vers o.

5°. Comparer T, et V.

6°. Construire un intervalle de confiance de niveau 1 — o
pour .

1.15 Durée de vie d'un systéeme.

Un systéme fonctionne en utilisant deux machines de
types différents. Les durées de vie X; et X, des deux
machines suivent des lois exponentielles de parametre
respectif A; et A,. Les variables aléatoires X; et X, sont
supposées indépendantes.

1°. Soit X une variable aléatoire réelle. Montrer que
X~EN)=>Vx>0, PX> x) =exp(—Ax)

2°. Soit t = 0. Calculer la probabilité pour que le systéme
ne tombe pas en panne avant la date ¢. En déduire la loi
de la durée de vie Z du systeme. Calculer la probabilité
pour que la panne du systéme soit due a une défaillance
de la machine 1.

3°. On dispose de n systémes identiques et fonctionnant
indépendamment les uns des autres, et dont on observe
les durées de vie 74, ...,Z,,.

a. Ecrire le modeéle statistique correspondant et la
vraisemblance associée. Le parameétre bidimensionnel
(A1, Ap) est-il identifiable?

b. Supposons que I'on observe a la fois les durées de vie
des systémes et la cause de la défaillance (machine 1 ou
2), notée T;. Ecrire la vraisemblance associée au nouveau
modele statistique. Le parametre bidimensionnel (A1, A7)
est-il identifiable?

Dans cette question, on considére un seul systéme
utilisant une machine de type 1 et une machine de type
2, mais on suppose que 'on dispose d'un stock n; de
machines de type 1, de durées de vie X},..., X]" etd'un
stock de n, machines de type 2, de durées de vie

X%, ...,XSZ. Quand une machine tombe en panne, on la
remplace par une machine de méme type, tant que le
stock correspondant n’est pas épuisé. Quand cela arrive,
on dit que le systeme tombe en panne. On note toujours

4

Zla durée de vie du systeme. Le cas n; = np =1
correspond donc a la premiere question (pas de stock).

a. Donner la loi de la somme de n variables aléatoires
i.i.d. de loi exponentielle de parametre A > 0.

b. Ecrire Z en fonction des Xt, Jj=L12,i=1,..,njeten
déduire P[Z = ¢]., en fonction de ¢, ny, ny, A1, Aa.

On note N le nombre de machines (des deux types
confondus) sorties du stock quand le systéeme tombe en
panne et Zj la durée écoulée avant la premiére panne
d’'une machine. On note Z; la durée écoulée entre la
i-éme panne et la (i + 1)-iéme panne. La durée de vie
totale du systéme est donc :

V4

™=

Z; (24)

=0

La (N + 1)-éme panne est donc la panne fatale au
systeme.

c. Montrer que les variables Z; sont i.i.d. et donner leur
loi. On pourra utiliser (apres I'avoir démontré et
interprété) le résultat suivant : si X est une variable
aléatoire de loi exponentielle de parametre A > 0, alors

Vs, 120, PX=s+(X=s]=PX=t]=e (25)

d. Préciser I'ensemble des valeurs possibles pour la
variable N et en donner la loi.

e. Montrer que N et Z; sont indépendantes. Calculer
E[Z|N] en fonction de N, A1, A, et en déduire I'expression
de E[Z] en fonction de E[N], A; et A,.

1.16 Loiexponentielle : différents
estimateurs.

Soit (X3, ..., X;) un n-échantillon de loi exponentielle de
parametre 1/6.

1°. Expliciter le modeéle.

2°. Estimer 0 par la méthode du maximum de
vraisemblance. Quelles sont les propriétés non
asymptotiques et asymptotiques de I'estimateur?

3°. Proposez un estimateur de 0 par la méthode des
moments.

4°. Soit Z le nombre d’observations de I'échantillon qui
sont supérieures ou égales a 2. Déterminez la loi de Z et
déduisez-en un estimateur dont vous étudierez la
convergence.

1.17 Loide Cauchy: différents estimateurs.

Soit Xy, ..., Xy) un n-échantillon de loi de Cauchy de
densité

1

1
fo) = T

T

(26)
1°. On veut estimer 0 par la moyenne empirique. Est-ce
un bon estimateur?

2°. Proposez un estimateur de 0 par la méthode des
moments.



3°. Proposez un estimateur plug-in de 0 a partir de la
médiane de I’échantillon.

4°, Etudiez I'estimateur du maximum de vraisemblance
de 6. Existe-t-il une solution explicite? Comment peut-on
établir sa consistance? Sa vitesse de convergence?

Soit Y, la v.a. représentant le nombre d’observations de
I'échantillon négatives ou nulles. On pose également
p(8) = Pg[X; < 0.

5°. Déterminer le modéle image par Y,, et en déduire un
estimateur p,, de p = p(0).

6°. Proposez ensuite un estimateur de 0 a partir de p,.
Etudiez ses propriétés asymptotiques.

1.18 Comportement asymptotique de la
variance empirique.

Soient (Xi,...,X;;) un n-échantillon d’'une variable
aléatoire X, telle que E[X*] < co (on notera p = EX],
0% =V(X) et V = V(X - p)?)). On considere les
statistiques suivantes :

_ 1 z”:
X, = =YX
nis
12 9
Vp = _Z(Xz_l.l)
niz
2 1 & T 32
S, = EZ(Xi_Xn)

I
—

On notera que V, est la variance empirique dans le cas
ol 'espérance est connue mais est incalculable. Le but
de I'exercice est de montrer que V,, et S ont le méme
comportement asymptotique.

1°. Montrer que
Vi (V= 02)~ A (0,V)
0 2 _1 2 _ 2
2°. Montrer que S, = . X7 | X5 =X,

P
3°. Montrer que S2 —— o2,

n—oo
4°. On suppose E[X] = 0, quitte a travailler sur les
variables centrées. Montrer, grace au théoréme de
Slutsky, que

V(S —0%) ~ N (0,V)

5°. En travaillant sur le TCL appliqué au couple aléatoire
()_(n,X%l) et en utilisant la delta-méthode, retrouver le
résultat précédent.

6°. Construire un intervalle de confiance 4 95% pour 2.

1.19 Modele a variable cachée.

On considere un ensemble de n individus donnés, au
sein d’'une population. A chacun de ces 7 individus est
envoyé un questionnaire, sur lequel il est demandé
d’indiquer depuis combien de temps l'individu n’est pas

tombé malade (sans compter une éventuelle maladie
actuelle). On modélise cette durée par une variable
aléatoire X;, de loi exponentielle de parametre inconnu
0. Cependant, tous les individus ne renvoient pas le
questionnaire. Pour chaque individu i, on considére une
variable aléatoire Z;, non observée, qui prend la valeur 1
sil'individu i a répondu au questionnaire, et la valeur 0
sinon. On suppose que pour chaque individu i, les
variables X; et Z; sont indépendantes, et que les couples
X1,Z1),..., Xy, Zy) sontii.d. On note p le parameétre
(inconnu) de la loi de Bernoulli des Z;.

On suppose qu’apres un traitement informatique des
réponses obtenues, on observe les variables
Y;=ZiX;+(1-Zj)a,i=1,...,n ol a est un réel positif
donné, arbitraire. En particulier, sil'individu i n'a pas
répondu au questionnaire, la valeur a est observée. On
notera Pg ;, la mesure de probabilité associée a la loi
d’une observation.

1°. Montrer que Py ;, est absolument continue
par-rapporta u =98, +A, ol1 §, est la mesure de Dirac en
a et A estla mesure de Lebesgue sur R. Calculer la densité
de Py , par-rapport a .

2°. Ecrire le modele statistique associé aux observations
(Y3,...,Yy,) et calculer la vraisemblance du modeéle par
rapport a la mesure dominante .

3°. Le couple (p, 0) est-il identifiable?

1.20 Processus de Poisson.

Soient 1y, ..., T, n v.a.i.i.d. de loi exponentielle de
parametre 0. Soit T,, = 1; +...+ 1, et

N; = Z ]I[Tngt] =inf{n: T, >t}

n=1

@27

1=0,0>0, neN*.
1°. Déterminer la loi de T}, et celle de N;.
2°.S0it T" =0 et T} = Ty,+». Monter que les variables

4 : (1 (1)
aléatoires (Tn 1Ty )n>1

exponentielle de parametre 6.

sont des v.a.i.i.d. de loi

On appelle processus de Poisson un processus de
comptage (X;) ;>0 stationnaire et a accroissements
indépendants, c’est a dire tel que :

¢ X;1s—Xs améme loi que Xy, Vs, = 0.
¢ X;+s—X; indépendant de (X)) <5, Vs, £ = 0.

3°. Démontrer que (N;) ;>0 est un processus de Poisson.

On souhaite estimer I'intensité 6 d'un processus de
Poisson, de deux manieres différentes.

4°. On suppose que 'on a observé le processus jusqu’au
temps t. Calculer la vraisemblance de I'observation et la
valeur 0 de 0 qui maximise cette vraisemblance. Montrer
que O est un estimateur sans biais de 0. En remarquant
que
(-1
N;=N;=Nig+ > (Njz1—Nj)
i=1

(28)



Montrer que

Nt t—+o0

— —0 (29)
t P-ps.
puis que
t (N 400
6(7&9)%3 N(0,1) (30)

5°. On suppose que I'on observe uniquement le n-iéme
instant. Calculer la vraisemblance de cette observation et
en déduire que I'estimateur du maximum de
vraisemblance est n/T,. En remarquant que

T, = Z;‘:_ll (T;+1 — T;), montrer que

1 n—tooy 31)
T, P-ps.
puis que
T .
\/5(97”—1) "5 400,1) (32)

1.21 Taux de hasard d’un processus.

On considere des temps d’arrivées (moments
d’occurrence d’'un phénomene, par exemple).
0=Tg<T1<Tr<...etX;:=T;-T;_1,i=1,les durées
inter-arrivées correspondantes. On parle d'un processus
de renouvellement quand les X; sonti.i.d. Dans ce cas,
on suppose alors que les X; admettent une densité f(x)
et’on note F(x) leur fonction de répartition et

R(x) =1 —-F(x) leur fonction de survie. On s'intéresse au
taux de hasard (hazard rate) définit par

fx)
B(x) = 33
(%) 1-F&) (33)
On souhaite estimer B(x) pour x €]0, +oo].
1°. Exprimer B(x) en fonction de R(x) et montrer que
P X=sx+h
M =Bx)h+o(h) (34)

PX > x]
2°. En déduire une interprétation de B(x).

On suppose a partir de maintenant que les X; sonti.i.d.
de loi exponentielle de parametre 0 et 'on considere les
deux schémas d’observation suivants :

Schéma d’observation 1 : on observe les n premiéres
arrivées, (X;;1<i<n).

Schéma d’observation 2 : On observe les arrivées jusqu’a
un temps T > 0 donné,

o0
(NT1;X;;1<i<Nrp) avec Nt:= Z Lir,<1)
i=1

3°. Définir les deux modeles statistiques correspondant.
4°. Calculer B(x) et interpréter le résultat.

5°. Pour le schéma 1, construire I’estimateur du
maximum de vraisemblance B; de B et expliciter la
vitesse de convergence de son risque quadratique
lorsque n — +oo.

6°. On se place dans le schéma 2. Quelle est la loi de Nt ?
Ecrire la vraisemblance et trouver un estimateur B, de B.

6

7°. On pose

(35)

Interpréter cet estimateur et expliciter la vitesse de
convergence de son risque quadratique quand T — +oco0.

8°. En déduire la vitesse de convergence de B; quand
T — +oo0.

1.22 Sondages et estimateur de
Horvitz-Thompson.

On consideére une population U ={1, ..., k, ..., N}. Un
sondage aléatoire consiste a sélectionnner dans U dans
un certain nombre d’individus, avec ou sans remise.
Dans toute la suite de cet exercice, nous supposerons que
la sélection se fait sans remise. Un échantillon s est donc
un sous-ensemble de U. On appelle plan de sondage,
une probabilité sur I’ensemble . de tous les échantillons
s possibles, obtenus a partir de la population U.

On notera S un échantillon aléatoire, c’est a dire une
variable aléatoire a valeurs dans .# et 'on notera

p(s) =P[S =] (36)

La taille n(S) = card(S) d’'un échantillon aléatoire est une

variable aléatoire.

On définit les variables aléatoires de Cornfield (1944)
par : quelque soit k € U,

8k = Likes) @37
et’on définit les probabilités d’inclusion simples et
doubles par : quelques soient k,l € U,

e =PlkeSl= > p(s (38)
seS:kes
JTk'IZUI[kES;ZES] (39)

1°. Démontrer que pour un échantillon sans remise, de
taille fixe n (on parle alors de sondage aléatoire simple),
ona

Y mp=n (40)
keu
2°. Calculer E[8;], E[8;0;], V(8y) et Ag; = cov(dy, d;).
3°. En déduire que
Y mgi=nm-1et ) Ay=0 41)

k,leU:k#l keU

On consideére un caractere x que I’on souhaite mesurer
dans la population. Ce caractere va étre estimé a partir
des valeurs qu’il prend dans I’échantillon. On peut donc
considérer que x est la réalisation d'une variable
aléatoire X définie sur U. On notera T (pour total) la
statistique

T=) X

keU

(42)

Le parametre 0 que ’on va estimer est donc le nombre
réel (déterministe) 0 = £ =} rcy Xi. En 1952, Horvitz et



Thompson ont proposé I’estimateur suivant pour
estimer la somme T
Xk

kes Tk

TX) = (43)

4°. Qu’est-ce qui est aléatoire dans la formule
précédente? Interpréter cet estimateur.

5°. Démontrer que si ;. > 0 Yk, alors T(X) est sans biais.

6°. Démontrer que

XX
T(X) kAl

> 2 = Ak

keu leu kT

(44)

7°. Montrer que si le plan de sondage est de taille fixe, on
a également la formule de Yates-Grundy (1953) suivante :

Xe  Xp)?

—- —) Akl
m

V(TX)=-=

(45)
2 1T k£ \ T

8°. Dans la population U = {1, 2,3} dans laquelle on
définit le plan de sondage p({1,2}) =1/2, p({1,3}) =1/4 et
p({2,3}) = 1/4, on considere une variable X définie sur U
par x; = x2 = 3 et x3 = 6 dont on veut estimer le total T.

Déterminer les probabilités d’inclusion simples et
doubles, donner la distribution de I'’estimateur de
Horvitz-Thompson T, calculer la variance de cet
estimateur. Donner la distribution de probabilité
d’un estimateur de la variance de T.

1.23 Estimateur du coefficient de corrélation
empirique.

Soit X1,Y1),..., X;;,Yy,) un n-échantillon d'un vecteur

(X,Y) dont le coefficient de corrélation linéaire est noté p.

Le coefficient de corrélation empirique est par définition
égala

x, f-%) )

_?)

Pn = 51172 (46)

n
i=1

(Xl' —}_()2 X Z?:l (Yi

oi1 X et Y sont respectivement les moyennes empiriques
des X; etdesY;.

1°. On suppose que X et Y ont des moments d’ordre 4.
Montrer que

Ve, —p) ~ A (0,c?) 47)

ol ¢ est une constante a déterminer en fonction des
moments de X et Y.

2°.Si (X,Y) est gaussien, montrer que c =1 - pz.
Déterminer une fonction différentiable v dont la dérivée
vaut (1-p?)~! et montrer que

Vi(en) —w(p) ~ A (0,1)

3°.SiX et Y sont indépendants et gaussiens, montrer que
la densité de p, est donnée par

1 (4
VAT (%2 2)(1_

Retrouver le résultat de la premiére question en
appliquant le théoréme de Scheffé a la densité de /np,.

(48)

2)(n74)/2

fo= (49)

Ty_110(0)
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1.24 Loi exponentielle et variable inobservée

On consideéere un n-échantillon X = (X, ...,X;;) d'une
variable aléatoire dont la loi a pour densité :

010,400 (1) (50)

f(x)=0e

avec 0 > 0 parameétre inconnu. On suppose que les X; ne
sont pas observés directement. La seule information
connue est le fait que X; soit supérieur a 2 ou non. On
poseY; =1 x,>p pouri=1,..,net

(1)

1°. Préciser la loi de Y; ainsi que celle de nY,. Calculer
E[Y;] en fonction de 6.

20

On souhaite estimer le parameétre 6. On pose A = e™“" et
~liny iY
9n={ 3 InY, s%Yn>0 52)
0 sinon.
2°. Calculer P |Y,, et en déduire
lim P[¥,#0|. (53)
n—+oo

3°. Démontrer que Y, converge presque slirement vers A
et que v/n(Y, — A) est asymptotiquement normal.
Préciser la variance de la loi limite en fonction de 6.

4°. Expliquer pourquoi Y, est différent de 0, presque
stirement, lorsque n suffisamment grand.

5°. Démontrer que 8, est fortement consistant et
asymptotiquement normal. Préciser la variance de la loi
limite en fonction de 6.

1.25 Loiexponentielle : estimation d’'un

couple de parameétres

Dans tout cet exercice, n est un entier naturel non nul.
Soient 6 =0, > 0 et f la fonction définie sur R par
x—0

p six=0,

Lo
B

0

fx) = (54)

sinon.

Soit (X3, ..., X5) un n-uplet de variables aléatoires réelles
mutuellement indépendantes et identiquement
distribuées, dont la loi a pour densité f.

1°. Vérifier que f est une densité d'une loi de probabilité.
2°. Calculer E[X;] et V(X)) en justifiant leur existence.

3°.On pose Y, = min(Xy,Xy,...,X;). Déterminer une
densité de Y. Calculer son espérance et sa variance.

4°. Y, est-il un estimateur sans biais de 6?
Asymptotiquement sans biais?

5°. Déduire des questions précédentes I'erreur
quadratique moyenne E [(Y,, — 0)?].

La suite (Y,,), converge-t-elle dans L?? En probabilité?.



. z 1
SoientS, =) X;etZ,=—S,-Y,.
i=1 h

6°. Calculer E[Z,]. Z, est-il un estimateur sans biais de §?
Asymptotiquement sans biais?

7°. Calculer V(Z,,) en fonction de cov(S,,Y;) et montrer
que V(Z,) tend vers zéro quand n tend vers I'infini. La
suite (Z,), converge-t-elle dans 122 En probabilité?

8°. Démontrer que le couple (@n,ﬁn) donné par
1 S
o)
n-1 n

1
(Sn - I’lYn)
n-1

B
(55)

Bn:

est un estimateur sans biais du couple (8, ). Calculer la
variance de 0,, et celle de f,,.

9°. Démontrer que

vn (Sn )
—|—-©+ 56
b 7 ©+p) (56)
converge en loi vers une variable aléatoire dont on
précisera la loi.
10°. Soit
n
T, = \/F_ Yn—0). (57)

Déterminer une fonction de densité de T, et étudier la
convergence en probabilité de T,.

11°. Démontrer que

N

p

converge en loi vers une variable aléatoire dont on
précisera la loi.

(Zn—p) (58)

On suppose 6 connu et I'on souhaite a nouveau estimer
B. Soit V; la variable aléatoire définie par V; = 1 si

X; =0+ 1 et 0sinon. On note V,, la moyenne empirique
desV;.

12°. Déterminer la loi de Z?Zl V; en précisant ses
parameétres. Démontrer que V,, est un estimateur de
Y (f), ou v est une fonction a préciser. En déduire un

estimateur de B, fonction de V,.

1.26 Loi puissance
On consideéere un n-échantillon Xy, ...,X;; d'une v.a. X dont
laloi a pour densité

1
2v x0

ol 0 > 0 est un parametre que I'on souhaite estimer. On
note X la moyenne empirique de I'échantillon.

fx)=

Tyo,61 (%) (59)

1°. Montrer que la fonction de répartition de X est,

quelque soit x €]0, 6],
F(x)= /= (60)
Ve

2°. Calculer la vraisemblance L(x1,..., x;,0) du
n-échantillon.

3°. Déterminer I'estimateur du maximum de
vraisemblance de 6. Le modeéle est-il régulier?

4°. On pose

01 = X(n = maxX; 61)

i=1
Déterminer la fonction de répartition F,, de @1 et montrer
que sa densité est donnée par

fn(x) =

zenlz (62)

x(n—2)/2]1]0,9] (x)

5°. Démonter que 0 est biaisé, mais asymptotiquement
sans biais. Calculer son risque quadratique et étudier la
consistance de cet estimateur.

6°. Démontrer que n (61 —8) converge en loi, quand n
tend vers l'infini, vers une loi de densité
X

20 (63)

1
h(x) = 20 exp( )111—00,01 (%)
Expliquer pourquoi 0 nest pas asymptotiquement
normal.

7°. Calculer Eg[X] et démontrer que I'estimateur des
moments de 0 est 0, = 3X.

8°. Démontrer que 62 est un estimateur sans biais de 0 et
que

~ 407
Vg(02) = — (64)
5n
En déduire que cet estimateur est consistant et que
. 402
Vn(0z2-0)~ A 0, — (65)
9°. Déterminer la limite en loi de la suite de v.a.
5 — 5
vn (%111(3}() - %me) (66)

1.27 Loi binomiale négative et loi de Pascal :
estimations de parametres

Dans tout cet exercice, n est un entier naturel non nul.
On considere une suite de v.a.i.i.d. (X;);>1 de loi de
Bernoulli de parameétre p €]0,1[. On notera g =1 — p.
Lévénement [X, = 1] représente un succes au n-ieme
tirage.

1°. Soit Y la variable aléatoire égale au nombre de tirages
nécessaires avant d’obtenir un premier succes.
Démontrer que

Vk=1,P[Y=k=qg""p.
Déterminer I'expression de I'espérance E[Y] et de la
variance V(Y) de Y, en fonction de p et q.

2°. On consideére deux v.a. indépendantes Y; et Y, de
méme loi géométrique de parametre p. On note
8 S =Y; + Y. Démontrer que



Vn=2, P[S=n]=(n-1)p>q" 2.

3°. Déterminer la probabilité conditionnelle
P[Y; = kIS = n]. Interpréter le résultat.

On note S, =Xj +...+X,; la somme des n premiers
tirages et T), le nombre de tirages nécessaires pour
obtenir n succes. On dit que T, suit une loi de Pascal de
parametres n et p.

4°. Reconnaitre la loi suivie par S, puis démontrer que
pour tout k = n,

[Th=kl=[Sk-1=n-1In[Xp =1].
5°. En déduire que

Vk=n, P[T, =kl = ( k-1 )p"qk‘".

n—1
6°.OnposeY; =T etpourtouti=2,Y; =T; -T;_;.
Montrer que les (Y;); forment une suite de variables de
loi géométrique de parametre p. Montrer qu’elles sont
mutuellement indépendantes et que

Tp=Y1+..+Y,.

7°. Déterminer E[T,,] et V(T},,).

8°. On note V, le nombre d’échecs dans la séquence (X;);
nécessaires avant d’obtenir z succes. On dit que V), suit
une loi binomiale négative de parameétres 7 et p.
Démontrer que pour tout n = 1, V, et T;, sont liées par la
relation suivante :

T,=V,+n.
En déduire que

Vk =0, P[Vn:k]:( k+Z_1 )p"qk.

On considére un couple de v.a. (X, A) dont la loi
conditionnelle de X sachant [A = A] suit une loi de
Poisson de parametre A > 0. On suppose que A suit une
loi gamma y(n,0) de parametres n € N* et 6 > 0, dont la
densité g est définie par

n-1

—t/0
To0o7° v (67)

Vi>0, gt) =

et I estla fonction Gamma d’Euler, définie pour z > 0 par

+00
I'(z) = f e tdr. (68)
0

On dit que la loi de X est un mélange Poisson-Gamma.
9°. Démontrer que la densité jointe du couple (X, A)
s’écrit :

n+k-1

—-A(1+1/0)
k!'T'(n) 6" ’

VA>0, k=0, f(k,\) = (69)

Déterminer et reconnaitre la loi marginale de X en
précisant ses parametres.

10°. Démontrer que

n—1
T,-1

]:pet[E n
T

> p,

n
apres avoir justifié de I'existence de ces espérances.

11°. On suppose p inconnu et on souhaite I'estimer a
partir des observations. Démontrer que la suite de v.a.
(n/T,), converge en probabilité et préciser sa limite. En
déduire un estimateur p de p. Est-il biaisé ? Proposer un
estimateur p non biaisé.

1.28 Convergences en loi et en probabilité de
suites de v.a.

Soit 0 un réel strictement positif. Toutes les variables
aléatoires sont définies sur un méme espace probabilisé
(Q,F,P). Soit (X;,) =1 une suite de variables aléatoires
réelles, mutuellement indépendantes, de méme loi
uniforme sur le segment [—0+/3,0v/3]. Pour n>1, on
pose:

S
Sn=Xi+..+X3, T,=1/22,
n
n
U, =Vn(T,-0), V= ‘;—;(Tf,—ez).

1°. Justifier le fait que X; possede des moments d’ordre 4,
puis calculer E[X}] et V(X?).

2°. Démontrer que (S, /n), converge en probabilité vers
02 et en déduire que (T,), converge en probabilité.
Préciser sa limite.

3°. Montrer que (V) converge en loi vers une variable
aléatoire Z suivant une loi normale centrée et de variance
8%/5.

4°. Démontrer que pour tout a réel non nul fixé,
?-a? (P*-a
2a 2a(x+a)?’

2)2

VxeRtelque x#—a, x—a=

5°. Montrer que U, =V, — W, ot W,, est une variable
aléatoire vérifiant, pour tout n =1,

n
V/_ (rz

2
205 (Tn =0

0=W, =<

6°. Montrer que

lim E[W,]=0,
n—+oo

puis que (W), converge vers 0 en probabilité.

Une fonction f: R — R est a support compact s'il existe
un intervalle K = [«, ] < R tel que pour tout x ¢ K,
fx)=0.

On rappelle qu’'une suite de variables aléatoires réelles
(U,), converge en loi vers une variable aléatoire réelle U
si, et seulement si, pour toute fonction f continue sur R
et a support compact, on a

dim E[1£(Un) - fU)I] =o0.

7°. Soit f une fonction continue sur R, a support compact
K. Démontrer I'existence de



M =sup|f(x)].

xeR
8°. Soit € > 0. Démontrer qu'il existe & > 0 tel que

E[1f (U - F(Vi)] s§+2Mx PIIW,| = 5.

9°. En déduire que
lim E[If(Un) - f(Va)l] =O0.

10°. En déduire que (U,), converge en loi vers une
variable aléatoire U dont on donnera la loi.

1.29 Analyse statistique d’'un réseau social :
estimation du nombre d’amis dans
facebook.

2 Information, exhaustivité,
optimalité

2.1 Exemples de statistiques exhaustives.

Dans chaque question, (Xy, ..., X;) un n-échantillon
d’une va X dont la loi est donnée. On cherche a
déterminer une statistique exhaustive.

1°. X est une va de loi uniforme sur [0, 0]. Déterminer une
statistique exhaustive pour 8. Montrer qu’elle est
complete. Est-elle admissible ? Efficace?

2°. X est une va de loi exponentielle de parametre A.
Démontrer que ) X; est une statistique exhaustive pour
A.

3°. X est une va de loi de Poisson de parametre 0.
Démontrer, de trois facons différentes, que S = Z?:I X;
est une statistique exhaustive minimale pour 8.
Démontrer que deux facons différentes qu’elle est
complete.

4°, X ~ N (m,0?). Soient X la moyenne empirique et

S= Zgl:lX? la somme des carrés. Soit T = (X,S). Montrer
que T est une statistique exhaustive pour le couple
(m,d?).

5°. Soit O > 0 et X une variable aléatoire de densité
0x

f(x,0)= 1,61 (x) (70)

0% _

La statistique S = Zfz 1 X; est-elle exhaustive?

2.2 Variables inobservées.

On dispose d’observations binaires (Y,...,Y,) i.i.d. qui
dépendent d'un phénomene sous-jacent. On modélise
cela par des variables aléatoires (Y f, ...,Y;) inobservées
qui sont des tirages i.i.d. suivant une loi normale (m, 0?).
Onadonc:

1 si YF>0
. _ ;
Vi Y {o si Yr<0
Y;.*~ N (m,0?)

1°. On note @ la fonction de répartition de la loi A/ (0, 1).
Exprimer la loi de Y; en fonction de .

2°. Ecrire le modele statistique associé aux observations
(Yl yeoe yYn) .

3°. Montrer que le couple (m, 02) n'est pas identifiable.
Quel parametre peut-on identifier? Ce parametre est
noté 0. Réécrire le modele statistique, avec 6 comme
nouveau parametre d’intérét.

4°. Trouver une statistique exhaustive et complete.

2.3 Procédé de capture / recapture.

On veut compter le nombre 0 de poissons dans un lac
fermé. Pour cela, on tire un poisson au hasard, on le
marque et on le remet dans le lac. On tire un second
poisson. S’il est déja marqué, on en prend note et on le
remet dans le lac. Sinon, on le marque a son tour et on le
remet dans le lac. Et ainsi de suite.

On tire n poissons selon la procédure ci-dessus. Au
n-iéme tirage, I'observation consiste en une variable
aléatoire Y, qui vaut 1 si le poisson est déja marqué, 0
sinon. Par définition, on a Y; = 0. Le but de I'exercice est
de montrer que :

n
Ry = ZYi
i=1

est une statistique exhaustive pour 6.

1°. Montrer que :

P[Yn =Yy Y1 = }’1] =

P [Yn =yulYn-1=yYn-1,...,Y1 = .VI]
x  P[Yn-1=yn-1Yn-2=Yn-2,-.,Y1=y1]

X

P[Y; =]

2°. Montrer que la loi conditionnelle de Y,, sachant
Yn-1=Yn-1,...,Y1 = y1 est une loi de Bernoulli de
parametre :

n—rp-1—1

0

et en déduire que la vraisemblance est proportionnelle a :

—i+ 147tV
0

(1)

n @
I
i=1

3°. Montrer que I’expression précédente se reécrit :

1 oe-1!
071 (0-n+ry)!

4°. En déduire que R;, est une statistique exhaustive pour
0

107



2.4 Information de Fisher.

Calculer, lorsqu’elle existe, I'information de Fisher dans
les modeles statistiques associés aux échantillons
suivants :

1°. Un échantillon de n v.a.i.i.d. de loi de Poisson de
parametre A :

/\k
P[X=k] :ef)‘F pour keN

2°. Un échantillon de n v.a.i.i.d. de loi de Pareto de
parametres a et 6 avec o > 1 et 0 > 0, de densité :

a—-1(06

1 o
fx)= o (;) 1 jx2g)

3°. Un échantillon de n v.a.i.i.d. de loi de Weibull de
parametres a et 6 avec a > 0 et 0 > 0 de densité :

flx) = afx® e 0%

4°, Un échantillon de » v.a.i.i.d. de loi uniforme sur [0, 0]
avec 0 > 0 inconnu.

2.5 Score.

On étudie une variable aléatoire réelle X, de densité
f(,0)oube R4 est un parametre vectoriel inconnu, et f
est supposée connue, de classe C! sur R x R,

1°. Quelle est le score du modele, noté Sx (x,0) 2 Donner
I'expression de I'information de Fisher Ix (0).

2°. Supposons que ’on ne parvient pas a observer X,
mais que seule est disponible la variable Y, définie par :

Y=1x=>g

ol s est un seuil connu. En supposant que I'on peut
intervertir [, et a%’ donner le score du nouveau modeéle,
noté Sy(y;0). En déduire que

Sy(3;0) =E[SxX;0)Y = yl,y € {0,1}.

3°. En déduire alors que Ix (0) >> Iy (0), ou Iy(0) est
I'information de Fisher associée a Y. Cette inégalité
s’entend au sens des matrices symétriques réelles. Quelle
interprétation pourriez-vous donner a 'inégalité
ci-dessus, dansle casoud =12

2.6 Estimation d'une fonction de survie.

On dispose de 1 observations indépendantes des durées
de vie de certains composants industriels. On suppose
que les variables aléatoires Y,...,Y, associées sont i.i.d.
de densité

F(t)=0e%1 12, (72)

11

ol 0 > 0 est un parameétre inconnu. Soit F la fonction de
répartition de Y;. On cherche a estimer la fonction de
survie de Yj, c’est-a-dire F(£) =1 — F(#), 4 un instant ¢
donné et connu.

1°. Proposer un estimateur ?(t) qui soit sans biais et
convergent quelle que soit la loi des (Y;);. Intuitivement,
cet estimateur est il optimal (parmi les estimateurs sans
biais) ?

2°. Calculer F(¢) en fonction de ¢ et 0.

3°. Calculer I'’estimateur du maximum de vraisemblance
de 0 et en déduire un estimateur convergent F(¢) de F(#).

On admettra par la suite que ﬁ(t) est biaisé.
4°, Calculer la loi limite de /72 (ﬁ(t) —f(t)).
5°. Soit T la variable aléatoire définie par :

T=1,>qg (73)

On note par ailleurs S =Y; +... + Y.

Déterminer la loi de Y; conditionnellement a S. Calculer
T* = E[T|S]. Comment s’appelle cet estimateur? Montrer
que T* est'estimateur sans biais de F(¢) optimal (parmi
les estimateurs sans biais). T* est-il efficace?

2.7 Loide Poisson : estimateur de la
probabilité que X = 0.

On s'intéresse a I'estimation de 0 = e~ = Pg[X = 0] basée
sur un échantillon (Xj, ...,X;;) de variables aléatoires i.i.d.
de loi de Poisson X ~ Z2(A). On considere les trois
estimateurs suivants :

61 = e‘i
02 = %Z?zlgl[xi:m (74)
O3=(1-1)

avecS=Y" X.
1°. Montrer que ces trois estimateurs sont convergents.

2°. Montrer que

n

2 Xi

i=1

E |0, =0,

(75)

2.8 Estimation par maximum de
vraisemblance
1°. Calculer I'’estimateur du maximum de vraisemblance

(e.m.v.) p de p dans le modele X; ~ B(p) et calculer la loi
limite de 7 (p - p).

2°. Calculer I'e.m.v. (fﬁ,&i) de (m, 02) dans le modele
X; ~ A (m,0?) et donner la loi limite du vecteur

5l

3°. Calculer I'e.m.v. (@, @) de (a, b) dans le modele
X; ~ % a, bl d'une loi uniforme sur [a, b]. Donner la loi
limite du vecteur
" —-a
-b

m-m

2 (76)

o2-0o
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2.9 Coordonnées polaires d’'un vecteur
gaussien.

Soit (X;,X») un 2-échantillon de loi A4 (0,02) ol1 62 est un
parametre inconnu. Soit (R, 0) le vecteur des
coordonnées polaires de (X;,X3); c’est a dire que

X; =RcosO et X, =Rsin®.

1°. Préciser le modele statistique, le modele image par T.
2°. T(X) est-elle une statistique exhaustive ? Complete?

3°. Montrer que R(X) est une statistive exhaustive par
deux méthodes différentes. Montrer qu’elle est complete.
Montrer que 8(X) est une statistique libre.

4°. Montrer que deux facons différentes que R et 6 sont
indépendantes.

5°. Calculer I'information de Fisher du modele.

2.10 Estimation du parametre d’'une loi de
Poisson.

On consideére un n-échantillon X = (Xy, ...,X;;) suivant
une loi de Poisson £2(A) de parametre A. On note
S=Y" X;jets=Y" x;.

1°. Préciser le modele statistique et calculer la
vraisemblance de I’échantillon.

2°. Montrer que S est une statistique exhaustive de
I'échantillon pour le parameétre A. Montrer qu’elle est
complete pour A.

3°. Déduire des questions précédentes un estimateur
sans biais de variance minimale (VUMSB) du parametre
A.

4°. Le modele est-il régulier? Si oui, calculer
I'information Ix (A) au sens de Fisher et en déduire un
estimateur efficace.

5°. On s'intéresse maintenant au parametre = e,

Quelle est la signification de 8?2 Démontrer que
0; = exp(X) est I'estimateur du maximum de
vraisemblance de 0 et qu'il est biaisé.

6°. Soient Y; = 1x,-0] . Montrer que Y; est un estimateur
des moments de 0 et qu’il est non biaisé.

7°. Déterminer la loi conditionnelle de Y; sachant S. En
déduire I'estimateur VUSMB 0, de 6.

8°. Lestimateur §2 est-il efficace?

9°. On considére maintenant I'estimateur 03 = Y, avec Y
moyenne arithmétique des Y;. Démontrer qu’il est
VUMSB et efficace pour 6.

2.11 Estimation du parameétre d’une loi
uniforme.

Soit X une variable aléatoire de loi uniforme sur [0, 0] et
Xy, ...,X;) un n-échantillon de X.

1°. Déterminer une statistique exhaustive du modele et
montrer qu’elle est compléte.
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2°. Expliquer pourquoi I'estimateur du maximum de
vraisemblance est fonction d’une statistique exhaustive
du modéele.

3°. Déduisez-en un estimateur 0 qui soit admissible pour
le risque quadratique parmi les estimateurs sans biais.

2.12 Maximumu de vraisemblance et
reparamétrisation.

Soit (X, ...,X5) un n-échantillon d’'une variable aléatoire
X de densite

fx,0) =001 -x)%11;(x) (78)

ol 0 > 0 est le parameétre inconnu.

1°. Déterminer a en fonction de 0 et calculer la
vraisemblance du modéele.

2°. Déduisez-en un estimateur du maximum de
vraisemblance de 0 et de 1/6.

3°. Soit Z; = —In(1 —X;). Déterminer la loi des Z;. Précisez
siles estimateurs obtenus précédemment sont biaisés ou
non. Sont-ils UMVUE?

4°, Calculer les bornes de Cramer-Rao associées a 0 et
1/0. Discuter I'efficacité des estimateurs.

2.13 Paradoxe de Basu

Exercice inspiré de Basu D.(1988) Stastical Information
and Likelihood, Springer-Verlag, N.Y.

Dans une urne contenant 1000 tickets, 20 sont marqués 6
et 980 sont marqués 100, o1 O est un nombre rationnel
strictement positif.

1°. Donner I'estimateur du maximum de vraisemblance 0
de 0 lorsque I'on tire un unique ticket de valeur X, et
montrer que P[0 =0) =0.98. Expliquer pourquoi on ne
pouvait supposer que 0 était un réel quelconque pour
calculer un estimateur du maximum de vraisemblance.

2°. On renumérote les tickets marqués 100 par a;0

(1 =<1i<980) ol1les a; sont des nombres rationnels
connus, deux a deux distincts, et compris dans
I'intervalle [10,10.1]. Donner le nouvel estimateur du
maximum de vraisemblance 0 et montrer que

P[0 < 100] = 0.02. Ce résultat vous semble-t-il paradoxal?

2.14 Parametres de position et d’échelle
d’une loi exponentielle

Soit f la densité de la loi exponentielle de parametre
0> 0, translatée de x € R,

1 X—«
f(00,0) = Sexp [‘T 1 o 4001 (X) (79)

On considere un échantillon de rn variables aléatoires
i.i.d. de densité f(x,a,0), o1 0 >0 et @ € R sont des
parametres inconnus.

1°. Donner 'e.m.v. (ix‘n,gn) de (o, 0).

2°, Calculer la loi de n(&, — «), pour n € N.



3°. Déterminer la loi limite de v/7(8,, — 8).

4°. Rappeler I'expression de la loi de la statistique d’ordre
X.=Xq),..-, X)) en fonction de f. En déduire la loi du
n-uplet

Xa),Xe) =Xy X —X(n-1)) (80)

et en déduire que @n et &, sont indépendants, pour n € N.

2.15 Loide Weibull et modele du taux de
chomage

On souhaite évaluer et analyser le phénomene du
chomage. Pour cela, on dispose de n observations sur les
durées y;,1 < i < n, pendant lesquelles des individus
sont restés sans emploi.

On suppose dans la suite que les variables aléatoires
correspondantes (Y;) e[y ,] sonti.i.d. et suivent une loi
de Weibull de parametres a et b. On rappelle que cette loi
est continue sur R, et admet la fonction de répartition
pour y >0

F(y;a,b) = l—exp(—ayh) (81)
On définit la fonction de survie par
S(=1-F» (82)

1°. Donner l'expression de la fonction de hasard du
modele.

2°. Quelle est en terme de chdmage I'interprétation de la
fonction de hasard ? Expliquer alors pourquoi il est
important de considérer le cas particulier ot cette
fonction est constante. Pour quelles valeurs des
parametres, la fonction de hasard est-elle constante?
Quelles sont alors les lois des durées de chomage?

3°. Etudier I'évolution de la fonction de hasard en
fonction de a, puis en fonction de b.

On suppose que b = 1. Le modele est alors uniquement
paramétré par a.

3°. Le modele est-il exponentiel ? Si oui, expliciter une
statistique exhaustive.

4°. Déterminer le vecteur du score et vérifier directement
qu'il est centré.

5°. Quel est 'estimateur du maximum de vraisemblance
ay de a? Est-il sans biais, y a-t-il surestimation ou
sous-estimation systématique?

6°. Déterminer la variance asymptotique de cet
estimateur ay.

On considere maintenant le cas ou1 a et b sont
quelconques (positives).

7°. Le modele est-il exponentiel avec une statistique
exhaustive dont la taille est indépendante du nombre n
d’observations? Si oui, expliciter une telle statistique.

8°. Ecrire les équations de vraisemblance. Sont-elles
résolubles sous forme analytique ?

9°. Donner la forme de la variance asymptotique de
I'estimateur du maximum vraisemblance (g, b)’ du
parametre (a, b)'.

10°. Comparer les estimateurs @ et ag lorsque b = 1.
Quelle conclusion en tirer?

On considere maintenant le cas de T observations
Y1,..., YT indépendantes, de lois respectives :

F(y;e*, 1), te[1,T], aeR (83)
11°. Déterminer la vraisemblance du modeéele, et vérifier
qu’elle est concave en a a (yy, ..., yr) fixé. En déduire
I'équation caractérisant I’estimateur du maximum de
vraisemblance ot de a.

12°. On note u; = y; — e~ %!

Uy.

. Donner l'interprétation de

13°. Montrer que I'équation de la vraisemblance
correspond a la condition d’orthogonalité de (u,, ..., ut)
etde 1,...,T pour un certain produit scalaire que 'on
précisera.

2.16 Virus et variables inobservées

On considere une population de » individus infectés par
un virus; on étudie leurs durées d’incubation (T;);=1.,,
dont on suppose qu’elle est observable. Pour modéliser
I'hétérogénéité de la population, on suppose qu’on peut
caractériser chaque individu 7 par un « facteur de risque
» inobservable, réalisation de la variable aléatoire A;, de
telle sorte que :

— Laloi de T;, conditionnellement a A;, estla loi
exponentielle de parametre A;.

— Les variables (A;);=1.., sont identiquement
distribués de loi I'(r, o), avec r > 2.

— les couples (T;, A;) sont indépendants entre eux.
1°. Donner la vraisemblance de (Ty,...,T;).
2°. Calculer, lorsqu’il existe, le moment d’ordre k [E[T{‘].

3°. Calculer I'information de Fisher du modele. Dans le
cas ol « est connu, calculer I'’estimateur du maximum de
vraisemblance de r. Que se passe-t-il si a et r sont tous
deux inconnus?

4°. On suppose a connu. Déterminer au moyen de la
méthode des moments un estimateur convergent de r.
Cet estimateur est-il sans biais ? Est-il asymptotiquement
efficace?

5°. On suppose a et r inconnus. En utilisant les deux
premiers moments de T;, trouver des estimateurs
convergents & et 7 de « et r. Donner la loi limite du
vecteur

(84)

T —E[T]
‘/ﬁ( T2 -E[T?] )

En déduire la loi asymptotique du vecteur (&, 7).



2.17 Parametres d’'une loi de Laplace

Soit X une v.a. de densité

[x—Al

h(x) = kexp (—T) (85)

oup>0,k>0AeR.

1°. Déterminer k et donner la fonction de répartition de
X.

2°.On poseY = (X — A)/u. Déterminer la densité de Y,
calculer E[X] et V(X).

3°. Soit (Xy,...,X;;) un n-échantillon de X. Déterminer des
estimateurs de A et p par la méthode du maximum de
vraisemblance, puis par la méthode des moments.
Etudier les propriétés de ces estimateurs.

4°. On suppose que A =0 et'on pose o =1/. 0 est
supposé aléatoire, de loi a priori y(1,a). Si a est connu,
déterminer un estimateur bayésien de o. Dans le cas
contraire, proposé un estimateur de a basé sur
I’échantillon (Xj,...,X},).

2.18 Introduction a apprentissage
supervisé.

On considere un n-échantillon de v.a.i.i.d.
Dn=171,....,2,} avec Z; = (X;,Y;). Les X; sont des
observations issues d'une v.a. X, ce sont les données que
I'on souhaite classer. Les Y; sont issues d'une v.a. Y et
sont les catégories auxquelles appartiennent les X; (on
dit également étiquettes ou labels). L'objectif de
I'apprentissage supervisé est de déterminer au mieux la
catégorie Y a laquelle appartient la donnée X
correspondante, a partir des seules observations de
I’échantillon Z1,...Z;,.

On suppose que les v.a. X sont issues d'un espace X, que
les v.a. Y sont issues d'un espace Y et I'on se donne une
loi de probabilité (inconnue) P sur'espace & = X x Y.

Une fonction de prédiction est un élément

geF =% (X,Y) qui associe une étiquette a une
observation. Pour mesurer la qualité de g, on définit
différentes fonctions de perte I : Y> — R, telles que

1(Y, gX)) mesure I'écart entre la vraie valeur Y
correspondant a X et la valeur g(X) prédite a partir de la
fonction g. Le risque de g est la valeur moyenne des
réalisations de toutes les pertes possibles. Autrement dit,

R(g) =Rp(g) =E[I(Y,g(X)] (86)

Le prédicteur de Bayes est I'élément g* de & qui
minimise la perte R(g).

Dans cet exercice, nous nous limitons au probléme de
classification binaire, c’est a dire que Y ne peut prendre
que deux valeurs : 0 ou 1. La fonction de perte naturelle
associée est alors la fonction

LY,Y') = Liyzy (87)
On note enfin

nx) =PY=1X=x] =E[YIX=x] (88)

Nous allons démontrer que

g% (x) = L>1/2) (89)
1°. Montrer que
PIY=gX)IX=x]= (90)
N1 g=1 + 1 —Nx)1Lgx)=0 (91)
2°. En déduire que
PIY # g* X)X =x] <P[Y # gX) X = x] 92)
et conclure.
3°. Montrer que le risque de Bayes R* = R(g*) vérifie
R* =EMX) A (1 -nX))] (93)
1
=5 (1=Ell2n®) - 111) 94)

avec x A y =inf(x, y).

4°. Montrer de fagon plus générale que quelque soit la
fonction f de X dans R, n(X) minimise I'erreur
quadratique lorsque f(X) prédit Y. C’est a dire, montrer
que

E[MX) -] <E[(f(X) - V)] (95)

5°. On prédit la réussite d'un étudiant a un examen en
fonction du nombre d’heures X passées a travailler. Y = 1
signifie que I’étudiant réussit son examen. On suppose
que

() = (96)

X+cC

ol ¢ > 0. Si X suit une loi uniforme sur [0, 4c], calculer R*.

2.19 Famille exponentielle sous forme
naturelle

On considere un n-échantillon Xy, ..., X;,, de X, v.a. de
carré intégrable et de densité

f(x,0) = h(x) exp(0x —y(0)) 97)
ouBe®cR, xeX, h(x)>0ety de classe C*.
1°. Montrer que W vérifie

() =1In ( f h(x)eexdp(x)) (98)

X
ol [ est une mesure dominante.
2°. Montrer que
W' (0) = Eg[X] et v (0) = Vo(X) (99)

3°. Déduire de la question précédente que Y/’ est
strictement croissante, puis qu’elle est inversible.

4°. Démontrer que I'’e.m.v. 0, est un estimateur des
moments, dont on donnera I’expression.

5°. En déduire une preuve directe de la convergence et de
la normalité asymptotique de 0,,.



6°. Retrouver le fait que I'e.m.v. est asymptotiquement
efficace.

7°. Montrer qu’'une loi a priori de la forme

7(0) = C(a,\) exp (ab — Ay(0)) (100)
pour des hyperparametres a > 0, A > 0, est conjuguée
pour le modele.

8°. On suppose que X suit une loi de Poisson de
parametre v. Montrer que le n-échantillon
correspondant est bien un modele exponentiel,
déterminer 'e.m.v. de 0 et en déduire 'e.m.v. de v.
Reconnaitre la famille de loi a priori.

9°. On suppose que X suit une loi Gamma de parameétres
o (connu) et f (inconnu) :

I'a

1O gy (0,000 (X)

B (101)

fx,pB)=

Calculer 'e.m.v. de p.

2.20 Loibinomiale négative

On considere un n-échantillon (X,...,X;,) de N, variable
aléatoire a valeurs entiéres de loi binomiale négative de
parametres p € [0,1] et r e N* :

k+r—-1

k (102)

Pm=m=( )u—m%k
k € N. On rappelle que N mesure le nombre de lancers a
pile ou face avec probabilité de faire pile égale a p, avant

d’obtenir exactement r piles.

1°. Démontrer que
pr

pr

(1-p)?

E[N] = 1 et V(N) = (103)

On suppose r fixé et connu et 'on cherche a estimer p.

2°. Proposer un estimateur des moments de p et donner
son comportement asymptotif.

3°. Montrer que le modeéle est exponentiel.

4°. Calculer 'e.m.v. de p. Déduire des questions
précédentes I'information de Fisher du modele (sans la
calculer).

5°. Montrer que I'e.m.v. est biaisé. Est-il néanmoins
possible d’en déduire un estimateur sans biais?

Montrer que la famille des lois Béta dont la densité est
donnée par

_T(a+Db

a-1.1 _ nb-1
_F(a)l“(b)t 1=0""Ty11()

f (104)
pour a >0, b > 0 est conjuguée pour ce modele. Donner
laloi a posteriori correspondant a un a priori de type

Béta.
On cherche maintenant a estimer p et r.

6°. Peut-on estimer ce vecteur par maximum de
vraisemblance ? Pourquoi?
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7°. On suppose maintenant que r est un réel positif et
I'on rappelle que les factorielles peuvent s’étendre aux
réels via la loi Gamma d’Euler en posant

_Tlk+r1)

( ) T KT

Donner les équations de vraisemblance vérifiées par
I'e.m.v. de (p, r). Admet-il une expression explicite?

k+r—1

k (105)

2.21 Echantillon de Bernoulli : estimateurs
du carré du parametre

On consideéere un n-échantillon X = (Xy,...,X;) d'une v.a.
de loi de Bernoulli de parametre inconnu 0 €]0, 1[.

OnnoteS, =Y"  X;.

1°. Expliquer succintement pourquoi le modele est
régulier.

2°. Calculer la log-vraisemblance /(x,08) de I'’échantillon
et en déduire l’eistimateur du maximum de
vraisemblance 0,, de 6.

3°. Montrer que cet estimateur est fortement consistant
et converge en moyenne quadratique. Démontrer que 6,
est asymptotiquement normal et que

V1 (6, —8) ~ A (0,6(1-6)) (106)
4°. On s'intéresse maintenant au parameétre A = 6.
Démontrer que 'estimateur du maximum de
vraisemblance de A est A, = (S,,/ n)2.

5°. Démontrer que A, est biaisé et calculer son biais.

6°. Démontrer que A » est fortement consistant,
asymptotiquement normal et préciser la loi limite de

VA, —A).

7°. Calculer I'information de Fisher associée a A, puis
démontrer que A, est asymptotiquement efficace.

8°. On cherche a construire un estimateur sans biais de A.
Pour tout i = 1,..., n, on note
Xei =Xy, Xi21,Xi41,--,X5) le vecteur formé des (n—1)
observations différentes de la ieme. On note A n(D)
I'estimateur du maximum de vraisemblance du modele
associé a X.;. Montrer que

)2

9°. Calculer V(S, —X;), en déduire E[(S,, — X;)?], puis
démontrer que I'estimateur

Sn_xi
n—-1

Xﬂﬂ:( (107)

~ n
T,=n\, -

(108)

n

-1 .
Y An(d)
i=1

est sans biais pour A.

2.22 FEchantillon de Bernoulli : estimateurs
bayésiens du parameétre et de son carré

On consideére un n-échantillon X = (X, ...,X;;) d'une
variable aléatoire de loi de Bernoulli de parametre



0¢€]0,1[. Onnote S,, = ;’zlx,- etX = S, /nlamoyenne
empirique de I'échantillon.

1°. Déterminer la vraisemblance du n-échantillon
Xj,..,Xy. Le modele est-il exponentiel ?

2°. Déterminer un estimateur 0, de 0 par la méthode du
maximum de vraisemblance, puis par la méthode des
moments. Que constatez-vous?

3°. Montrer que cet estimateur est fortement consistant
et converge en moyenne quadratique. Démontrer que 0,,
est asymptotiquement normal et déterminer la variance
de la loi limite.

4°. Déterminer un intervalle de confiance asymptotique
pour 6, de niveau 1 —a.

5°.0,, est-il exhaustif? Minimal? Complet?
6°. Le modele est-il régulier?

7°. Démontrer que 8, est un estimateur VUMSB (sans
biais de variance minimale) de 6.

8°. Calculer I'information de Fisher relative a 0 et
montrer que 0, est un estimateur efficace de 0.

On considere que la loi a priori de 6 est une loi béta
%(a,b), avec a, b € [0,1], dont la densité est donnée par

F(a + b) -1 b—1
0)=———09(1-0)"" 110 109
f© T@Tr®) ( ) 10,11(0) (109)
ou I est la fonction Gamma d’Euler donnée par
+0o
I(a)= f x* e dx (110)
0

On rappelle que 'espérance d’une variable aléatoire H de
loi béta est donnée par

(111)

9°. Déterminer la loi a posteriori de 0 sachant [X = x]. En

déduire que I'estimateur de la moyenne a posteriori peut
s’exprimer au travers de la statistique S ;. Montrer que cet
estimateur est biaisé, mais asymptotiquement sans biais.

10°. On suppose n > 2. On souhaite estimer la valeur de
02. Démontrer que Y =X;X» est un estimateur sans biais
de 62. Démontrer que T, =E[Y|S,] est un estimateur
sans biais de variance minimale pour 62.

11°. On se propose de calculer explicitement I’expression

de T,,. Calculer P[Y = 1|S,, = s] (on distinguera les cas

s<2ets=2). En déduire que
Su(Sp—1)

ne nn-1) (112)

[Sp=2]-

2.23 Loiexpontielle anglo-saxonne :
estimation non biaisée du parametre
d’échelle

On considere un n-échantillon X = (X, ...,,X;;) d'une v.a.
de loi exponentielle de parametre inconnu 6 > 0.

OnnoteS=Y"  X;et X = S/nla moyenne empirique de
I'échantillon.

1°. Déterminer l'estimateur des moments 0 de 0.

2°. Calculer la log-vraisemblance /(x,0) de I'’échantillon
et en déduire l'gstimateur du maximum ile
vraisemblance Oyry de 6, en fonction de X.

3°. Montrer que cet estimateur est fortement consistant.

4°. Al'aide des rappels, démontrer que

E [ L 0 (113)
S| n-1
et en déduire [E[@Mv]. Déduire que I'estimateur
T, =(n—-1)/S est non biasé.
5°. En calculant E[1/S%] comme précédemment,
démontrer que
2
V(T,) = (114)

n-2
En déduire que T,, converge en moyenne quadratique.

6°. Démontrer que Dyy est asymptotiquement normal et
que

Vi (Byy —60) ~ A (0,6%) (115)
7°. Déterminer une statistique exhaustive et complete
pour 6 puis en en déduire que T, est VUMSB pour 6.

8°. Expliquez pourquoi le modele est régulier (on ne
justifiera que les propriétés évidentes sans calcul) et
calculer I'information de Fisher [x (0) associée a 6 pour
I’échantillon X = (X3, ...,X},).

9°. T, est-il un estimateur efficace ? Asymptotiquement
efficace?

10°. On suppose maintenant que 6 suit une loi a priori
I'(a, ). Calculer la vraisemblance a posteriori du modele
et reconnaitre la loi de 0 sachant les observations. A
partir de la moyenne a posteriori E[II|X] déterminer un
estimateur bayésien de 0. Quelle est sa limite lorsque n
tend vers I'infini?

2.24 Echantillon de Bernoulli : estimation
bayésienne des puissances du
parametre

On considere un n-échantillon X = (Xj, ...,X},) d'unf v.a.
de loi de Bernoulli de parametre 6 €]0, 1[. On note X la
moyenne empirique de I’échantillon.

1°. Déterminer la vraisemblance du n-échantillon
Xj,..,Xy. Le modele est-il exponentiel ? (2 points).

2°. Déterminer un estimateur 0 de 0 par la méthode du
maximum de vraisemblance, puis par la méthode des
moments. Que constatez-vous? (2 points).

3°. Montrer que 0 est fortement convergent, sans biais et
asymptotiquement normal. (3 points).

4°, Est-il exhaustif? Minimal? Complet? (1 point).
5°. Le modele est-il régulier? (1 point).

6°. Démontrer que X est un estimateur VUMSB (sans
1 6biais de variance minimale) de 0. (2 points).



7°. Calculer I'information de Fisher relative a 0 (1 point).

8°. Montrer que X est un estimateur efficace de . (1
point).

9°. On considere que la loi a priori de 0 est une loi béta
%(a,b), avec a, b € [0,1], dont la densité est donnée par

I'a+b) ,_ _
0)=——-011-0)""1 0 116
f© T@Tr®) (1-6) 0,11 (0) (116)
ouI' est la fonction Gamma d’Euler donnée par
+00
F(a)zf x* e dx 117)
0

On rappelle que I'espérance d'une v.a. H de loi béta est
donnée par

(118)

Déterminer la loi a posteriori de 6 sachant [X = x]. En
déduire que 'estimateur de la moyenne a posteriori peut
s’exprimer au travers de la statistique S = 7, X;.
Montrer que cet estimateur est biaisé, mais
asymptotiquement sans biais. (2 points).

10°. On souhaite estimer, pour un entier k tel que
1 < k < n, lavaleur de 8. Démontrer que

k
Ye=[]X (119)
i=1

est un estimateur sans biais de 0%, Exprimer, sous la
forme d’une espérance conditionnelle, un estimateur
T =Ty, ,(X) sans biais de variance minimale pour ok. 3
points).

11°. Démontrer que
n—k
S-k

n -
( i ) représente le nombre de combinaisons de k

T nX) = Tis=k (120)

—_——
w3

éléments parmi . (2 points).

2.25 Modéele de Hardy-Weinberg

Un modeéle génétique des états attribue aux trois
génotypes aa (état 1), Aa (état 2) et AA (état 3) les
probabilités suivantes d’apparaitre :

p1=(1-0)?
p2 = 29(1 - 9)
p3 =062

(121)

ou 0 € [0, 1] est la proportion de I'allele A dans la
population. On consideére un échantillon de n
d’individus dans la population. On dénombre les effectifs
Xj, X3 et X3 des génotypes dans I’échantillon.

1°. Montrer que (p1, p2, p3) définit une mesure de
probabilité sur X = {1,2,3}.

2°. On suppose que X = (X3,X»,X3) suit une loi
multinomiale 4 (n, p1, p2, p3). Décrire le modele
statistique considéré.

3°. Quel est le modele image par X; ? En déduire le
modele image par X,, puis X3. Montrer que X, et X3 ne
sont pas indépendantes. Le modéle est-il dominé?

4°. Montrer que I'estimateur du maximum de
vraisemblance de 0 est

(122)

5°. Cet estimateur est-il de variance uniformément
minimale parmi les estimateurs sans biais ? Est-il
efficace?

6°. Déterminer I'’estimateur du maximum de
vraisemblance de p = (p1, p2, p3). Est-il sans biais?

2.26 Loide Paréto et estimateur de Hill

Economiste et sociologiste italien né a Paris en 1848,
Vilfredo Pareto est a 'origine de la loi de probabilité que
nous allons présenter dans cet exercice. Alors titulaire de
la chaire d’économie politique de I'université de
Lausanne (il succede a Léon Walras), Pareto s’intéresse a
la distribution et a la répartition des revenus dans les
différents pays d’Europe.

Disposant des données fiscales pour la France,
I’Angleterre, la Suisse, 1'Italie, la Russie et la Prusse, il
remarque que les inégalités de revenus varient fortement
d’un pays a l'autre, mais il met également en lumiére une
régularité statistique remarquable, vérifiée dans tous les
pays pour lesquels il dispose de données. Dans son «
essai sur la courbe de la répartition de la richesse » publié
en 1896, il écrit : « nous indiquerons par x un certain
revenu, et par N le nombre de contribuables ayant un
revenu supérieur a x (...). Tracons deux axes (AB) et (AC).
Sur (AB) portons les logarithmes de x, sur (AC) les
logarithmes de N. Il ressort une relation tout a fait
linéaire. » De ce constat empirique, I'auteur en déduit la
relation mathématique suivante :

log(N) =B—a xlog(x) © N = % (123)
Avec B =1og(A). Finalement, selon Pareto, le pourcentage
de la population dont la richesse est supérieure a une
valeur x est toujours proportionnelle a A + x*. C’est le
parametre o qui varie entre les différents pays et explique
des différences dans la distribution des revenus.

Aujourd’hui, la loi de Pareto est encore couramment
utilisée en économie ou en sociologie pour étudier les
inégalités de revenus dans nos sociétés. Elle a également
fait I'objet de multiples applications en gestion des
risques, actuariat, dans le domaine du management des
entreprises ou dans la gestion des flux de données sur
internet.

La densité d'une loi de Pareto 2?(q, ¢) est donnée par
(04

£60 = =5 Licool (9 (124)
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1°. Déterminer sa fonction de répartition.
2°. Calculer E[X] et V(X).

3°. Soit X = Xy, ...,X;;) un n-échantillon de Pareto. La
notation ~- signifie « converge en loi lorsque » tend vers
I'infini ». On pose

F(x) =P[X; = x] (125)

Vi=1,..,n. SiM, =maxXj,...,X;) et si F;, estla fonction
de répartition de M,,, déterminer le lien entre F, et F.

4°. Le théoreme de Fisher-Tippett assure qu’il existe deux
suites m, et o, > 0 telles que

M, —my,

~H (126)

On

Ou H suit une distribution de Gumbel, de Weibull ou de
Fréchet.

Démontrer que la loi de Pareto est dans le domaine
d’attraction de la loi de Fréchet, qui caractérise les
distributions a queues épaisses. Précisément, montrer,
enposant m,=0eto, = (nc)l/o‘ que

Fr(X0 0+ my) ~ & (127)

avec

G(x) = exp(—=x" )10, +00[ (%) (128)

¢ est la fonction de répartition d'une loi de Fréchet.

On peut paramétrer cette loi limite a I'aide d’'un
parametre y qui est 'indice de la loi et caractérise
I'épaisseur de sa queue :

H(x) = exp (—(1+yx) ™) (129)

y=1/a>0etl+yx>0.

Finalement, I'indice y de la loi extréme relative a une loi
de Pareto est exactement le parametre 1/a.

5°. Démontrer que 'estimateur de ¢ par la méthode du
maximum de vraisemblance est

n
= mi{lXi (130)
1=

et déterminer sa loi.

6°. On suppose maintenant ¢ connu. Démontrer que
I'estimateur du maximum de vraisemblance de «a est

1 x) 7
a=a8,=|=-YIn=
[L5n

(131)

7°. Montrer que Y; = In(X;/c) suit une loi exponentielle
de parametre 1/a.

8°. Déterminer la loi de

(132)

9°. Déterminer I'espérance et la variance de & et en
déduire un estimateur sans biais o* de a. Calculer sa
variance.

10°. Montrer que T est une statistique exhaustive et que
cette statistique est complete. En déduire que o* est
I'estimateur VUMSB de a.

11°. Montrer que @ et o* sont des estimateurs consistants
de a. Déterminer la loi limite de vz (@, — «) et

Vg — ).

12°. Montrer que I'estimateur des moments de o (lorsque
o >2) est

X

= (133)
X-c

a=a, =

oi1 X est la moyenne empirique de I’échantillon. Calculer
la loi limite de /n(a, — o).

On va donc supposer a partir de maintenant et sans perte
de généralité, que c = 1. Montrer que la fonction de
survie de X est donnée, pour x = 1, par:

Fx)=x¢ (134)
13°. X = (X3, ...,X,;) étant toujours un échantillon de loi de
Pareto, notons X . = (X(y), ..., X(n)) sa statistique d’ordre,
avec maxX; = X > ... > X = minX;.

Pour un entier k € [1..n— 1], on définit 'estimateur de
Hill par

1 & X
Hk=—Zln (n—i+1)
k=

1

(135)
Xn—k)

Il est défini a partir des k + 1 valeurs les plus élevées de
I'échantillon et dépend également de n via la valeur de

k = ky qui doit étre estimée. Formellement, on se donne
un seuil élevé s = X(;,_) et on ne garde que les k plus
grandes valeurs qui excedent ce seuil. Lorsque k = n, que
s est fixe, déterministe et égal a ¢, on retrouve
I'expression de 'estimateur du maximum de
vraisemblance donnée a la section précédente.

L'estimation de I'indice de la queue d'une distribution
dans le domaine d’attraction de la loi de Fréchet est ala
source de nombreuses publications. Le probleme est
alors I'estimation de y = 1/« pour une loi vérifiant

Fo)=x"""Lx) (136)

ol L(x) est une fonction a variation lente vérifiant, pour
tout x >0,

L(tx)
im =1
t—+oo L(x)

(137)

Le cas qui nous intéresse est celui d'une loi de Pareto
stricte. On a alors L(x) = 1 qui correspond au cas le plus
simple de fonction a variation (tres) lente. De facon
générale, on peut considérer des distributions pour
lesquelles, par exemple, L(x) =lnx. Dés que la
distribution s’éloigne de la loi de Pareto stricte, les
propriétés de I'estimateur de Hill ne sont plus les mémes
et des biais apparaissent. Dans la suite, nous
présenterons a cet effet le « Hill horror plot » qui visualise
I'augmentation du biais au fur et a mesure que le nombre

8d’observations retenues augmente.



Lorsque la suite d’entiers k;,, — +oo et k,, = o(n) alors Hy
est un estimateur faiblement consistant de y = a~!. Sila
convergence de k, vers 'infini est suffisamment lente
(par exemple si k, = [n¥] avec 0 < v <1 ou si

k,/Inlnn — +oo) alors la consistance forte est également
acquise.

Par ailleurs, sous certaines conditions supplémentaires
appelées « hypothéses de variations régulieres au second
ordre », 'estimateur est asymptotiquement normal :

Vkn (Hy, =) ~ A (0,Y%) (138)
Ces conditions suffisantes portent a la fois sur la forme
de la fonction a variation lente L(x) et sur la suite kj,.
L'une des conditions, appelée condition de Von Mises
impose a L de vérifier

xF' (x)

im ——=« (139)
x—+o00 1 —F(x)

Cette condition est vérifiée, par exemple, lorsque F
appartient a la classe de Hall, c’est a dire lorsque

F(x) =cx™® (1 +bxP+o (x‘ﬁ)) (140)

avec ¢, o, > 0.

Pour une loi de Pareto stricte, la condition de Von Mises,
est vérifiée pour tout x, et pas seulement a la limite (b et
le reste sont exactement nuls) et la loi de Pareto
appartient a la classe de Hall. Mais surtout, I'estimateur
de Hill associé est sans biais pour toute valeur de k (et
donc également asymptotiquement). Pour le démontrer,
on note

InX) =YY (141)
En considérant le vecteur Y = (Y(y), ..., Y(k+1)), montrer
que le vecteur des écarts entre deux coordonnées
successives Y(;) — Y(;—1) posseéde des coordonnées
indépendantes qui suivent une loi exponentielle. En
utilisant la décomposition de Rényi des statistiques
d’ordre exponentielles, montrer que

Yi) = ; % (142)
En déduire que
= %i (Yor-isn) = Yin-ty) = %éé% (143)
Puis démontrer que
= Hi = % i i~ %F(k, 1) (144)
Conclure que
EHil =y (145)

Montrer que Hy converge presque sirement vers y et
déterminer la loi limite de vk(Hy - Y).

3 Estimation par régions de
confiance

3.1

On souhaite estimer la durée de vie d'un composant
électronique. On dispose d'un échantillon des durées de
vie de 10 composants. La moyenne empirique de cet
échantillon est de x = 1.3 années, et la variance
empirique non biaisée est de s*> = 0.0796.

1°. En considérant que la durée de vie d'un composant
suit une loi normale A (m, 52), déterminer un intervalle
de confiance de niveau 1 — a = 0.99 de la valeur moyenne
m de la durée de vie de ce composant.

2°. Déterminez un intervalle de confiance de o2 au risque
0.9.

3°. On considere le modele bayésien Xy, ..., X, de v.a.i.i.d.
~ A (m, %) ot m est un paramétre dont la loi a priori est
A (1,1). Construisez un intervalle de crédibilité de
niveau 0.99 pour m.

3.2

Deux candidats A et B se présentent a un scrutin. Tous les
inscrits votent et le bulletin blanc est proscrit. Un
sondage sur n = 100 personnes est alors effectué afin
d’anticiper I'issue du vote. Sur les 100 personnes, x = 60
pensent (et disent qu’ils vont) voter pour A. On veut
inférer le pourcentage de votants pour A.

1°. Proposer un modele statistique adapté.

2°. Donner un intervalle de confiance de niveau 0.99 sur
le pourcentage de votant pour le candidat A. Cet
intervalle est-il informatif pour vonnaitre I'issue du vote?

3°. Quelle serait la taille minimale de I’échantillon pour
qu’'un intervalle de confiance de niveau 0.95 soit de
longueur inférieure a 0.6?

3.3

On considére le modele d’échantillonnage Xy, ...,
vaiid. ~2\),A>0.

Xn;

1°. Etudiez la vitesse de convergence de I'e.m.v.
Déduisez-en un intervalle de confiance asymptotique de
niveau 1 — a pour A.

2°. On consideére maintenant le modele bayésien d'un
n-échantillon Xj, ...,X;, de loi de Poisson Z22(\) ou A suit
une loi a prioriy(a, b). Construire un intervalle de
crédibilité pour A.

3°. Application numérique: n =10, y =6, a =0.1,
a = b= 1. Comparer les deux procédures.

3.4
On considére le modele d’échantillonnage Xy, ..., X, de
v.a.i.i.d. dont la densité est

f(x,0) = ™01 00 (x) (146)



0eR.

1°. Montrer que 0 est un parametre de position pour }_X;
et en déduire un pivot dont on précisera la loi. A partir de
ce pivot, construisez un intervalle de confiance de niveau
o pour 6.

2°. Méme question pour T = X(j), minimum de
I'échantillon.

3°. Quel intervalle de confiance est meilleur?

3.5

Au sein d'une population donnée, on s’intéresse a la
probabilité p d’étre contaminé par une personne
contagieuse. On note g = 1 — p ete > 0. On considere un
n-échantillon (Yy,...,Y;;) d'une v.a. de Bernoulli Y de
paramétre p. On note Y, la moyenne empirique de
I’échantillon.

1°. Démonter I'inégalité de Tchebychev.

2°. Monter que Y, est un estimateur sans biais de p et
déterminer son risque quadratique.

3°. Monter que [?n —V5in, Y, + \/5/n] est un intervalle
de confiance de p de niveau 0, 95.

4°. Soit 0 > 0. Etablir que :

P[Y, - p =€l =P[e"n > ¢m0p+0) (147)
5°. Soit g la fonction définie sur [0, 0] par
g(x) =In(pe* +q) (148)
Démontrer que
PIY, - p=¢] < 8O0+ (149)

6°. Montrer que g est de classe C? et vérifier pour tout
x =0, 'inégalité |g"” (x)| < 1/4. En déduire que

2@ <0p+6%/8 (150)

7°. AT'aide des questions précédentes, établir 'inégalité

—2ne?

PY,-p=¢el<e (151)
8°. On pose
S
Wy==3 (1-Y)) (152)
iz
Majorer P IV_V,, -ql= e].
9°. Déduire des questions précédentes I'inégalité
PW, - pl=¢] < e 2" (153)

10°. Pour € = v/1,844n, en déduire une nouvel intervalle
de confiance au niveau 0,95 et le comparer a I'intervalle
de confiance obtenu précédemment. Conclure.

3.6

Soit (X, ...,X5) un n-échantillon d’'une variable aléatoire
X de densité

1
gx) = 5(1 +0x)1-1,11(x) (154)

0el-1,1[

1°. Construire un estimateur 0 de 6 en utilisant la
méthode des moments. Calculer son biais et son risque
quadratique moyen.

2°. Déterminer la loi limite de 8 et en déduire un
intervalle de confiance asymptotique pour 6 au niveau
1-a.

3.7

Soit (X, ...,X;;) un n-échantillon d’'une variable aléatoire
X de densité exponentielle de parametre A.

1°. Montrer que M, = A max?=1 X; est une variable
pivotale pour A. En déduire un intervalle de confiance au
niveau 1 —a pour ce parametre.

2°. Construire un intervalle de confiance pour A au
niveau 1 — « en utilisant la moyenne empirique X.

3°. Déterminer la loi limite et la vitesse de convergence
vers cette loi de I'estimateur 1/X. En déduire un
intervalle de confiance asymptotique pour le parametre
A, auniveau 1 —a.

3.8

Soit (X, ...,X5) un n-échantillon d’'une variable aléatoire
X dont la densité est

xIn6
glx) = e)CT/211[0,+00[(JC) (155)
ol 6 > 1. On pose également
B=exp (HZ—nXZ (156)
i=14%

1°. Calculer les moments d’ordre 2 et 4 de la loi de X.
2°. Montrer que 0 est biaisé et consistant.

3°. Déterminer sa loi limite et la vitesse de convergence
vers cette loi.

4°. Déterminer un intervalle de confiance asymptotique
pour 6 au niveau 1 — a.

3.9

Comme test de fiabilité de composants électroniques, on
effectue n tirages indépendants avec remise, dans
différents lots, jusqu’a sélectionner un composant
défectueux. On passe alors au lot suivant. On cherche a
estimer le pourcentage de composants défectueux.

1°. Déterminer le modeéle statistique associé et construire
un estimateur de la proportion de composants

0défectueux. En déduire un intervalle de confiance



asymptotique (sur le nombre d’expériences) pour la
proportion de composantes défectueux.

2°. Donner un estimtateur sans biais du nombre moyen
de composants tirés au cours des n expériences. En
déduire un intervalle de confiance asymptotique (sur le
nombre d’expériences) pour le nombre moyen de
composants tirés.

3.10

Soit (Xy, ..., X5) un n-échantillon de loi exponentielle de
moyenne A.

1°. Déterminer un pivot fondé sur la statistique
S= Z?:l X;.

2°. En déduire un intervalle de confiance de niveau 1 — «
pour A.

3.11

Soient (X, ...,X,) et (Yi,...,, Y;;) deux échantillons de
v.a.i.i.d. indépendants entre eux, de lois normales
respectives JV(ml,oi) et A (my, 0%). On souhaite
estimer le rapport des variances r = 0% / 0%, les moyennes
étant également inconnues.

1°. Donner un pivot suivant une loi de Fisher.

2°. En déduire un intervalle de confiance au niveau 1 — a
pour r.

3.12
On considere une v.a. X de densité

£(x,0)=0x""1)91((x) (157)

1°. Construire un intervalle de confiance pour 6 > 0 en
utilisant un pivot calculé a partir de la fonction de
répartition de X.

2°. Montrer que l'intervalle le plus petit de niveau 1 —a a
nécessairement une borne inférieure nulle.

3.13

On considere une variable aléatoire X de loi de Poisson
de parametre A, une variable aléatoire Y suivant une loi
gamma I'(y + 1, z) et une variable aléatoire Z suivant une
loi du x? 2 2(y + 1) degrés de liberté.

1°. Démontrer que

Px[0, y] =Pz[Az, +o0 (158)

en déduire que

Px[0, y] = Pz[2A, +o0] (159)

2°. Soit (X, ...,,X;;) un n-échantillon de X dont le
parametre A est inconnu. Déterminer un intervalle de
confiance de niveau 1 — a pour ce parameétre en utilisant
un pivot fondé sur la statistique S = 17" | X;.

3°. Montrer qu'un intervalle (1 — «) crédible pour A
peut-étre aussi fondé sur les quantiles d’une loi du x?

lorsque 'on prend pour loi a priorila loi exponentielle de
parametre 1.

4°. A.N. au cas ou n =50, S a pour valeur observée s =5 et
a=0.1.

5°. Soient f(x, d) la densité d’'une loi du x? a d degrés de
liberté. Montrer que pour tout a > 0, si p > q alors
fla,p)> fla,q).

6°. En déduire que si p > ¢, alors les quantiles supérieurs
d’ordre a de ces deux lois sont dans le méme ordre.

7°. Comparer les longueurs des intervalles de confiance
et des intervalles de crédibilité correspondants.

3.14

Soit X une v.a. de Bernoulli de parameétre p €]0, 1[. On
considere une suite de v.a.i.i.d. (X;); de méme loi que X.
On note également S, = Y.} X.

1°. Soit ¢(s) = E[e*X] la fonction génératrice de X.
Calculer ¢ en justifiant de son existence.

2°. Déterminer la loi de Sy /N. Pour un réel s, montrer que

E exp(ssﬁN)] = (¢(§))N (160)
3°. Soit a €]0, 1[. Soi s > 0. Montrer que
E |exp (SSWN) >e® xP SWN >a (161)
4°. Montrer que, pour tout s =0,
S s)\N
p EN >al< ((p(ﬁ)) e 4s (162)

5°. On suppose que a > p. Etudier les variations de
14(s) = as —Ind(s) et donner la valeur du maximum
strictement positif 2(a, p). Montrer que

PN > g < e Ni@p) (163)

6°. On suppose que a < p. Déterminer la loi de la v.a.
N - Sn. Montrer que

P|2N < g| < e NMA-al-p) _ p~Nh(ap) (164)

7°. Soit € > 0. Déduire des questions précédentes que

8°. Déterminer

S
lim IP’HWN—p >¢ (165)

N—+oo

9°. On effectue un test de fiabilité pour des composants
dont la probabilité d’étre défectueux est p. On préleve un
échantillon de n = 1 composants. Pour tout i = 1,..., n, on
définit X; qui vaut 1 lorsque I'objet est défectueux et 0
sinon. On suppose que les X; sont indépendants.
Montrer que Fy = Sn/N est un estimateur sans biais de

p. Calculer le risque quadratique
N =E[(Fn - p)?] (166)

et déterminer limy_. ;o0 7'N.-



10°. Soit a €]0, 1[. On souhaite définir un intervalle de
confiance du parametre p inconnu, au niveau de
confiance 1 — q, a partir de I'’échantillon. Quelle est la
limite en loi de la suite
Fn -p )
n>0

(\/N vpa-p)

Soit f;, laréalisation de Fy sur I’échantillon considéré.
Soit ¢ le quantile d’ordre 1 — a/2 d’une loi normale
centrée réduite. Montrer qu'un intervalle de confiance de
p auniveau 1 — « est donné par [Uy, V1, avec
vskip-5mm

(167)

Un=fn— (168)

2vVN

3.15 Inégalité de Hoeffding

etVszN+

2vVN

Dans cet exercice, n désigne un entier naturel non nul.
Soient a et b deux réels tels que a < b. Toutes les
variables aléatoires sont définies sur un méme espace
probabilisé (Q, #,P). Soit X une variable aléatoire a
valeurs dans [a, b] et soit (Xj, ..., X;) un n-uplet de
variables aléatoires réelles mutuellement indépendantes
et identiquement distribuées, de méme loi que X. On
note X,, la moyenne empirique de I'échantillon :

_ 12
Xn==) X
n =1

Lobjectif de cet exercice est de démontrer I'inégalité de
Hoeffding :

2nt?

X —EXp] boa?

Vt>0,|]3>[

= t] <2exp (—

On note Yy la fonction définie pour tout s € R par
wx(s) =E[e™].

On suppose que X est centrée.

1°. Démontrer que pour tout x €]a, b fixé, s — e’ est
convexe et en déduire que
x—a
=
b—a

b-x

SX
e
b—a

e et 4+ a,

2°. Démontrer que pour tout s € R,

a
b—a

Pl esb.

wx(s) = g

3°.Onposep=bl/(b-a),g=1-petu=(b—a)s.On
considere la fonction

u— ¢u) = ln(pesa + quh) .

Pour tout réel u > 0, expliciter ¢p(u) en fonction de u et en
déduire qu'il existe 0 €]0, u[ tel que :

! 1 " 2
b)) = PpO) + ¢ (O u+ 5<l> ®)u-.

4°, Déterminer ¢(0), ¢'(0), ¢" (1) et démontrer que
¢"(0) =< 1.

5°. Démontrer que,

22

2
Vs>0, wx(s) <exp (%(b— a)z) .

6°. Rappeler et démontrer I'inégalité de Markov.

7°. On suppose toujours X centrée. Démontrer que,
)

8°. On ne suppose plus que X est centrée. Déduire des
questions précédentes que :

Vt>0,Vs>0, P[X

N = t] < e‘”(wx(

n

(b_a) ’
pllis que
[Fl Xn_IE[Xn] = t] <2eX[) (_—2)
(b—a) )

9°. Soit 6 €]0, 1[. Démontrer que :

— — la—b| ]
Vn=1, P|X,-EX,]l= VIn(2/6)|=1-4.
[ " " van

3.16 Intervalles de confiance et de crédibilité
pour une loi exponentielle

Soient X3, ...,X; un n-échantillon de X suivant une loi
exponentielle de parameétre 6 inconnu.

1°. Décrire le modeéle statistique. Démontrer que
Sn =X, X; est une statistique exhaustive de 0. Rappeler
sa loi.

2°. On veut estimer E[X]. Rappeler I'expression de cette
espérance en fonction de 0. Calculer le risque
quadratique associé a X, moyenne empirique des X;.

3°. En déduire un estimateur sans biais.

4°, Déterminer un intervalle de confiance de 0 au niveau
1—-apour n =15 et a= 0,05 (on rappelle que si Y suit une
loi gamma de parameétres (a, 0), alors 8Y suit une loi
Gamma de parameétres (a, 1)).

5°. On utilise une loi a priori Gamma de parameétres
(b,1). En déduire un estimateur bayésien de 6. Que
retrouve-t-on approximativement pour de grandes tailles
de I’échantillon?

7°. En quoi les études précédentes auraient-elles été
modifiées si on avait observé n v.a. de loi Gamma de
parametres (a,0) avec a connu?

3.17 Intervalles de confiance pour un
échantillon uniforme

Soient Xy, ...,X; un n-échantillon de X suivant une loi
uniforme sur [0, 0] avec 0 inconnu.

1°. Décrire le modele statistique. Démontrer que
Y =sup(Xj,...,X,) est une statistique exhaustive de 0.
Préciser sa loi, son espérance et sa variance.

2°. Déterminer I'estimateur du maximum de
vraisemblance. Est-il sans biais? En déduire un



estimateur sans biais, calculer les deux risques
quadratiques associés.

3°. Trouver un estimateur sans biais fondé sur la
moyenne empirique et le comparer aux deux précédents.

4°. Pour a = 0,05 et n = 15, déterminer un intervalle de
confiance de niveau 1 — o pour 0 (utiliser le fait que 68”Y
suit une loi libre de 0).

3.18 Intervalles de confiance pour un
échantillon gamma

On considere un n-échantillon de X suivant une loi
Y(a, b) dont la densité est donnée par

= L(bx)”_le_bxll[o,oo[(x) (169)

I'(a)

oi1 T est la fonction Gamma d’Euler. On note X la
moyenne empirique de I'échantillon et S? sa variance
empirique non biaisée. On suppose a connu.

1°. Déterminer I'estimateur b du maximum de
vraisemblance de b.

2°. Montrer que la fonction caractéristique d’'une loi
Y(a, b) est

o) =( ) (170)

b-it
En déduire la loi de la somme des observations. Calculez
le biais de I'’estimateur du maximum de vraisemblance.
Peut-on en déduire un estimateur sans biais?

3°. Etablir la v/7-consistance et la normalité
asymptotique de I'estimateur du maximum de
vraisemblance. En déduire que la variable aléatoire

van(b/b-1) a71)

est un pivot asymptotique.

4°, Lestimateur du maximum de vraisemblance est-il
asymptotiquement efficace ? Déterminer un estimateur
admissible pour le risque quadratique parmi les
estimateurs sans biais?

On suppose maintenant également a inconnu.

5°. Montrer que I'estimateur des moments de (a, b) est
_2 pa—
X X

25z (172)

6°. Montrer que I'estimateur des moments est consistant.

7°. Déduire des questions précédentes que la variable
aléatoire

X
Vg

X% /82
bX

(173)

est un pivot asymptotique. En déduire un intervalle de
confiance asymptotique de niveau 1 — a.

3.19 Intervalles de crédibilité pour un
échantillon uniforme

On consideére un n-échantillon de X suivant une loi
uniforme sur [0, 0]. 6 est inconnu et suit une loi a priori
de densité

1

n(0) = @1[1,00[(9) (174)

1°. Montrer que la loi a posteriori du modele s’écrit sous
la forme

c(x)

L6|x) = _]19>s(x)

obw (175)

avec X = (X1, ..., Xp).

2°. Déterminer I'estimateur de Bayes de 0 pour le risque
quadratique.

3°. Construire un intervalle de crédibilité pour 6 a 90%.

4 Tests statistiques

4.1

On souhaite vérifier que la contenance de bouteilles en
provenance d'un producteur respecte bien en moyenne
la limite 1égale de 75 cL. On sélectionne au hasard un
échantillon de 10 bouteilles et 'on obtient une
contenance moyenne de 74,42 cL.

On suppose que la contenance des bouteilles (en cL) suit
une loi normale d’espérance 0 inconnue et d’écart type
égalal.

1°. Décrire le modele statistique correspondant.
2°. On effectue le test

=77L0() :0=75
{ A :0<75 (176)
Quel point de vue adopte-t-on en choisissant ces
hypotheses?

3°. Construire, a I’aide d'une régle de décision intuitive

basée sur la moyenne empirique, un test pur de niveau
o = 1% de A, contre /. Quelle est la conclusion de ce
test?

4°. Tracer I'allure de la courbe de puissance et de la
courbe d’efficacité de ce test.

5°. On veut pouvoir détecter, avec une probabilité de
99%, une contenance moyenne de 74,8 cL, tout en
gardant un test de niveau « = 0,1%. Que doit-on faire?

6°. Quelles sont les caractéristiques et la conclusion du
test suivant :

{ H5:0=75 a77)

J’ILD129<75

7°. On suppose maintenant que la contenance des
bouteilles suit une loi normale de moyenne 75 cL et
d’écart type inconnu 0. Décrire le modele correspondant,
le test, et donner sa conclusion.



4.2

Avant le second tour d’'une élection présidentielle, un
candidat commande un sondage a une société
spécialisée, pour savoir s’il a une chance d’étre élu.

Soit p, la proportion d’électeurs qui lui est favorable dans
la population. On pose

J6:p=0,48
{ B :p=0,52 (178)
1°. Décrire le modele statistique correspondant. Quelle
est la signification du choix p = 0,48 comme hypothése
nulle? Quelle statistique de test peut-on considérer?

2°. Construire un test de niveau 10%, puis un autre de
niveau asymptotique 10% lorsque le sondage est effectué
aupres de n = 100 personnes.

3°. Combien d’électeurs devra-t-on interroger sil’'on
souhaite avoir un seuil asymptotique o et un risque de
second espeéce asymptotique inférieur a 3, avec o et 5
donnés?

4°, Le candidat souhaite maintenant tester

{ %0:}750,5

J6,:p>0,5 (179)

Que peut-on conclure?

4.3

Le nombre annuel de pannes sur une voiture d'un
modele donné, peut étre modélisé par une v.a. qui suit
une loi de Poisson de parametre A = 2. Apres avoir
souscrit un contrat d’entretien, on s’attend a ce que la
valeur du parametre diminue.

1°. Construire un test, basé sur le nombre total de pannes
pour 6 ans de contrat, permettant de le vérifier.

2°. Que décide-t-on au seuil de 10% si le nombre total de
pannes sur les six derniéres années est de 10?

3°. Tracer I'allure de la courbe d’efficacité du test.

4.4

Un programme de simulation d'une loi uniforme sur
[0,0] a généré les nombres suivants : 95, 24, 83, 52, 68.

1°. Donner I'estimateur du maximum de vraisemblance
de 0 et déterminer sa loi.

2°. En déduire un test de niveau 5% de la forme

{ F:0=100

6, :0>100 (180)

Que peut-on conclure?

4.5

On admet que la durée de vie d'un matériel est modélisé
par une v.a. X de loi exponentielle « a 'anglo-saxonne »,
de parametre 6. On considére un n-échantillon

X1,...,X;) de X et une observation (xi,..., x;;) de cet
échantillon.

1°. Déterminer I'estimateur 6,, du maximum de
vraisemblance de 0.

2°. On rappelle que la densité d'une loi du chi-deux a 2k
degrés de libertés est donnée par
k—le—x/Z]l[O (181)

8k (x)= ,00( (x)

2k(k-1)!
Montrer que la variable 2X/6 suit une loi du chi-deux a 2
degrés de libertés. En déduire la loi de

2 n
Z==3YX; (182)
6 i=1

3°. Des études passées avaient permis d’attribuer au
parametre 0 la valeur 8. L'évolution des méthodes de
fabrication pouvant avoir entrainé une augmentation de
0, on considere le test suivant :

%026290
{Jﬁ:e>80 (183)

Construire un test de niveau « a partir de ces hypotheses.

4°. On arelevé les durées de vie de n = 31 matériels et
I'on trouve ) x; = 67,68. Quelle est la conclusion du test
pour un niveau o = 5% et 6y = 2 (durée de la garantie) ?

5°. On suppose maintenant que ’on n’observe pas les
durées de vie X; directement, mais seulement les
variables

Yi =1 x;>2 (184)

pour i =1,...,, n. Proposer un nouveau test.

4.6

Les notes a I'examen de « statistique mathématique »
sont aléatoires et suivent une loi normale. On a relevé les
notes de 15 éleves deux années consécutives durant
lesquelles 'enseignant a changé et I'on souhaite savoir si
ce changement a eu un effet sur les résultats.

1°. Proposer un modele statistique et un test.

2°. Quelles sont les conclusions du test si les notes
I'année n — 1 et 'année n sont respectivement

12,8 | 15 | 85 | 12,7 | 10,4

15,5 | 9,6 | 10,3 | 8,5 8,1

7,8 14 | 12,5 | 8,6 7
et

10,1 | 8,9 61 | 48| 9,1

11,9 | 14,2 | 13,5 | 16 | 12,9

11,1 11 8,8 10 | 9,2

On rappelle que si $2, S3, 0% et 03 représentent les
variances empiriques et théoriques des deux
échantillons de notes, alors la statistique

272
_81/01

T Q2,2
S5/05

(185)



suit, sous 'hypotheése #j, une loi de Fisher & (14, 14).

On rappelle également que si 0] = 02, la statistique

suivante suit une loi de Student de parametre 28 :
X; —Xp

V2/15 xS(X1,X2)

(186)

avec X; et X, moyenne empirique respective de chaque
échantillon de note et S(X;,X>) écart type empirique de
I'échantillon global des 30 notes.

4.7

En juillet 2010, un sondage Ifop sur un échantillon
représentatif de 958 personnes donnait le résultat
suivant : 8 sympathisants PS sur 100 contre 6
sympathisants UMP sur 100 sont tatoués. Sur les 958
personnes interrogées, 249 se sont déclarées
sympathisantes PS, dont 20 tatoués, et 297
sympathisantes UMP, dont 19 tatouées, que peut-on
penser de la déclaration suivante faite dans les journaux :
«les sympathisants PS sont plus tatoués que les
sympathisants UMP »?

4.8

Montrer que les modeéles statistiques suivants sont a

rapport de vraisemblance monotone :
1°. Le modéle binomial %8(n, 0).
2°. Le modéle d’échantillonnage gaussien .4'(6, 1).
3°. Le modele d’échantillonnage de Poisson £2(0).
4°. Les modeles exponentiels.

4.9

Soit X une v.a. réelle dont la loi a pour densité
1

20v/%

avec 0 > 0 et Xy, ...,X;, n-échantillon de cette loi.

flx) = e VIO 0 ()

(187)

1°. Montrer que Y = 2v/X/0 suit une loi du chi-deux a 2
degrés de libertés. En déduire la loi de

2 n
Sn=35 > VX (188)
i=1
2°. On souhaite tester pour 0 < 6y < 60
effo 0= 80
{ :75129291 (189)

Déterminer un test UPPa parmi les tests de niveau o et
expliciter la puissance de ce test.

2°. Décrire tous les tests UPP parmi les tests de seuil a.
3°. On souhaite maintenant tester

{ Ho:0<0

%1 10> 61 (190)
Existe-t-il un test UPPa pour ce nouveau probleme?

2

4.10

La limite du taux X de présence d'un polluant contenu
dans les déchets d’'usine est de 6 mg/kg. On effectue un
dosage sur 12 prélevements de 1 kg, pour lesquels on
observe les taux x;, i = 1,..,12 de présence du polluant.
On trouve

12 12
Y x;=84et ) x7=1413
i=1 i=1

(191)

On admet que X suit une loi normale 4 (m, 52) avec
o=38.

1°. Donner un test UPP parmi les tests de seuil 5% de

{ HH:Mm=<6

SO :m>6
Détermine la puissance de ce test. L'usine est-elle
conforme a la législation?

(192)

2°. Envisager le cas ot ’écart-type o est inconnu.

4.11

On dispose de I'observation (xy, ..., X,;) d'un échantillon
de taille n = 15 d’'une loi normale .47 (0,1/6).

1°. Construire un test UPP parmi les tests de seuil a = 5%

| |

et déterminer la puissance de ce test.

%0:921

J0:0>1 (193)

2°. Quelle décision prend-on si )_; xl? =6,8? Pour quelles
valeurs de o prendrait-on la décision contraire?
Qu’a-t-on alors calculé?

3°. Existe-t-il un test UPP parmi les tests de seuil a = 5%
pour le probleme

%05621

0 :0#£1 (194)

Expliquer.

4.12

Le revenu annuel des individus d'une population est
distribué suivant une loi de Pareto de densité

a a

f(x) = il 1 (& 001 (X) (195)
Les parametres k > 0 (revenu minimum) et a > 0

(parametre de forme) sont inconnus.

1°. Sur la base d'un échantillon de taille n, estimer (k, a)
par la méthode du maximum de vraisemblance.

2°. On voudrait tester

{

Montrer que tout test de rapport de vraisemblance
5admet une région de rejet de la forme

%olazl

O a#l (196)



Z=[T<s5]U[T=s] (197)
ou T est la statistique définie par
?:1 X;
TX) =TXy,....X5) =1n — (198)
(min?_, X;)

4.13

On consideére une variable aléatoire X ~ A (m, 02) et
X1,...,X;) un n-échantillon de X.

1°. En utilisant la méthode de Neyman-Pearson, résoudre
le probléme suivant :
{ Fo:m=my

SO m=m (199)

2°. Calculer la puissance du test.

3°. Application numérique : n =25,x=2,7, my =2,
m; = 4. Conclure. Calculer la p-valeur.

4.14

On veut vérifier la précision d'une balance aprés un an
de fonctionnement. On suppose que la pesée d'un objet
de 1 gramme suit une loi normale .4 (m, 0?) avec m = 1.
Initialement, la précision de la balance est gy = 1,5 mg. Si
cette précision a augmenté en o; > gy, on concluera que
la balance a perdu en précision. Le test proposé est donc :
{ %020'20'021,5

SO 0=01=2 (200)

1°. En utilisant la méthode de Neyman-Pearson,
déterminer la région critique du test.

2°. Application numérique : conclure lorsque n = 10 pour
un risque a =0, 1.

3°. Calculer la puissance du test.

4.15

Dans une population donnée, une proportion inconnue
p d’'individus posseéde un caractere C. On effectue le test
suivant :

{ F0:p = Po 201)

HO 1 p=p1>Po
1°. Déterminer la région critique du test.

2°. Application numérique : conclure si n = 625

4.16

Déterminer la statistique du rapport de vraisemblance
lorsque I'on teste, pour une valeur my fixe,
{ Fo:m=my

%1 tm>my (202)

sur la base d'un échantillon i.i.d. de taille n de la loi
normale A (m, 02), avec o2 inconnu.

Montrer que ce test est fondé sur une statistique de loi de
Student.

4.17

Sur la base d'un échantillon de taille n de densité

1
fx)=—exp (_x_) 116, +00( (%) (203)
o o

ou 0 et 0 > 0 sont inconnus, on désire effectuer le test

H5:0<0
{ :77[,01:9>e() (204)
Déterminer la forme du test de rapport de
vraisemblance.
4.18

On consideére un échantillon (X, ...,X;) d'une loi de
densité

) =" g 4 oof (%) (205)

1°. Montrer que la statistique X(;) = min; X; est
exhaustive pour 6.

2°. En se fondant sur cette statistique, déterminer la
forme de tout test de rapport de vraisemblance de

Hp:0<0
{ %129>90 (206)
3°. Exprimer la puissance d'un tel test.
4°. Pour a € [0, 1], quel test est de niveau a?
4.19
Soit X ~ Z(A). On effectue un test bayésien
Hp:A<1
{ 7o 207)

Autrement dit, on ne rejetera pas #3 si sa probabilité a
posteriori est supérieure a celle de /.

1°. Calculer la loi a posteriori de A pour x = 1 avec pour
loi a priori A ~T (o, ).

2°. Montrer que lorsque « et 3 tendent vers 0, on obtient
la méme loi a posteriori qu’en posant IT(A) = 1/A. Quelle
est alors la conclusion du test? Montrer que cet a priori

n’est pas toujours valide selon 'observation x.

4.20

Soient X3, ...,X;, un n-échantillon de X de loi uniforme
sur [0,0]. Soit M = X(,) = max]"_, X;. On cherche a tester

{ 471,002921

J0:0>1 (208)

1°. Pourquoi ne peut-on pas utiliser le test du rapport de
vraisemblance (donner deux raisons) ?

2°. On propose le test suivant : on rejette A lorsque
M > s, ou1 s est une constante donnée. Calculer alors la
fonction de puissance.

63°. Quelle valeur doit prendre s pour un seuil de 5%.



4°.Si n = 2 et que la valeur observée m de M est m = 0,96,
que vaut la p-valeur? Quelle conclusion sur les
hypotheses? Méme question si m = 1,04.

5°. On se propose d’utiliser une approche bayésienne et

de poser pour loi a priori (impropre) :

1
II(A) = 5

Ce choix est-il justifié? Calculer alors la probabilité a
posteriorique 0 > 1.

(209)

4.21

On consideére veux v.a. indépendantes U et V, de loi
normale centrée réduite et 'on pose Z=U/V.

1°. Déterminer la densité de Z et reconnaitre cette loi.
Déterminer sa fonction caractéristique.

2°. Soit Z la moyenne empirique d’'un n-échantillon de Z.
Déterminer sa loi.

3°. On appelle loi de Cauchy générale de parametre de

position 8 € R et de parametre d’échelle o > 0 laloidela

v.a. X = 0+ 0Z. On notera cette loi € (0, ). Etant donné

un n-échantillon Xy, ...,X;,) de X, déterminer les lois des

variables aléatoires

n n

Y XjetY=) aX; (210)
i=1

i=1 i=

- 1
X==
n

a; €R Vi.
4°. Quelle est la signification de 6?

5°. On suppose ¢ = 1 et 'on veut estimer 0. Utiliser la
méthode du maximum de vraisemblance pour construire
un estimateur et calculer sa variance asymptotique.
Peut-on estimer 0 par la méthode des moments?
Proposer un estimtateur fondé sur I'interprétation de 0 et
calculer son efficacité asymptotique.

6°. Soit Y; = 1 x,<0;. Quelle est laloi de Y; ? Quelle est la loi
de N, nombre d’observations négatives ou nulles dans
I’échantillon initial 2 En déduire de la vraisemblance de
N, un estimateur de 0.

7°. Soient U ~ A/ (0,07) et V ~ A (0,07), deux v.a.
indépendantes. On pose A = 01/02 et'on 'on définit la
v.a. Zpar Z=U/V. déterminer la densité de Z ainsi que sa
fonction de répartition.

8°. On dispose de deux échantillons (Uy,...,Uj;) et
(Vy,...,Vy) de U et V. Déterminer la loi de

iz Ui

i=1 Vi

T= (211)

En déduire I'estimateur A du maximum de
vraisemblance de A.

9°. On considére maintenant un vecteur gaussien (U, V)
avec U ~ A (my,0%) etV ~ A (my,0%). U etV ne sont pas
indépendantes et leur coefficient de corrélation linéaire
est noté p. On pose

_ U-mp/oy

= (212)
(V—my)/o,

27

Déterminer la loi de Z. Interpréter p. En déduire, a partir
d’un échantillon (U,,V,),, un test asymptotique sur p de
la forme :

On consideére une v.a. X de loi exponentielle (sous forme
anglo-saxonne) de parametre 0.

F0:p=Po
213
1P # Po (213)

4.22

1°. Calculer I'information de Fisher apportée par un
n-échantillon de X et déterminer la borne de FDCR
associée a 0.

2°. Estimer 0 par maximum de vraisemblance et étudier
I’'e.m.v. 0;. Faire de méme avec I'estimateur des moments
0, puis avec un estimateur 03 fondé sur la v.a. Z égale au
nombre d’observations supérieures ou égales a 2 dans
I'échantillon.

3°. Donner un intervalle de confiance au niveau 0.95
pour 6.

4°. Une observation du n-échantillon pour n = 31 donne
Y x; =64.83 et le? =170.92. On pense que 0 peut étre
égale a 1,2 ou 3. Résoudre les trois problémes de tests
suivants :

ﬁoiezz
471,002922

| Jo=s @15
%01622

{ FO:0#2 (216)

5°. @ étant toujours inconnu, on s’intéresse au parametre
d =P[X = 2]. Exprimer d en fonction de 0 et déterminer
le.m.v. d; de d. Quelle est sa loi asymptotique? Donner
un intervalle de confiance pour d au niveau de confiance
0.95.

6°. Pour un n-échantillon (Xi,...,X;;) de X, on considere
maintenant I'estimateur 6 défini par

O =1x,22 (217)

Calculer E[8] et V(5).
7°.OnposeS =} | X; et T =E[5|S]. Calculer E[T] et
montrer que

2 n-1
TXy,...Xp) = (1 - g) Tis=2 (218)

4.23 Loide Fréchet

La loi de Fréchet de parameétres (m, o,«) avec x = m,
o >0, a > 0 a pour fonction de répartition

) ) i oo (0

F(x) = exp (— (x (219)

1°. Montrer que la densité correspondante est

()" el

a(x—m x—m
F(x)=—

o

) ) i, out 0
(220)



Soit X3, ...,X;, un n-échantillon de X suivant une loi de
Fréchet définie précedemment. On suppose que m =0 et
o =1etl'on veut estimer 6 = o.

1°. Le modéle est-il exponentiel ?
2°. Montrer que
1 &1

==Y — (221)
nisXi
est un estimateur sans biais efficace de 6.

3°. Donner I'e.m.v. de 0 et préciser son comportement
asymptotique (variance asymptotique, etc.).

4°. Montrer que cet estimateur est biaisé et qu’il n’existe
pas d’estimateur sans biais pour n = 1.

5°. Montrer que la famille de lois Gamma
F(8) =5 e L g0 (s)

pour a, b > 0 est conjuguée pour ce modele.

(222)

On suppose maintenant que « =1, 0 = 1 et 'on cherche a
estimer 0 = m.

6°. Est-ce que les conditions de régularité nécessaires au
comportement asymptotique standard de I'e.m.v. sont
satisfaites ici?

7°. Posons /) = min}’_, X;. Montrer que pour tout ¢ > 0,
Osia=0

lsia>0 223)

lim P [n“(ﬁll -m) > c] = {
n—+00

8°. On cherche a construire un second estimateur plug-in
My basé sur la médiane m,. Montrer que

\/ﬁ(ﬁlz—me)wﬂ(O

)
) (224)
4f (me)
puis construire a partir de ce résultat un estimateur
estimateur asymptotiquement normal de m.

9°. A partir de la question précédente, construire un test
de Ay : m =0 vs A : m#0. Donner la statistique de test
etla région de confiance.

10°. Dans cette derniere question, on suppose que m =0
et 'on cherche a estimer 6 = (o, ).

Proposer un test pour les hypothéses #p: o =1 vs
J0 1 a# 1. Donner la statistique de test et la région de
confiance.

5 Applications

5.1 Un modéele de réseau social : stochastic
block models

Les stochastic block models (SBM) sont des modeles de
graphes aléatoires utilisés pour modéliser des réseaux
sociaux contenant des communautés (facebook, etc.).

5.2 Détection des virus informatiques par
analyse comportementale
Ce probléme nécessite la lecture d'un chapitre du livre

d’Eric Filiol « techniques virales avancées », édité chez
Springer.

5.3 Quantité d’'information et entropie au
sens de Shannon

Dans tout cet exercice, n est un entier naturel non nul.
Toutes les variables aléatoires sont définies sur un méme
espace probabilisé (Q, #,P).

log, représente le logarithme de base 2 et est défini, pour
tout x > 0, par

log, (1) = o (225)
0g,(x) = —.

&2 In2
On considére une variable aléatoire discréte X a support
dans N. Le cardinal de X(Q2) peut étre fini ou non. On

définit 'entropie de X, lorsqu’elle existe, par la formule

HX)=- ) P[X=x]log,P[X=x]. (226)

xeX(Q)

1°. Démontrer que pour tout x >0, Inx < x — 1 et préciser
les cas d’égalité.

2°. Soit ¢ la fonction définie sur [0, 1] par

&(x) = —xlog, (x) si x > 0 et $(0) = 0. Effectuer I'étude de
cette fonction en précisant sa monotonie et ses extrema.
Démontrer que ¢ est concave, puis donner I'allure de sa
courbe représentative.

N

Dans les questions 3° a 10°, on suppose X(Q) et Y(Q2) de
cardinaux finis.

3°. Démontrer que, quel que soit X, H(X) = 0. A quelle
condition sur X a-t-on HX) =0?

Soit X une variable aléatoire de Bernoulli de parametre
p €10, 1[.

4°. Calculer H(X). H(X) est une fonction de p que 'on
notera h. Effectuer I'étude de k. En quelle valeur i
atteint-elle son maximum? Interpréter le résultat.

5°. Déterminer H(X) lorsque X est une variable aléatoire
de loi uniforme sur X(Q) = {1,...,n}.

6°. Al'aide de la question 1°, démontrer I'inégalité de
Gibbs :si (p1, ..., pn) €t (g1, ..., qn) sont des lois de
probabilités a support dans {1, ..., n} alors

n
Y prlog,(qi/ pi) <0. (227)
k=1

avec égalité si, et seulement si py = gy pour tout k.

7°. Démontrer que pour toute variable aléatoire X sur
{1,...,n}, HX) <log, n. Interpréter ce résultat.

8°. Lentropie conjointe de deux variables aléatoires X et
Y se définit par la formule

HX,)Y) =- PX=x,Y=yllog, PX=x,Y=yl.
(x,y)EX(Q) xY ()

(228)

Si X et Y sont deux variables aléatoires indépendantes,
démontrer que HX,Y) = HX) + H(Y).

9°. Les variables X et Y ne sont plus supposées
indépendantes. On définit 'entropie conditionnelle de Y
sachant X par la formule



HYIX) =- Z PX=xY=yllog, P[Y = y|IX = x].
(%, 1)EX(Q) xY(Q)
(229)
Démontrer que
HX,Y) = H(YIX) + HX) = HX]Y) + H(Y). (230)

Démontrer que HX) + H(Y) = 2H(X,Y). En utilisant la
concavité de ¢, démontrer que

HX) = HX]Y). (231)
En déduire que H(Y) = H(Y|X), puis démontrer que
HX,Y) = HX) + H(Y).

10°. Pour toute fonction f définie sur X(Q2), démontrer
que H(fX)IX) =0 et que HX) = H(f (X)).

On suppose maintenant X(Q2) de cardinal infini. On
admet que si E[X] < oo alors H(X) existe. On admet
également que I'inégalité de Gibbs s’étend au cas ou
X(Q) est dénombrable, sous réserve de convergence de la
somme.

11°. Calculer I'entropie d'une variable aléatoire G de loi
géométrique de parametre p €]0, 1|, en justifiant son
existence. Montrer que pour toute variable aléatoire X
discrete telle que E[X] < E[G], on a HX) < H(G).

On considere maintenant que X(Q2) est un intervalle de R
et X une variable aléatoire a densité continue f sur X(Q).
On définit I'entropie différentielle de X, sous réserve
d’existence, par la formule :

+00

HX) = —f Fx) In(f(x)dx. (232)
—00

12°. Calculer 'entropie différentielle d'une variable

aléatoire X de loi uniforme sur [a, b].

13°. Calculer I'entropie différentielle d'une variable
aléatoire suivant une loi normale A (m, 62).

14°. Soit X suivant une loi A (0, %) dont la densité sera
notée Y et soit Y une variable aléatoire réelle, centrée, de
variance finie 02, dont la densité sera notée f-En
supposant les deux intégrales suivantes convergentes,
démontrer que

+00 +00
H) =f f(x)lnwdx—f fIny(x)dx.

fx
(233)

En déduire que H(Y) < H(X). Interpréter ce résultat.

5.4 Introduction aux turbocodes
A. Rapport de vraisemblance logarithmique

Nous souhaitons transmettre des données binaires sur
un canal de communication bruité. Du point de vue du
canal ou du récepteur, on ne connait pas a ’avance la
valeur du bit qui va étre transmis. Cette valeur peut donc
se modéliser par une variable aléatoire U de Bernoulli
pouvant prendre comme valeur 0 ou 1. Pour des raisons
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d’efficacité, on préfere souvent transmettre comme
valeurs 1 et —1 au lieu de 0 ou 1 (c’est de la modulation
antipodale). On pose alors X = (—1)Y qui est également
une variable aléatoire de Bernoulli, mais prenant comme
valeurs 1 ou —1 selon que que U vaut 0 ou 1.

Pour une variable de Bernoulli, on appelle rapport de
vraisemblance logarithmique ou LLR (log-likehood ratio)
la quantité

LX) :log( PIX =11 )

PX=-1]
Lorsque U est une variable aléatoire qui prend comme
valeur 0 ou 1, nous noterons de méme

L(U) =log(P[U = 0])

PU=1]

Comme nous allons le voir, cette grandeur réelle permet
de connaitre la valeur la plus probable de la variable
aléatoire et d’en mesurer la fiabilité. Dans toute la suite,
nous noterons p = P[X = -1].

1°. Effectuer I'étude compléte de la fonction
x
f(x) =log (m)
2°. Démontrer que LX) >0 <= PX=1]>PX=-1]

3°. Lorsque p varie de 0 a 1, déterminer les variations de
L(X). En quoi L(X) mesure-t-il la fiabilité des valeurs que
peut prendre X?

4°. On définit la fonction sgn par

1six>0
0six=0
—1six<0

sgn(x) =

Démontrer que L(X) = sgn(LX)) x |ILX)], puis que
sgn(L(X)) est égal a la valeur la plus probable de X.

Lorsque I'on remplace L(X) par sgn(L(X)) pour donner la
valeur la plus probable de X, on dit que 'on a effectué
une décision ferme. La valeur obtenue est un entier.
Lorsque I'on travaille avec L(X) (qui est un nombre réel)
on dit que I'on effectue un décodage souple, car L(X)
conserve une information supplémentaire sur la fiabilité
de la valeur de X.

5°. Démontrer que

eL(X)
PX=1]=——

e LX) 1
PX =-1]

T1tel® T 14 el®

L
6°. En déduire que E[X] = tanh LX ol tanh représente la
fonction tangente hyperbolique.

7°. On considere maintenant deux variables aléatoires
indépendantes U; et U,, pouvant prendre comme
valeurs 0 ou 1. A ces deux variables correspondent deux
autres variables aléatoires X; et X, pouvant prendre
comme valeurs —1 et 1 et définies par X; = (-1)V" et

X, = (-2, Expliquer rapidement pourquoi X; et X»



sont indépendantes. Démontrer que '’addition modulo
deux de U; et U, (que nous noterons U; & Uy)
correspond au produit des variables aléatoires X; et Xo.

8°. Déduire de la question 6° la regle des tangentes
hyperboliques :

L&Xy LX2)

tanh

LX;X
anh % =tanh

Puis que

LX1) L(X5)

x tanh

L(X;X7) =2argtanh | tanh

ol argtanh représente la réciproque de la fonction
tangente hyperbolique. Afin de simplifier la formule
précédente, nous noterons plutdt L(X;Xp) = L(X;) HL(X?)

Pour des variables aléatoires U; et U, prenant comme
valeurs 0 ou 1 nous noterons de la méme facon
L(U; ® Uz) = L(Uy) HL(Uy).

9°. Dans le cas ol p = P[X; = 1] =P[X, = 1] = 3/4, calculer
L(Xj), L(X2) et L(X1X>).

10°. Montrer par ailleurs que L(X;X>) est égal a

o [P = TP = 1] +P[X) = ~1P[X; = -1]
8 PX, = IPXy = 1] +PIX; = 1P [Xs = 1]

B. Information extrinséque.

Soit X la variable aléatoire représentant le bit émis a
I'entrée du canal et Y la variable aléatoire représentant le
bit recu a la sortie du canal. Le lien entre X et Y est donné
par I'équation Y = X + B o1 B représente le bruit du canal.
11 s’agit souvent d'une variable aléatoire qui peut prendre
des valeurs discrétes (cas d'un canal binaire symétrique)
ou bien continues (cas d'un canal a bruit blanc
gaussien). Ainsi, la valeur du bit recu pourra étre
différente de la valeur du bit émis et n’est d’ailleurs pas
forcément égale a 1 ou —1; elle peut prendre comme
valeur 0.8, 1.2, —0.33, etc. Le récepteur aura pour tache
d’essayer de retrouver la valeur émise [X = x| en ne
connaissant que la valeur recue [Y = y]. Nous
introduisons a cet effet un peu de vocabulaire :

La vraisemblance a priori est la quantité

PX=1]
LX) ZIOg(—IP[X: ]

La vraisemblance a postériori est la quantité

PX=1]Y=
LXIY) = log(—p[)[( _ —1||Y :yJ]/])

). Elle ne dépend que du bit émis.

Elle donne une information sur le bit réellement émis
sachant la valeur observée a la sortie du canal. C’est cette
quantité qui nous servira pour décoder les valeurs recues
et décider des valeurs réellement émises.

La vraisemblance du canal est la quantité

PlY=ylX=1
L(Y|X)=log H:D[[Y+)|(:—i]

1°. En utilisant la formule de Bayes, démontrer que
LX) =LYIX)+LX) (%)

Lutilisation d'un code correcteur va permettre de
protéger 'information et d’essayer de retrouver les

valeurs émises, mémes si celles-ci ont été modifiées par
le canal. Nous allons montrer que dans ce cas, apparait
dans le membre de droite de I'équation (%) un troisieme
terme L, appelé information extrinséque et représentant
le gain d’information, pour un bit recu, apporté par le
décodage.

Pour illustrer le turbo décodage, nous allons utiliser un
code correcteur tres simple que vous manipulez déja : Le
bit de parité. Lorsque I'on doit transmettre deux bits U,
et U, (qui peuvent prendre comme valeurs 0 ou 1), on
transmet également le bit U3 = U; @ U, qui permet de
vérifier que 'on a toujours U; @ U, & Uz = 0. Ce faisant,
on crée une dépendance entre ces trois variables. En
terme de probabilité conditionnelle, la connaissance de
I'une d’elles modifiera donc la connaissance que I'on a
des autres.

Dans toute la suite, nous noterons Ey 1’événement «
I'équation de parité (Ey) est satisfaite », Ey I'événement «
I'équation de parité (Ey) est satisfaite », etc. Par exemple
Ey=[U;e U, U3z =0].

2°. Exprimer par une phrase en francais I'évenement

Ey |[U; =1]. Faire de méme avec Ey|[U; = 0] et
[U; = 1]|Ey. la barre verticale signifie « sachant que ».

3°. Démontrer que

P (EyllUp =1) =P ([Uz =1]n[Us =0]|[U; = 1]) +...
..+P([Uy =01 n[Us =1]I[U; =1])

et que

PEy/[U; =0)) =P ([Uz=1In[Us =1]{[U; =0]) +...
..+P([Uz =01 N [Usz =0]|[U; =0])

Considérons les trois variables Y, Y2, Y3 correspondants
aux valeurs regues lorsque Uy, Uz, U3 sont émis sur le
canal. Les valeurs de Y1, Y, Y3 sont donc les valeurs
observées a la sortie du canal. Afin de simplifier les
notations, nous noterons sous forme de vecteur

Y = (Y1,Y2,Y3) laloi conjointe de ces trois variables
aléatoires. Ainsi, si y = (1, y», y3) est un vecteur de R3,

Y=yl=[Y1=pnln[Y2 =yl Nn[Y3=y3]
Notons maintenant L(U; |Y) la vraisemblance a postériori
du bit Uy, sachant les valeurs observées Y;,Y>,Y3 ala
sortie du canal et sachant que U; vérifie 'équation de
parité U; @ U, @ Uz du code. La définition de L(U1|Y) est
la suivante :

P[U; =0|Ey; Y =yI
P[Uy =1|Ey;Y =]

4°. Al'aide de la formule de Bayes et des questions
précédentes, démontrer que :

L(UL[Y) =log

L(U11Y) =L(Y1/U1) + L(Uy) + Le(Uy; Ey)
avec

PlY:1=y1lU; =0

PlY; = 11U =1]

L(U;) = log(l]J)[U1 — O])

P[U; =1]



Et le dernier terme qui représente I'information
extrinséque apportée a U; par U, et Uz grace ala
présence du code correcteur :

Le(Uy;Ey) =

lo PlY2=y2;Up=11xP[Y3=y3;U3=1]+P[Y2=y2;U=0] xP[Y3=y3;U3=0]
g P[Y2=y2;U2=1]xP[Y3=y3;U3=0]+P[Y2=y2;U2=0]xP[Y3=y3;U3=1]

5°. Sil’on omet les événements relatifs aux valeurs
observées de Y, et Y3, faites le lien entre cette formule et
celle de L(U, & U3) de la premiere partie et en déduire
que

Le(U1;Ey) = [L(Y2]U2) + L(U2)1 B [L(Y3|U3) + L(U3)]

C. Le canal a bruit blanc gaussien additif.

C’est un modele de canal de communication tres utilisé.
On le note BABG en francais et AWGN en anglais
(additive white gaussian noise). Le principe est le

suivant : On émet un bit, modélisé par une variable de
Bernoulli X, en entrée du canal et on suppose que la
sortie est donnée par une variable aléatoire Y =X+ B ou B
est une variable aléatoire qui représente le bruit du canal.
Dans le cas d'un canal BABG, B suit une loi gaussienne
dont la moyenne est nulle et la variance o2 est
proportionnelle au rapport signal sur bruit du canal : Puis
le canal est brouillé, plus o2 est important. Ceci signifie
que la valeur recue apres transmission sur le canal sera
un nombre réel plus ou moins éloigné de la valeur émise.

1°. Si X peut prendre comme valeur *1, la densité ¢4 (y)
de B sachant X = 1 suit une loi A4/ (1,02) et la densité
¢_1(y) de B sachant que X = —1 suit une loi A (-1, 0?)
(nous admettons ce résultat). Tracer soigneusement les
densités de ces deux variables aléatoires sur un méme
graphique. Donner une interprétation géométrique a
I'évenement Ry |[E_; =«le bit 1 a été recu alors que —1
avait été émis ». Faire de méme avec R_;|E; =«le bit —1 a
été recu alors que 1 avait été émis ». En déduire une
interprétation géométrique de I'évenement E =«ilyaeu
erreur lors de la transmission ».

2°. Dans le cas ou1 0 = 1, calculer, a ’aide de la table de la
loi normale, la probabilité qu'une erreur se produise.

3°. La formule de Bayes s’applique également aux lois
continues en remplacant simplement les probabilités par
leur densité. Démontrer alors que

1
1+ e‘iy“fz
PX=-1/Y=y]=

PX=1/Y=y]=

1+ e2v/0?

Démontrer qu’il s’agit d'une loi de Bernoulli. Cette loi
conditionnelle permet de décider, au vue de la valeur de
y recue sur le canal, si c’est un 1 ou un —1 qui a été émis.

2

4°. Démontrer que pour un canal BABG de variance 07, la

vraisemblance du canal est

2
LX) = =5
o
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D. Principe du turbo-décodage.

Le principe du turbo-code est simple. On va présenter les
données en ligne et en colonne dans un tableau a deux
dimensions. On effectue un premier décodage en ligne
en réinjectant I'information extrinséque obtenue par ce
décodage dans chaque bit. On effectue ensuite un
décodage en colonne en opérant de méme. On itére ce
procédé en continuant a alterner décodage en ligne et
décodage en colonne jusqu’a que toutes les équations de
parité soient vérifiées. Une trés bonne analogie est
donnée par un tableau de mots croisés. Vous pouvez lire
a cet effet I'article qui accompagne ce devoir.

Considérons alors les variables aléatoires de Bernoulli
indépendantes Uy, U,,V; et V, qui représentent les
données a transmettre sur le canal. Définissons les
variables aléatoires Us, V3,S; et S, de telle sorte que :

UieU;=Us (Eu)
VieVy=Vj (Ev)
UieV; =5 (E1)
U@V, =8, (Ez)

Ainsi, Us est le bit de parité de U; et Uy, V3 est le bit de
parité de V; et V,, S; est le bit de parité de U; et Vy, S, est
le bit de parité de U, et V,. Les équations précédentes
s’appellent des équations de parité. Nous les notons
respectivement (Ey), (Ev), (E;) et (E). Disposons ces 8
variables aléatoires dans un tableau a double entrée :

U; | Uy | Us
Vi | Vo | Vg
S1 | S2

Les équations de parité apparaissent a la fois en ligne et
en colonne. Nous pouvons également visualiser les
relations entre ces variables aléatoires a ’aide d’'un
graphe, appelé graphe de Tanner du code :

U;

Uy ‘\% Ey
U3 s

Vl o H EV
zz : H E
S; H Ex
Sy '/

Les symboles « indiquent les nceuds de variables et
représentent les bits, les symboles H indiquent les
neeuds de parité et représentent les équations de parité.
La somme modulo 2 des bits reliés a une équation de
parité doit étre nulle.

Aux 8 variables aléatoires émises correspondent 8
variables aléatoires recues que nous noterons sous la
forme d’'un tableau de nombre réels identique au tableau
précédent :

Yi | Y2 | V3
HERARY
Y/ Y]

Les liens entre les vraisemblances des bits de données



U1,U,,V1,V, diis aux codes de parité horizontaux sont
donnés par les relations suivantes :

L(U1lY1) = L(Y1]/U1) +L(U1) + Le(Uy; Ey)
L(V11Y]) = L(Y] V1) + L(V1) + Le(V1;Ey)
L(U2[Y2) = L(Y2|U2) + L(U3) + L.(U2; Ey)
L(V2[Y}) = L(Y}|V2) + L(V2) + L¢(V2; Ev)

avec

Le(Uy;Ey) = [L(Y2[U2) + L(U2)] HL(Y3|U3)
Le(V1;Ev) = [L(Y,[V2) + L(V2) | EBL(Y;|V3)
L¢(Uz2;Ey) = [L(Y1|U1) + L(U) ] B L(Y3[U3)
L (V2; Ey) = [L(Y] V1) + L(V1) | HL(Y}|V3)

Les liens entre les vraisemblances des bits de données
U1,U,,V1,V, diis aux codes de parité verticaux sont
donnés par les relations suivantes :

L(U11Y1) = L(Y1[U1) + L(U1) + Le(Uy; Eq)
L(V11Y]) = L(Y] V1) + L(V1) + Le(Vi;Ep)
L(U21Y2) = L(Y2|Uz2) + L(Uz) + Le(Ug; Ez)
L(V2Y3) = L(Y5|V2) + L(V2) + Le(V2; Ep)

avec

Le(U1;E1) = [L(Y,|V2) + L(V2) | BL(Y]IS1)
Le(V1;Ep) = [L(Y1|Up) + L(U)] BLY]IS1)
Le(Uz; Ep) = [L(Y[V2) + L(V2) | BL(YSS2)
Le(V2;Ep) = [L(Y1|U1) + L(U)] BL(YSS2)

On remarque I'absence de L(U3),L(V3),L(S1),L(S2) dans
ces formules. En fait, comme nous allons le voir, ces

quantités sont nulles avec les hypothéses que nous allons

poser.

Il est temps de présenter ’algorithme de
turbo-décodage :

e 1°. Pour chaque variable T calculer la vraisemblance a
priori L(T), avec T = Uy,U»,U3,V1,V3,V3,51,S5.

« 2°. Effectuer un décodage de chacune des deux lignes
en calculant les informations extrinseques horizontales
Len(T) pour T =U;, U, Vy,Vo.

« 3°. Mettre a jour I'information a priori de chaque
variable T = Uy, Uy, V1, Vs en posant L(T) = L, (T).

« 4°. Effectuer un décodage vertical de chacune des deux

colonnes en calculant les informations extrinseques
verticales L, (T) pour T = Uy, Uy, Vi, Vo.

« 5°. Mettre a jour I'information a priori de chaque
variable T = Uy, Uy, V1, Vs en posant L(T) = L (T).

* 6°. Mettre a jour la vraisemblance a posteriori des
variables aléatoires T = U;,U,, V),V en posant
LYIT) = L(TIY) + Lep (T) + Ley (T).

e 7°. Calculer les valeurs les plus probables de
T =U;, U, V1,V en prenant une décision ferme sur
LYIT).

« 8°. Si toutes les équations de parité sont vérifiées,
I'algorithme est fini, sinon retourner en 2°.

Passons maintenant aux questions de cette derniere
partie :

1°. On suppose les variables aléatoires Uy, U, V1, V,
équiprobables. Démontrer qu’alors les vraisemblances a
priori sont nulles :

L(U;) =L(V;)=LSk) =0
Vi, j, k.

2°. On souhaite émettre le message M = 1001 sur un canal
BABG dont la variance sera supposée égale 4 6> = 1. On
dispose ces quatre bits sous la forme d'un tableau a deux
lignes et deux colonnes en posant Uy =1, Uy =0, V; =0,
V, = 1. Les transformer, par modulation antipodale, en
variables qui prennent comme valeurs *1. Calculer les
bits de parité en ligne et en colonne et construire le
tableau correspondant (c’est une question facile).

3°. Aprés transmission sur le canal, les valeurs recues
sont les suivantes :

-0.75 | -0.05 | —-1.25
-0.1 | -0.15 | -1.0
-3.0 -0.5

Construire le tableau des vraisemblances a priori du
canal en utilisant les formules de la troisieme partie.

4°. En faisant un petit programme sous Matlab, en
langage C ou Python, décoder le tableau recu apres
transmission et en déduire le message qui a été émis.
Vous donnerez I'évolution des valeurs du tableau de
vraisemblance au fur et a mesure des décodages
horizontaux et verticaux.
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