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TP1 : Régression logistique. Sept 2025

1 Introduction

Régression linéaire : Y = Xβ+ϵ= f (X ,β)+ϵ
avec f fonction linéaire.

Régression non linéaire : Y = f (X ,β)+ϵ
avec f fonction non-linéaire.

Régression logistique : Y =Λ(X .β)+ϵ
avecΛ fonction logistique.

La régression logistique généralise la régression
linéaire et est un cas particulier de régression
non-linéaire (on parle parfois de modèle linéaire
généralisé (GLM)).

Dans une régression, on cherche à expliquer une
variable aléatoire Y à partir de variables aléatoires
(explicatives) Xi , qualitatives ou quantitatives.

Il peut s’agir de régression simple (une seule variable
explicative quantitative), multiple (plusieurs variables
explicatives quantitatives), d’analyse de la variance
(une ou plusieurs variables explicatives,
quantitatives) ou d’analyse de la covariance (variables
explicatives quantitatives ou qualitatives).

Lorsque Y est une variable qualitative, le modèle
linéaire n’est pas adapté. Par exemple, pour une
variable binaire (on supposera qu’elle peut prendre
comme valeurs 0 et 1) il est difficile d’approcher par
une droite deux nuages de points ne prenant comme
ordonnées que 0 ou 1. Pour expliquer une variable
qualitative, on peut alors effectuer une régression
logistique, une analyse discriminante, ou bien encore
des techniques d’apprentissage supervisé type k-plus
proches voisins.

2 Rappels sur les modèles de
régression linéaire

2.1 Hypothèses du modèle

Dans le cas d’une régression simple, on doit supposer
que le lien entre Y et X est donné par une relation
linéaire, perturbée par un bruit aléatoire :

Y =β0 +β1X +ϵ (1)

ϵ est un bruit aléatoire, β0 et β1 les coefficients
(inconnus) de la régression. Pour les déterminer, on
les estime à partir d’un échantillon de n mesures
observées (xi , yi ), déterministes. Les n équations
obtenues :

yi =β0 +β1xi +ϵi ; i = 1, ..,n (2)

permettent le calcul de β0 et β1 qui sont solutions de
l’équation des moindres carrés

(
β̂0, β̂1

)= min
β0,β1

n∑
i=1

(
yi −β0 −β1xi

)2 (3)

La droite de régression est alors donnée par

f̂ (x) = ŷi = β̂0 + β̂1x (4)

et l’erreur est donnée par les résidus

ϵ̂i = yi − ŷi (5)

Parfois, la régression s’écrit avec un Yi majuscule
(Yi =β0 +β1xi +ϵi ), pour indiquer que Yi est une
variable aléatoire dépendant de la variable aléatoire
ϵi . Les xi minuscules indiquent que l’on travaille
sachant [Xi = xi ], mais que ϵi est toujours considéré
en tant que variable aléatoire. Dans la suite, nous
utiliserons toujours yi minuscule et c’est en fonction
du contexte qu’il faudra savoir si yi est une
observation (lorsque ϵi est une observation
déterministe du bruit) ou bien une variable aléatoire
(lorsque ϵi est une variable aléatoire).

Dans une régression linéaire multiple, la relation liant
Y aux variables X1, ..., Xp est de la forme

Y =β0 +β1X1 + ...+βp Xp +ϵ (6)

Considérons un échantillon (xi , yi )i=1,..,n de données
issues de (X ,Y ). On obtient ainsi n équations liant les
yi observés aux xi et aux βi .

y1 =β0 +β1x11 + ...+βp x1p +ϵ1
...
yi =β0 +β1xi 1 + ...+βp xi p +ϵi
...
yn =β0 +β1xn1 + ...+βp xnp +ϵn

(7)

xi j représente la i ème observation du vecteur
aléatoire (en majuscule) X j dans l’échantillon.
Chaque vecteur ligne (en minuscule) xi = (xi 1, ..., xi p )
représente une observation des p vecteurs X j , pour
j = 1, .., p.

Il est plus pratique d’utiliser une notation matricielle :
en notant X= (

xi j
)

on a :

X=

 1 x11 ... x1p
...

...
...

1 xn1 ... xnp

 (8)

Dans la matrice X ∈Rn×(p+1), la ligne i (xi 1, ...xi p )
représente un individu, c’est à dire la i ème
observation de toutes ses variables et la colonne j
(sauf la première colonne formée de 1 uniquement)
représente les différentes observations relatives à une
variable X j . y ∈Rn , β ∈Rp+1 et ϵ= (ϵ1, ...,ϵn) ∈Rn sont
maintenant des vecteurs et les coordonnées de ϵ sont
des copies i.i.d. du bruit défini dans (6). L’équation de
régression devient :

y =Xβ+ϵ (9)
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dont la solution au sens des moindres carrés est
donnée par

β̂= argmin
β∈Rp+1

n∑
i=1

(
yi −β0 −

p∑
j=1

β j xi j

)2

(10)

= argmin
β∈Rp+1

(
(y −Xβ)T × (y −Xβ)

)
(11)

= argmin
β∈Rp+1

||y −Xβ||22 (12)

la solution est le vecteur de coefficients le plus proche
- au sens des moindres carrés - des valeurs observées.
L’idée de base est un peu d’inverser la relation y =Xβ
et d’écrire β=X−1 y . Oui mais voilà, la matrice n’est
pas inversible (elle n’est pas même pas carrée). Il
existe une notion de pseudo-inverse au sens de
Moore Penrose qui s’écrit X† et qui coïncide
exactement avec la solution au sens des moindres
carrés (si cette matrice est de rang plein),

β̂=X† y = (
XTX

)−1
XT y (13)

Si n ≥ p et si X est de rang plein, alors XTX est
inversible et l’équation précédente est licite.

Certaines hypothèses du modèle linéaire concerne le
bruit ϵ (hypothèses de Gauss-Markov) :

ϵ∼N (0,σ2In) (14)

Autrement dit, ϵ est un vecteur aléatoire gaussien,
centré, dont les coordonnées sont i.i.d. de variance
commune σ2 (homoscédasticité et non corrélation
des résidus). On suppose également que le bruit n’est
pas corrélé aux variables explicatives E[ϵ|X ] = 0
(exogénéïté des variables explicatives: le bruit ne doit
pas être corrélé aux variables explicatives). On a alors
(c’est le théorème de Gauss Markov) :

y ∼N (Xβ,σ2In) (15)

On peut prouver que sous les hypothèses précédentes
β̂ est un estimateur sans biais de β de variance
minimale égale à V(β̂) =σ2(XTX)−1 qui coïncide avec
l’estimateur du maximum de vraisemblance du
modèle et qu’il est VUMSB.

La matriceΠ=X(XTX)−1XT =XX† est la matrice du
projecteur orthogonal sur l’espace vectoriel engendré
par les colonnes de X et le vecteur des valeurs
ajustées est simplement le projeté orthogonal de y
sur l’espace engendré par les colonnes de X.

ŷ =Πy (16)

Le vecteur des résidus est le projeté de y sur
l’orthogonal de cet espace, soit:

ϵ̂= (I −Π)y = y − ŷ (17)

La somme des carrés résiduelle est

SC R = ||ϵ̂||2 =
n∑

i=1
(yi − ŷi )2 (18)

La somme des carrés totale (recentrée car la colonne
de 1 est présente dans la matrice X) est

SC T = ||y − y ||2 (19)

et la somme des carrés estimée (c’est la variance
expliquée par le modèle) est

SC E = ||ŷ − y ||2 (20)

Le théorème de Pythagore donne l’équation d’analyse
de la variance:

SC T = SC E +SC R (21)

et le coefficient de détermination R2 est défini par

R2 = SC E

SC T
(22)

2.2 Validation du modèle et qualité de la
régression

Cette seconde partie est au moins aussi importante
que la première et elle est pourtant souvent négligée.
Après la modélisation et l’estimation des paramètres,
il faut en effet valider le modèle en évaluant la qualité
de la régression :

• Vérifier la pertinence du caractère linéaire.
• Faire le choix d’inclure ou non une variable

expliquée.
• Analyser les résidus.
• Regarder les valeurs aberrantes.
• Analyser la normalité.
• Vérifier l’homoscédasticité.
• Regarder l’impact d’une variable sur les résidus

partiels.
• Etc.

Si l’hypothèse linéaire n’est pas vérifiée ou bien si la
matrice X n’est pas de rang plein, on peut effectuer
une régression avec un terme de régularisation
(régression «Ridge», LASSO ou autre).

Comme le TP est dédié à la régression logistique,
nous ne développons pas plus ce paragraphe. Voir la
référence en fin de sujet.

2.3 La régression linéaire avec R

Tout ceci étant posé, nous pouvons maintenant
expliquer ce que R calcule avec les fonctions lm et
anova.

lm(formule,donnees,options) effectue une
regression linéaire selon la formule donnée par
formule à partir d’unt tableau donné par le
paramètre donnees. Le résultat est un objet de la
classe lm qui contient, entre autres, les coefficients de
la régression, les résidus, les valeurs ajustées, le rang
de la matrice des données, etc.

summary(lm) et anova permettent d’afficher et de
résumer les résultats de lm. L’ajustement est effectué
de la même façon avec les deux fonctions, mais les
tests et les rapports proposés sont différents :
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Dans lm, le test de Student effectué pour tester la
significativité de chaque régresseur mesure l’effet
marginal de la variable, étant donné toutes les autres
variables du modèle. Dans anova, qui effectue une
analyse de la variance, les tests de Fisher sont
effectués de façon séquentielle, en testant d’abord le
premier régresseur par rapport à l’intercept, puis le
second par rapport au modèle formé par l’intercept et
le premier, etc. Ce test est sensible à l’ordre: si l’on
permute la position d’une variable, on change le
résultat et on peut même changer la significativité
d’une variable.

À chaque fois que la fonction ajoute une nouvelle
variable, la variance résiduelle (telle que définie
précédemment) diminue et la part de variance
expliquée par cette variable est donc la différence
entre l’ancienne variance (du modèle précédent, qui
ne comprenait pas cette variable) et du modèle
courant (dans lequel elle vient d’être ajoutée).

Tout ceci explique que les niveaux de significativité et
de façon générale les différentes p-valeurs ne soient
pas les mêmes entre anova et summary(lm).

La fonction regr.eval

Cette fonction évalue la qualité d’une régression en
calculant quelques statistiques d’erreurs (erreur
quadratique moyenne, absolue, etc.). La syntaxe est la
suivante:

regr.eval(VecVrai,VecPred,VecTrain)

VecVrai est le vecteur contenant les vraies valeurs
que le modèle est supposé prédire.

VecPred est le vecteur effectivement prédit par le
modèle.

VecTrain est le vecteur contenant les vraies valeurs
de la variable cible sur l’ensemble des données
utilisées pour entrainer le modèle.

ce troisième paramètre ne sert que dans le cas où l’on
souhaite afficher les erreurs de type nmse et nmae
dont la formule utilise la moyenne du vecteur
VecTrain.

2.4 La régression linéaire avec Python

La librairie pandas est indispensable pour lire
facilement les fichiers .csv.

La fonction de régression par défaut est
LinearRegression de la bibliothèque Scikit
Learn, à appeler comme suit :
from sklearn.linear_model import
LinearRegression
from sklearn.metrics import
mean_squared_error, r2_score

Si les données sont stockées dans x, y,
l’implémentation s’effectue comme suit:
modele = LinearRegression()
modele.fit(x, y)

ypredict = modele.predict(x)
rmse = mean_squared_error(y, ypredict)
r2 = r2_score(y, ypredict)

3 Le modèle de régression
logistique

3.1 Hypothèses du modèle

Supposons pour commencer que Y soit une variable
qualitative binaire pouvant prendre deux valeurs 0 et
1. Le vecteur X = (1, X1, .., Xp ) de variables
explicatives a des coordonnées qualitatives ou
quantitatives. Nous allons noter

p(x) =P[Y = 1|X = x] = E[Y /X = x] (23)

la probabilité conditionnelle que Y prenne la valeur 1
sachant l’observation x (comme Y est binaire, c’est
aussi l’espérance conditionnelle sachant X = x). Le
rapport de vraisemblance logarithmique (LLR) de Y
sachant X est

L(x) = ln

(
P[Y = 1|X = x]

P[Y = 0|X = x]

)
= ln

(
p(x)

1−p(x)

)
(24)

Les économètres appellent ce rapport de
vraisemblance logarithmique un « logit ». La fraction
à l’intérieur du logarithme s’appelle un «odds ratio»
(ou rapport de cotes, de chances ou encore risque
relatif). L’idée de la régression logistique est de
considérer que le modèle est linéaire non pas par
rapport à Y , mais par rapport à son logit :

L(x) =β0 +β1x1 + ...+βp xp = x.β (25)

de sorte que

p(x) = exp(x.β)

1+exp(x.β)
= 1

1+exp(−x.β)
=Λ(x.β) (26)

avec

Λ(x) = 1

1+e−x (27)

La fonctionΛ(x) est la fonction logistique qui est une
bijection continue de R dans ]0,1[. On a :

Λ= L−1 (28)

On ne régresse pas directement Y , mais la probabilité
qu’elle prenne une valeur donnée. Dans le modèle
linéaire généralisé, L s’appelle la fonction de lien
(«link function») qui exprime le prédicteur linéaire en
fonction de la moyenne. Le modèle de régression
logistique peut donc s’écrire

Y =Λ(X.β)+ϵ= p(x)+ϵ (29)

où ϵ est un bruit aléatoire. Puisque Y ne peut prendre
que deux valeurs 0 et 1, ϵ= p(x) ou 1−p(x). Le bruit
est donc ici une variable de Bernoulli prenant
uniquement deux valeurs. Par ailleurs,
E[Y |X = x] = p(x), ce qui implique E[ϵ|X ] = 0. Il faut
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noter qu’en principe, on n’écrit pas l’équation (29)
avec un bruit additif ϵ car celui-ci dépend
directement de la distribution (il est donc
hétéroscédastique et n’est pas gaussien).

Lorsque la variable Y prend plus de deux modalités
on parle de régession logistique polytomique
multinomial (appelé également «softmax regression»
en apprentissage supervisé). On compare la
probabilité de chaque modalité 1, ...,K par rapport à
une modalité de référence (mettons K ) :

Lk (x) =
(
P[Y = k/X = x]

P[Y = K /X = x]

)
, ∀k = 1, ...,K −1 (30)

=β0,k +β1,k x1 + ...+βp,k xp = x.βk (31)

Ainsi,

P[Y = k] = exp(x.βk )∑K
k=1 exp(x.βk )

, i = k, ...,K −1 (32)

On peut toujours se débrouiller pour que βK = 0,
quitte à remplacer βk par βk −βK .

3.2 Estimation des paramètres

L’estimation des paramètres βi s’effectue par la
méthode du maximum de vraisemblance. Y étant
une variable de Bernoulli, le modèle
d’échantillonnage a pour vraisemblance

n∏
i=1
P[Y = yi |X = xi ] =

n∏
i=1

(
p(xi )yi (1−p(xi ))1−yi

)
(33)

La log-vraisemblance est donc donnée par

l (x, y,β) =
n∑

i=1

(
yi ln p(xi )+ (1− yi ) ln(1−p(xi )

)
(34)

=
n∑

i=1

(
yi xi .β− ln(1+exi .β)

)
(35)

Le gradient de l a pour coordonnées les

∂l

∂β j
(x, y,β) =

n∑
i=1

(
yi xi j −

xi j exiβ

1+exiβ

)
(36)

=
n∑

i=1

(
xi j (yi −p(xi ))

)
(37)

De façon matricielle, en notant
P = (p(x1), ..., (xn)) =Λ(Xβ) et W = diagg(pi (1−pi )),
le gradient et la matrice hessienne s’écrivent:

∇l (x, y,β) =XT (y −P ), (38)

H(x, y,β) =−XT WX. (39)

Les équations de vraisemblance n’étant pas linéaires,
il faut les résoudre par des méthodes numériques. On
obtient alors un estimateur β̂.

Sous de bonnes hypothèses de régularité du modèle,
on a

p
n

(
β̂−β)

⇝N
(
0, I(β)−1) (40)

3.3 Interprétation des résultats

Les paramètres d’une régression ne sont pas
interprétables directement, on doit les comparer les
uns aux autres. Dans l’expression de L(x), la fraction

π(x) = p(x)

1−p(x)
(41)

s’appelle la cote. Ce n’est rien d’autre qu’un rapport
de vraisemblance. Quand la cote est supérieure à 1,
un succès est plus probable qu’un échec. Le quotient
ρ de deux cotes s’appelle un «odds ratio» (ou rapport
de cotes, rapport de chances, ou encore risque
relatif). Dans le cas binaire,

ρ(1,0) = π(1)

π(0)
= p(1)/[1−p(1)]

p(0)/[1−p(0)]
= expβ1 (42)

Si β1 est positif, la probabilité que Y soit égale à 1
augmente quand x augmente. Si x augmente de 1, le
rapport de cotes augmente de expβ1.

Dans le cas d’une régression multiple, on voit
facilement que:

ρ(1,0) = exp(β1 + ...+βp ) (43)

Si l’on considère deux observations qui diffèrent
seulement par la j -ième variable, une variation d’une
unité de cette variable correspond à un rapport de
cotes de expβ j , de sorte que β j mesure l’influence de
la j -ième variable sur la cote π(x).

Prenons l’exemple d’une unique variable exogène
binaire. Y = 1,0 mesure la présence ou l’absence
d’une maladie et X = 1,0 la présence ou l’absence
d’un symptôme.

L(x) = ln

(
P[Y = 1|X = x]

P[Y = 0|X = x]

)
(44)

=β0 +β1x (45)

ρ(1,0) = exp(β1) (46)

Si ρ(1,0) = 1 la maladie est indépendante du
symptôme. Si ρ(1,0) > 1 elle est plus fréquente pour
les individus qui ont le symptôme et si ρ(1,0) < 1 elle
est plus fréquente chez les individus qui n’ont pas le
symptôme.

3.4 Validation du modèle et qualité de la
régression

Les techniques présentées ici pour évaluer la qualité
de l’estimation sont valables pour n’importe quelle
méthode d’apprentissage supervisé.

• Matrice de confusion : c’est une matrice 2×2 qui
évalue le nombre de bonnes et de mauvaises
prédictions entre les valeurs prédites et les valeurs
observées. On y distingue les vrais/faux (V/F)
positifs/négatifs (P/N), le taux d’erreur, le taux de
succès, la sensibilité (TVP), la prévision (TVP parmi
ceux classés P) et la spécificité (proportion de N
détectés).
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• Pseudo R2 : analogue du R2 pour la régression
logistique. Le R2 évalue la part de la variance
expliquée par le modèle étudié en comparant ses
performances avec le modèle de base réduit à la
constante. Dans le cas de la régression logistique, il
s’agit d’une comparaison de vraisemblance entre les
taux d’erreurs. Un pseudo R2 proche de 1 va dans le
sens d’un modèle de bonne qualité.

• Test de Hosmer-Lemeshow : il compare les
probabilités p̂(xi ) estimées par le modèle, aux
probabilités observées p(xi ) en quantifiant cet écart
par un indice. On pourrait le représenter par un
diagramme (de fiabilité) dont les deux axes sont
gradués de 0 à 1 et l’on observe l’écart entre les deux
distributions de probabilités. Les probabilités sont
ordonnées et groupées par décile pour donner la
statistique d’un test du χ2.

• Test de population de Mann-Whitney : il quantifie la
différence entre les observations positives et
négatives en testant si la population positive est
significativement plus élevée.

• Courbe ROC : c’est un outil graphique qui évalue les
performances de la régression et compare la
sensibilité à la spécificité, par l’intermédiaire d’un
nuage de points à deux dimensions. Elle produit
également un indice AUC (Area Under Curve)
quantifiant ses performances, qui est égal à la
probabilité qu’un individu positif soit devant un
individu négatif.

• Analyse des résidus.

• L’analogue pour la régression logistique, de la
somme des carrés des résidus, est la déviance dont la
définition est:

D =−2l (x,β) (47)

où l est la log-vraisemblance. La déviance résiduelle
est d = 2(l (x,β)− l (x, β̂)).

Il faut ensuite effectuer des tests de significativité
(globale) des coefficients pour décider si une variable
explicative doit être intégrée ou non au modèle : test
du rapport de vraisemblance, test de Wald, etc. Ces
tests évaluent l’influence (c’est à dire la contribution)
d’un régresseur sur la variable à expliquer. Par
exemple pour le test de Wald, on pose Z = β̂i /σ(β̂i ).
Sous l’hypothèse nulle H0 :βi = 0, Z étant l’e.m.v., il
converge vers une loi normale Z⇝N (0,1) et la
p-valeur associée au test vaut P[|Z | ≥ |z|].
Modèles emboîtés : on utilise souvent des méthodes
par récurrence («backward», «forward» ou «both») qui
suppriment ou ajoutent une variable puis recalcule
l’ensemble des coefficients pour analyser à nouveau
leur significativité. Ces méthodes reposent sur des
critères statistiques, par exemple AIC (Akaike) ou BIC
(Schwartz), évalués à partir de la déviance du modèle.

Il faut garder à l’esprit le fait que moins un modèle
possède de variables, plus il sera robuste et facile à
interpréter.

3.5 La régression logisitique avec R

On rappelle que la régression linéaire s’obtient avec la
commande reg=lm(Y ∼ X 1+X 2+X 3).

reg permet d’obtenir l’estimation ponctuelle des
coefficients de β.
reg$coeff[i] donne l’estimation de βi−1.
predict(reg) calcule les valeurs prédites moyennes
de Y prises aux valeurs des données de Xi .
Si β0 n’a pas de sens, on peut le retirer en tapant :
reg=lm(Y ∼ X 1+X 2+X 3−1.
Enfin, summary(reg) affiche les résultats des tests
statistiques effectués sur les coefficients pour en
mesurer la qualité.

La régression logistique binaire s’obtient avec la
commande glm :

reg=glm(Y∼ X1+X2+X3,family=binomial).
reg

Avec l’option family=gaussian on retrouve la
régression linéaire. On peut préciser la forme de la
fonction de lien (fonction «link») de la façon suivante:
family=binomial(link=“logit“).

Nous allons tester ces fonctions sur un jeu de
données classique. Il s’agit d’une étude médicale
datant de 1983, dans laquelle 462 patients ont été
suivis pour étudier le risque d’apparation de maladies
cardiaques. 12 variables sont disponibles dans le jeu
de données complet, mais nous ne garderons que
deux d’entre elles : l’âge (age) et la présence ou non
de la maladie (chd). Nous travaillerons également
avec un échantillon de 100 unités extraites du jeu de
données.

1°. À l’aide de l’instruction read.table charger
l’échantillon sample.txt dans R et visualiser les
données.

2°. Expliquer pourquoi une régression linéaire n’est
pas adaptée, puis visualiser sur le même graphique
que celui de la question précédente la proportion de
malades en fonction de l’âge.

3°. Effectuer la régression logistique expliquant
l’apparition de la maladie en fonction de l’âge. En
déduire la valeur des coefficients βi et les interpréter.

4°. Mesurer la qualité de l’ajustement en calculant
différents coefficients R2 et la déviance D .

5°. Évaluer le pouvoir discriminant du modèle en
calculant la sensibilité et la spécificité.

6°. Évaluer la calibration du du modèle en effectuant
le test de Hosmer et Lemeshow.

7°. Évaluer la significativité des coefficients en
effectuant un test de Wald, puis un test de
vraisemblance.

8°. Effectuer une regression logistique multiple à
l’aide d’un jeu de données de votre choix. Par
exemple, le jeu de données « Iris de Fisher » s’y prête
bien:
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3.6 La régression logisitique avec Python

Premier jeu de données : les iris de Fisher

Télécharger le notebook Python contenant la
première partie du TP via le lien suivant :
https://cpmath.fr/RegLogIRIS.ipynb. Lire les
instructions.

1°. Charger le jeu de données à partir des commandes
datasets de la bibliothèque scikit learn. Étudier
le fichier de données en effectuant des statistiques
descriptives de base et visualiser le nuage de points à
l’aide de l’instruction scatter.

2°. À l’aide de la fonction PCA, effectuer une analyse
en composantes principales en 3 dimensions.

3°. À l’aide de la fonction pairplot, visualiser les
différents nuages de points affichés en fonction de
chaque paire de variables. Interpréter ce que vous
voyez.

4°. Afin d’effectuer une première régression logistique
sur une variable binaire, fusionner les deux premières
classes d’iris et afficher le nuage de points
correspondant. À l’aide des fonctions
LogisticRegression de scikit learn et logit de
la bibliothèque statmodels, construire un modèle
de régression logistique binaire et le tester sur
quelques données.

5°. Effectuer une régression logistique polytomique
sur les trois classes d’iris.

6°. À l’aide de la fonction classification_report,
évaluer (très grossièrement) la qualité de la
régression.

Second jeu de données : la prédiction des maladies
cardio-vasculaires

1°. Télécharger le jeu de données (lien). Décrire la
problématique de l’étude. Étudier la base des données en
effectuant des statistiques descriptives simples et visualiser
le nuage de points de l’âge en fonction de la variable chd
(utiliser scatterplot).

2°. Expliquer pourquoi une régression linéaire n’est pas
adaptée, puis visualiser sur le même graphique que celui de
la question précédente la proportion de malades en
fonction de l’âge (vous pouvez définir, par exemple, des
classes d’âge).

3°. À l’aide de la fonction glm de la bibliothèque
statmodels, effectuer la régression logistique expliquant
l’apparition de la maladie en fonction de l’âge. En déduire
la valeur des coefficients βi et les interpréter. La syntaxe est
la suivante :
reglog1 = smf.glm(’chd ∼ age’, data=maladie,
family=sm.families.Binomial()).fit()
print(reglog1.summary())

4°. Étudier le tableau contenant les résultats des tests de
nullité des coefficients. Que représentent les coefficients ?

L’écart type ? le z-score ? Rappeler précisément ce que
représente la p-valeur.

5°. Effectuer une nouvelle régression logistique avec
l’ensemble des variables et reprendre les questions du 4°.
Que pensez-vous de la significativité des variables sbp
(systolic blood pressure) et obesity ?

6°. À l’aide de la fonction RFE de scikit learn, revoir le
modèle en supprimant les variables les moins significatives,
par élimination régressive («backward elimination»).
Utiliser les tests AIC-BIC ou bien les tests basés sur la
probabilité d’erreur. Que représente la déviance ? La
déviance résiduelle ? Le résultats des tests AIC-BIC ?
Effectuer les tests d’adéquation de la déviance et examiner
les résidus. Le modèle final est-il identifiable ?

7°. Effectuer les tests de Wald, du score, du rapport de
vraisemblance.

8°. Évaluer la calibration du modèle en effectuant le test de
Hosmer et Lemeshow.

9°. Interpréter les résultats de la régression, en particulier
les valeurs de certaines cotes. Vous pourrez, par exemple,
indiquer comment est calculée la probabilité pour un
individu d’un certain âge d’avoir une maladie. Produire des
intervalles de confiance.

10°. Découper les données en un sous-ensemble
d’apprentissage (d’entrainement) et un sous-ensemble de
validation (de test). Produire la table de confusion et
évaluer la qualité de la régression.

11°. Tracer la courbe ROC du classifieur binaire.

12°. Conclure.
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