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1 Hypothèses du modèle

La VVC (valeur vie client) ou CLV (Customer Lifetime
Value) modélise le comportement d’achat des clients
dans une enseigne donnée et est une grandeur
d’importance en marketing. C’est aussi un indicateur
prédictif qui peut également servir à valoriser une
entreprise à partir de son portefeuille de clients. Elle
est utilisée en téléphonie, en banque, en assurance,
etc. et est une notion essentielle dans les
problématiques d’acquisition de clients, de
fidélisation ou de prévision de l’attrition.

Précisément, la VVC représente la somme des profits
actualisés attendus en moyenne sur la durée de vie
d’un client, c’est à dire la quantité d’argent qu’il va
rapporter à l’entreprise durant la période où il sera
client de l’enseigne, dans le cadre d’une relation non
contractuelle (le client est libre de ne plus acheter
dans l’enseigne dès qu’il le souhaite). Le vendeur a
donc intérêt à fidéliser les clients ayant une VVC
élevée. Dans ce modèle, le vendeur ne connait pas et
ne peut pas observer l’espérance de vie du client. Il ne
voit que son dernier achat, mais ne sait pas quand le
client a cessé de vouloir acheter dans son enseigne, ni
pourquoi. Ce modèle est crédible dans le cas d’achats
de produits de grande consommation, par exemple,
pour lesquels les coûts de changement sont faibles.
Dans la grande distribution, l’utilisation de cartes de
fidélité apporte de plus en plus d’information et
implique une gestion du client orientée vers le long
terme. La VVC est alors un instrument de mesure
permettant de cibler les clients potentiellement les
plus intéressants. Quoiqu’il en soit, la prévision de la
probabilité de défection et de la durée de vie du client
est une donnée essentielle en marketing.

Il existe plusieurs formules permettant de calculer la
VVC ν. La plus simple est

ν= VC×T = VMC×F×T (1)

Où VC est la valeur du client, VMC sa valeur
moyenne, F la fréquence d’achat et T l’espérance de
vie résiduelle du client.

Mais cette formule ne prend pas en compte
l’évolution dans le temps du comportement du client.
Une formule moins grossière de la VVC est

ν=
T∑

t=1

ft ×mt

(1+d)t (2)

où ft est la fréquence d’achat moyenne à la date t et
mt la valeur moyenne des achats réalisés pendant
cette période. d représente l’inflation et la formule

détermine la valeur présente des achats futurs en
neutralisant cette inflation.

Le premier problème des deux formules précédentes
est que chacune des quantités en jeu est inconnue et
doit être être estimée à partir des données. Le second
est que la VVC n’a d’intérêt que si elle est calculée de
façon agrégée pour l’ensemble des clients, alors
qu’elle définie par des données individuelles, variant
beaucoup d’un client à l’autre. Il est nécessaire d’en
chercher une expression globale sur l’ensemble des
clients, prenant en compte cette variabilité.

Si le sujet vous intéresse, vous pouvez approfondir le
contenu du TP en lisant les articles [3, 4, 2, 1].

Dans toute la suite, une barre verticale | signifie
« sachant que ».

2 Calculs préliminaires

2.1 La loi binomiale négative

On rappelle que la loi binomiale négative de
paramètres r > 1 et p ∈]0,1[ est la loi discrète surN
définie par

P[X = k] = Γ(r +k)

Γ(r )k !
pr qk (3)

Lorsque r est un nombre entier, on rappelle que
Γ(r +k) = (r +k −1)! et Γ(r ) = (r −1)!. Cette loi donne
le nombre d’échecs X nécessaires avant d’obtenir r
succès dans une succession d’expériences de
Bernoulli indépendantes avec une probabilité de
succès p (la probabilité d’échec est notée q = 1−p).

1°. On suppose r entier. On a alors
Γ(r +k) = (r +k −1)! et Γ(r ) = (r −1)!.Démontrer que
la fonction génératrice des moments d’une loi
binomiale négative est

G(t ) =
(

p

1−qt

)r

(4)

En déduire que

E[X] = r q

p
et V(X) = r q

p2 (5)

2°. Démontrer que les estimateurs des moments de la
loi binomiale négative sont donnés par

r̂ = X
2

S2 −X
et p̂ = X

S2 (6)

où X et S2 sont respectivement la moyenne et la
variance empirique d’un échantillon.

3°. Déterminer une équation dont la résolution
numérique permettrait de trouver les estimateurs du
maximum de vraisemblance de la loi binomiale
négative.
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4°. Soit X une loi de Poisson dont le paramètre Λ est
aléatoire et suit une loi gamma de paramètres r , θ et
de densité

fΛ(λ) = λr−1

Γ(r )θr e−λ/θ1[0,∞[(λ) (7)

Démontrer que la loi de X est une loi binomiale
négative dont on déterminera le paramètre p en
fonction de θ. On parle alors de mélange
Gamma-Poisson.

2.2 La loi de Pareto

Économiste et sociologue italien né à Paris en 1848,
Vilfredo Pareto est à l’origine de la loi de probabilité
que présentons ici. Alors titulaire de la chaire
d’économie politique de l’université de Lausanne (il
succède à Léon Walras), Pareto s’intéresse à la
distribution et à la répartition des revenus dans les
différents pays d’Europe.

Disposant des données fiscales pour la France,
l’Angleterre, la Suisse, l’Italie, la Russie et la Prusse, il
remarque que les inégalités de revenus varient
fortement d’un pays à l’autre, mais il met également
en lumière une régularité statistique remarquable,
vérifiée dans tous les pays pour lesquels il dispose de
données. Dans son « essai sur la courbe de la
répartition de la richesse » publié en 1896, il écrit :
« nous indiquerons par x un certain revenu, et par N
le nombre de contribuables ayant un revenu
supérieur à x (...). Traçons deux axes (AB) et (AC). Sur
(AB) portons les logarithmes de x, sur (AC) les
logarithmes de N. Il ressort une relation tout à fait
linéaire. » De ce constat empirique, l’auteur en déduit
la relation mathématique suivante :

log(N) = B−α× log(x) ⇔ N = A

xα
(8)

Avec B = log(A). Finalement, selon Pareto, le
pourcentage de la population dont la richesse est
supérieure à une valeur x est toujours
proportionnelle à A÷xα. C’est le paramètre α qui
varie entre les différents pays et explique des
différences dans la distribution des revenus.

Aujourd’hui, la loi de Pareto est encore couramment
utilisée en économie ou en sociologie pour étudier les
inégalités de revenus dans nos sociétés. Elle a
également fait l’objet de multiples applications en
gestion des risques, actuariat, dans le domaine du
management des entreprises ou dans la gestion des
flux de données sur internet.

La densité d’une loi de Pareto P (α,c) est donnée par

f (x) = αcα

xα+11[c,+∞[(x) (9)

5°. Déterminer sa fonction de répartition.

6°. Calculer E[X] etV(X).

7°. Soit X = (X1, ...,Xn) un n-échantillon de Pareto. La
notation⇝ signifie « converge en loi lorsque n tend
vers l’infini ». On pose

F(x) =P[Xi ≤ x] (10)

∀ i = 1, ...,n. Si Mn = max(X1, ...,Xn) et si Fn est la
fonction de répartition de Mn , déterminer le lien
entre Fn et F.

8°. Démontrer que l’estimateur de c par la méthode
du maximum de vraisemblance est

ĉ =
n

min
i=1

Xi (11)

et déterminer sa loi.

9°. On suppose maintenant c connu. Démontrer que
l’estimateur du maximum de vraisemblance de α est

α̂n =
(

1

n

n∑
i=1

ln
Xi

c

)−1

(12)

10°. Montrer que Yi = ln(Xi /c) suit une loi
exponentielle de paramètre α.

11°. Déterminer la loi de

Tn =
n∑

i=1
ln

Xi

c
(13)

12°. Déterminer l’espérance et la variance de α̂n et en
déduire un estimateur sans biais α⋆n de α. Calculer sa
variance.

13°. Montrer que Tn est une statistique exhaustive et
que cette statistique est complète. En déduire que α⋆n
est l’estimateur VUMSB de α.

14°. Montrer que α̂n et α⋆n sont des estimateurs
consistants de α. Déterminer la loi limite dep

n(α̂n −α) et
p

n(α⋆n −α).

15°. Montrer que l’estimateur des moments de α
(lorsque α> 2) est

αn = X

X− c
(14)

où X est la moyenne empirique de l’échantillon.
Calculer la loi limite de

p
n(αn −α).

16°. Soit τ une variable aléatoire de loi
(conditionnelle) exponentielle dont le paramètre λ
est aléatoire et suit une loi gamma de paramètres
(s,β). Démontrer que la loi de τ est une loi de Pareto
dont on précisera les paramètres.

2.3 Étude théorique du modèle NBD

Le modèle de calcul de la VVC le plus simple et le plus
ancien est le modèle NBD (loi binomiale négative),
proposé par Ehrenberg en 1959. Il se fonde sur deux
hypothèses :

• Le nombre d’achats Xt réalisés par un client durant
une période ]0, t ] est une variable aléatoire de Poisson
de paramètre λt :
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P[Xt = x] = (λt )x

x!
e−λt (15)

x ∈N.

17°. Calculer E[Xt |λ, t ] et V[Xt |λ, t ].

Le modèle suppose que les achats se font sans
mémoire et se produisent indépendamment les uns
des autres. On estime que cette hypothèse est
crédible pour des biens de grande consommation,
peu onéreux.

18°. Démontrer que le temps ∆t = tk − tk−1 entre deux
achats k −1 et k, suit une loi exponentielle dont on
précisera le paramètre et que la probabilité qu’un
achat ait lieu à l’instant tk sachant que le précédent a
eu lieu à l’instant tk−1 a pour densité

f (tk |tk−1,λ) = λe−λ∆t1]0,∞[(tk )1[0,∞[(tk−1) (16)

Le paramètre λ représente la fréquence d’achat (le
nombre d’achat par unité de temps).

• On suppose que ce paramètre est en fait une
variable aléatoire Λ dont les réalisations λ sont des
fréquences qui varient en fonction des clients. On le
modélise Λ par une loi gamma de densité

fΛ(λ) = f (λ) = αr

Γ(r )
λr−1e−αλ1[0,∞[(λ) (17)

Le choix de la loi Gamma vient de sa souplesse et du
fait qu’elle rende compte de plusieurs niveaux
d’hétérogénéité dans le comportement des clients.

19°. Montrer que

E[Λ|r,α] = r

α
et V[Λ|r,α] = r

α2 (18)

Le coefficient r est un indicateur d’homogénéité de la
fréquence d’achat. Le fait que λ ne varie pas dans le
temps signifie que les marchés sont stationnaires.

20°. Montrer que la loi de Xt sachant r et α (et donc
sachant Λ= λ) vérifie :

P[Xt = x|r,α] = Γ(r + x)

Γ(r )x!

( α

α+ t

)r
(

t

α+ t

)x

(19)

En déduire que l’espérance du nombre d’achats
réalisés durant une période de durée t vaut

E[Xt |t ,r,α] = r t

α
(20)

2.4 Le modèle Pareto/NBD

En 1987, Schmittlein, Morrison et Colombo ont
proposé un modèle plus réaliste modélisant l’attrition
du client à l’aide d’une variable aléatoire. Ce modèle
est compatible avec la méthode d’analyse client

marketing appelée RFM (récence, fréquence,
montant). Le modèle repose sur cinq hypothèses :

• Lorsqu’il est actif, le nombre d’achats d’un client
durant une durée t suit une loi de Poisson de
paramètre λt .

• λ est aléatoire et suit une loi gamma de paramètre
d’échelle α et de paramètre de forme r .

• Chaque client a une espérance de vie (qui
représente la durée de consommation dans
l’enseigne) de durée τ. Cette durée est aléatoire et suit
une loi exponentielle de paramètre µ, dont la densité
est donnée par

g (τ) =µe−µτ1[0,∞[(τ) (21)

• µ est également aléatoire et suit une loi gamma de
paramètre de forme s et de paramètre d’échelle β.

En toute rigueur, on devrait noter µ majuscule cette
variable aléatoire et µ la valeur d’une observation (et
c’est la même chose pour λ et Λ). En fait, on notera à
la fois µ la variable aléatoire et sa réalisation et il
faudra faire attention au contexte. Celui-ci sera dans
tous les cas précisé dans l’évènement par la barre
verticale | ; sachant µ signifiera une réalisation de µ
(idem pour λ). La densité de µ est donc donnée par :

h(µ) = βs

Γ(s)
µs−1e−βµ1[0,∞[(µ) (22)

• Les variables aléatoires λ et µ sont indépendantes.

On a ainsi :

P[XT = x|λ,τ> T] = e−λT (λT)x

x!
(23)

et l’on en déduit :

P[XT = x|r,α,τ> T] = Γ(r + x)

Γ(r )x!

( α

α+T

)r
(

T

α+T

)x

(24)

Autrement dit, XT suit une loi une loi binomiale
négative. Il est important de noter la condition [τ> T]
(le client est encore actif à T) car l’espérance de vie
n’est pas observée. On a aussi :

g (τ|s,β) = s

β

(
β

β+τ
)s+1

1[0,∞[(τ) (25)

Autrement dit, τ suit une loi de Pareto et
E[τ|s,β] = β/(s −1), avec s > 1.

Le comportement observé de chaque client c peut se
résumer par un triplet c = [X = x, tx ,T] représentant le
nombre X = x d’achats observés pendant la durée
]0,T] et la date tx ∈]0,T] du dernier achat (qui dépend
de x). Fréquence (modélisée par X = x) et récence
(modélisée par tx ) forment une statistique exhaustive
pour prédire le comportment futur d’un client. En
marketing, on appelle cela l’analyse RFM (recency,
frequency, monetary value).
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Les grandeurs d’intérêt, à partir desquelles on pourra
calculer la VVC, sont alors :

• E[XT], nombre moyen d’achats d’un client pendant
une période de durée T.

• P[τ> T|X = x, tx ,T], probabilité qu’un client soit
actif, sachant [X = x, tx ,T]. Nous noterons parfois A
(pour actif) l’évènement [τ> T].

• E[Yt |X = x, tx ,T], nombre moyen d’achats dans la
période future ]T,T+ t ] pour un client c caractérisé
par un comportement observé [X = x, tx ,T].

Ces grandeurs, qui sont des données individuelles,
devront ensuite être agrégées pour calculer une CLV
globale à l’ensemble des clients.

Les questions suivantes sont plus difficiles. Les
résultats peuvent être admis si vous souhaitez passer
directement aux simulations et aux données réelles.

21°. Selon que le client est toujours actif à la fin de la
période d’observation (c’est à dire τ> T) ou pas,
montrer que la vraisemblance du paramètre Λ s’écrit :

L(λ|t1, ..., tx ,T,τ> T] = λx e−λT (26)

L(λ|t1, ..., tx ,T,τ≤ T] = λx e−λτ (27)

La donnée de t1, ..., tx ,T est équivalente à la donnée
[X = x, tx ,T] dès lors que tx = 0 quand x = 0.

22°. Déduire que

L(λ,µ|X = x, tx ,T) = L(r,α, s,β|X = x, tx ,T] =
λxµ

λ+µe−(λ+µ)t + λx+1

λ+µe−(λ+µ)T

L’étape suivante consiste à supprimer le
conditionnement en λ et µ. On admet alors qu’en
intégrant par rapport à ses deux paramètres, la
vraisemblance peut s’écrire sous la forme

L(r,α, s,β|X = x, tx ,T]

=
∫ +∞

0

∫ +∞

0
L(λ,µ|X = x, tx ,T) f (µ) fΛ(λ)dλdµ=

Γ(r + x)αrβs

Γ(r )
×

[
1

(α+T)r+x (β+T)s +
( s

r + s +x

)
A0

]
où A0 est une fonction gaussienne hypergéométrique
dépendant de tous les paramètres, dont nous ne
préciserons pas la forme exacte.

23°. Le nombre moyen d’achats pendant la période
]0,T] est λT si τ> T. Par contre, si τ≤ T, le nombre
moyen d’achats est λτ. En prenant en compte ces
deux cas, montrer que

E[XT|λ,µ] = λ

µ

(
1−e−µt ) (28)

En intégrant ensuite par rapport à λ et µ, montrer
que :

E[XT] = E[XT|r,α, s,β] = rβ

α(s −1)

[
1−

(
β

β+T

)s−1]
(29)

24°. En utilisant le théorème de Bayes, montrer que

P[τ> T|λ,µ,X = x, tx ,T] = L(λ|x,T,τ> T)P[τ> T|µ]

L(λ,µ|X = x, tx ,T)

= λx e−(λ+µ)T

L(λ,µ|X = x, tx ,T)

puis en déduire que

P[τ> T|λ,µ,X = x, tx ,T] = 1

1+ µ
λ+µ × [

e(λ+µ)(T−tx ) −1
]

Pour un client choisi au hasard, dont le
comportement d’achat passé est [X = x, tx ,T],
montrer que la probabilité qu’il soit toujours actif à T
est :

P[A|r,α, s,β,X = x, tx ,T] = (30)∫ +∞

0

∫ +∞

0
P[A|λ,µ,X = x, tx ,T] f (λ,µ)dλdµ (31)

L’évènement A = [τ> T] signifie que le client est actif
à la date T et f (λ,µ) est la densité jointe du couple de
variables aléatoires λ et µ sachant les paramètres
(r,α, s,β) et l’historique de consommation
[X = x, tx ,T] du client. On admet que cette probabilité
peut se mettre sous la forme suivante :

P[A|r,α, s,β,X = x, t ,T] = (32)[
1+

( s

r + s +x

)
(α+T)r+x (β+T)s A0

]−1
(33)

où A0 est une fonction gaussienne hypergéométrique
dont nous ne donnerons pas la form exacte.

25°. Au moment d’agréger les résultats de tous les
clients, on estime les 4 paramètres (r,α, s,β) du
modèle par la méthode du maximum de
vraisemblance en utilisant la fonction de
log-vraisemblance de tout l’échantillon des N clients :

l (r,α, s,β) =
N∑

i=1
lnL(r,α, s,β|Xi = xi , txi ,Ti )

Il reste finalement à déduire une estimation de la
VVC. La formule exacte prenant en compte l’aspect
probabiliste et agrégé du modèle serait de la forme :

E[CLV] =
∫ +∞

0
E[Xt |τ> t ]P[τ> t ]δ(t )d t (34)

E[Xt |τ> t ] représente la valeur du client. Pour nous,
c’est le nombre d’achats, qu’il faudrait
éventuellement multiplier par la valeur moyenne des
achats pour un modèle prenant en compte cette
grandeur (partie M de RFM).
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P[τ> t ] est la probabilité qu’un client soit toujours
actif à t .
δ(t ) est la valeur présente de l’argent disponible au
temps t . Ce facteur intègre donc l’inflation.

Mais cette formule doit être approchée pour prendre
en compte l’aspect discret des dates d’achats et de
façon générale des statistiques de transactions. On
peut poser :

E[CLV] =
+∞∑
t=0

E[Xt |τ> t ]P[τ> t ]δ(t )d t (35)

Finalement, la VVC peut-être approchée par la
formule suivante (en convenant toujours que l’on
s’intéresse uniquement à la fréquence des achats et
pas à leur montant) :

CLV =
+∞∑
t=0

E[Yt −Yt−1|r,α, s,β,X = x, tx ,T]

(1+d)t (36)

Pas de panique concernant les formules précédentes :
elles sont admises et tous les calculs les concernant
seront effectués de façon numérique en utilisant des
fonctions du package BTYD sous R ou lifetimes sous
Python.

3 Étude empirique

3.1 Données simulées

Cette première partie empirique se propose de
modéliser les lois de probabilités introduite dans la
section précédente. Les librairies Python utiles sont
les suivantes : numpy, pandas, matplotlib.pyplot,
scipy, scipy.stats.

On va simuler le comportement de N clients
effectuant des achats durant deux ans, avec un
découpage de temps hebdomadaire de 104 semaines.
Chaque client c sera caractérisé par une date
d’arrivée T0 correspondant à son premier achat, et
par les paramètres τ et Xt définis précédemment via
le modèle Pareto / NBD.

1°. Nous supposons que les nouveaux clients arrivent
dans l’enseigne de façon uniforme au cours de ces
deux ans. À l’aide de la fonction uniform de
scipy.stats, créer un vecteur start de N
coordonnées représentant les différentes dates
d’entrées des N clients. En déduire un vecteur T dont
les coordonnées Tc indiquent, pour chaque client c,
la période entre la date T0 du premier achat et la date
commune de fin d’observation de tous les clients, à
l’issue des deux ans.

2°. Déterminer un vecteur µ représentant la
réalisation de N tirages d’une loi gamma (r,α) puis en
déduire un vecteur τ dont les coordonnées sont les
espérances de vie des N clients.

3°. De la même façon, déterminer un vecteur λ
représentant la réalisation de N tirages d’une loi

gamma (s,β), dont les coordonnées sont différentes
valeurs de fréquence d’achat de chacun des N clients.

4°. Pour un client c donné, l’intervalle de temps entre
deux achats consécutifs suit une loi exponentielle de
paramètre λc (λc est une des coordonnées du vecteur
λ et correspond à une réalisation d’une simulation de
la loi Γ(r,α)). Afin de déterminer le nombre d’achats
effectués durant une durée donnée, écrire une
fonction générant les durées aléatoires entre les
achats consécutifs et comptant le nombre d’achats
effectués par un client entre sa date d’entrée T0 et la
date T. La fonction devra retourner comme valeur
l’instant t du dernier achat ainsi que le nombre
d’achats effectués entre T0 (propre à chaque client) et
T (date de fin d’observation commune à tous les
clients).

5°. Sachant µ et λ, la VVC se calcule de la façon
suivante : l’espérance de vie résiduelle δ du client (sa
« Remaining Lifetime Value » ou RLV) est la différence
entre son espérance de vie et son âge (l’âge est la
différence entre l’instant présent et la date T0). La
VVC est égale au nombre d’achats effectués durant
cette espérance de vie résiduelle (on rappelle qu’on
ne tient pas compte de la valeur de chaque achat). On
la simule par une loi de Poisson X de paramètre λδ.
En donnant plusieurs valeurs de plus en plus grandes
à N, simuler des espérances de vie résiduelles et des
VVC.

6°. Visualiser les histogrammes de différents vecteurs
τ, λ et δ, reconnaître leurs lois et estimer leurs
paramètres.

7°. Estimer les paramètres des lois binomiales
négatives et des lois de Pareto obtenues.

3.2 Données réelles : utilisation de la
librairie Python BTYD

Toutes les fonctions permettant la modélisation du
modèle BTYD ("Buy Til You Die") sont implémentées
dans la librairie btyd (lien) qu’il faut installer à l’aide
de l’instruction pip install btyd.

Les données à étudier proviennent d’une base
appelée CDNOW qui contient les achats d’un
échantillon de 2357 clients de la société de vente en
ligne CDNOW, sur deux périodes consécutives de 39
semaines (fichiers cdnow_data.xls et fichier p2x).
L’unité de temps est donc la semaine.

Pour chaque client c, on dispose donc de
l’information [X = x, tx ,T] représentant le nombre
d’achats effectués, la date du dernier achat et le
temps d’observation entre son premier achat et la fin
des 39 premières semaines.

8°. Décrire les données, les visualiser et les mettre en
forme en utilisant les fonctions du package BTYD
(«Buy til you die»). Vous pouvez vous inspirer du
document « BTYD - a Walkthrough » qui décrit les
différentes fonctions disponibles et les modalités
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d’utilisation.

9°. Estimer numériquement les paramètres (r,α, s,β)
du modèle Pareto / NBD par la méthode du
maximum de vraisemblance.

10°. Estimer les paramètres des lois binomiales
négatives et de Pareto sous-jacentes au modèle, par la
méthodes des moments. Comparer avec les résultats
de la question précédente.

11°. À l’aide des données des 39 premières semaines,
donner les prévisions d’achats pour les dernières 39
semaines et vérifier ces prévisions avec les données
empiriques.

3.3 Données réelles en Python

La bibliothèque équivalente à BTYD en Python
s’appelle lifetimes. Après l’avoir installée et avoir
invoqué le package, vous pouvez compléter le
notebook initié en séance de TP et répondre aux
mêmes questions que la partie R.
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