STATISTIQUE MATHEMATIQUE - MS ENSAI

TP2 : Buy Til You Die! VVC et modele Pareto/NBD en
marketing.

Sept. 2025

1 Hypotheéses du modele

La VVC (valeur vie client) ou CLV (Customer Lifetime
Value) modélise le comportement d’achat des clients
dans une enseigne donnée et est une grandeur
d’importance en marketing. C’est aussi un indicateur
prédictif qui peut également servir a valoriser une
entreprise a partir de son portefeuille de clients. Elle
est utilisée en téléphonie, en banque, en assurance,
etc. et est une notion essentielle dans les
problématiques d’acquisition de clients, de
fidélisation ou de prévision de lattrition.

Précisément, la VVC représente la somme des profits
actualisés attendus en moyenne sur la durée de vie
d’un client, c’est a dire la quantité d’argent qu'’il va
rapporter a 'entreprise durant la période ot il sera
client de 'enseigne, dans le cadre d'une relation non
contractuelle (le client est libre de ne plus acheter
dans I'enseigne dés qu'’il le souhaite). Le vendeur a
donc intérét a fidéliser les clients ayant une VVC
élevée. Dans ce modéle, le vendeur ne connait pas et
ne peut pas observer 'espérance de vie du client. Il ne
voit que son dernier achat, mais ne sait pas quand le
client a cessé de vouloir acheter dans son enseigne, ni
pourquoi. Ce modele est crédible dans le cas d’achats
de produits de grande consommation, par exemple,
pour lesquels les cotits de changement sont faibles.
Dans la grande distribution, l'utilisation de cartes de
fidélité apporte de plus en plus d’'information et
implique une gestion du client orientée vers le long
terme. La VVC est alors un instrument de mesure
permettant de cibler les clients potentiellement les
plus intéressants. Quoiqu’il en soit, la prévision de la
probabilité de défection et de la durée de vie du client
est une donnée essentielle en marketing.

1l existe plusieurs formules permettant de calculer la
VVC v. La plus simple est

v=VCxT=VMCxFxT (1

Ou VC est la valeur du client, VMC sa valeur
moyenne, F la fréquence d’achat et T 'espérance de
vie résiduelle du client.

Mais cette formule ne prend pas en compte
I’évolution dans le temps du comportement du client.
Une formule moins grossiere de la VVC est
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ol f; estla fréquence d’achat moyenne a la date ¢ et
m; la valeur moyenne des achats réalisés pendant
cette période. d représente l'inflation et la formule

détermine la valeur présente des achats futurs en
neutralisant cette inflation.

Le premier probleme des deux formules précédentes
est que chacune des quantités en jeu est inconnue et
doit étre étre estimée a partir des données. Le second
est que la VVC n’a d’intérét que si elle est calculée de
facon agrégée pour 'ensemble des clients, alors
qu’elle définie par des données individuelles, variant
beaucoup d’'un client a 'autre. Il est nécessaire d’en
chercher une expression globale sur I'’ensemble des
clients, prenant en compte cette variabilité.

Si le sujet vous intéresse, vous pouvez approfondir le
contenu du TP en lisant les articles [3, 4, 2, 1].

Dans toute la suite, une barre verticale | signifie
«sachant que ».

2 Calculs préliminaires

2.1 Laloibinomiale négative

On rappelle que la loi binomiale négative de
parametres r > 1 et p €]0,1[ est la loi discrete sur N
définie par

I'(r+k)

r k
PX=kl= Tk pq 3)
Lorsque r est un nombre entier, on rappelle que
I'r+k)=(r+k-1)!etI'(r) = (r —1)!. Cette loi donne
le nombre d’échecs X nécessaires avant d’obtenir r
succes dans une succession d’expériences de
Bernoulli indépendantes avec une probabilité de

succes p (la probabilité d’échec est notée g =1 — p).

1°. On suppose r entier. On a alors
I'(r+k)=+k-1!etl'(r)=(r—1).Démontrer que
la fonction génératrice des moments d'une loi
binomiale négative est

G = ( P ) )
1-qgt
En déduire que
EX) = L etvex) = (5)
p p

2°. Démontrer que les estimateurs des moments de la
loi binomiale négative sont donnés par

X
_etp:§ (6)

oi1 X et S? sont respectivement la moyenne et la
variance empirique d'un échantillon.

3°. Déterminer une équation dont la résolution
numérique permettrait de trouver les estimateurs du
maximum de vraisemblance de la loi binomiale
négative.



4°. Soit X une loi de Poisson dont le parametre A est
aléatoire et suit une loi gamma de parametres r, 0 et
de densité

fa) = e ™M 0,00iN) @)
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Démontrer que la loi de X est une loi binomiale
négative dont on déterminera le parametre p en
fonction de 6. On parle alors de mélange
Gamma-Poisson.

2.2 Laloide Pareto

Economiste et sociologue italien né a Paris en 1848,
Vilfredo Pareto est a l'origine de la loi de probabilité
que présentons ici. Alors titulaire de la chaire
d’économie politique de I'université de Lausanne (il
succede a Léon Walras), Pareto s’'intéresse a la
distribution et a la répartition des revenus dans les
différents pays d’Europe.

Disposant des données fiscales pour la France,
I'Angleterre, la Suisse, 1'Italie, la Russie et la Prusse, il
remarque que les inégalités de revenus varient
fortement d'un pays a l’autre, mais il met également
en lumiere une régularité statistique remarquable,
vérifiée dans tous les pays pour lesquels il dispose de
données. Dans son « essai sur la courbe de la
répartition de la richesse » publié en 1896, il écrit :
«nous indiquerons par x un certain revenu, et par N
le nombre de contribuables ayant un revenu
supérieur a x (...). Tracons deux axes (AB) et (AC). Sur
(AB) portons les logarithmes de x, sur (AC) les
logarithmes de N. Il ressort une relation tout a fait
linéaire. » De ce constat empirique, 'auteur en déduit
la relation mathématique suivante :

A
log(N) =B—-a xlog(x) © N = F (8)

Avec B =1og(A). Finalement, selon Pareto, le
pourcentage de la population dont la richesse est
supérieure a une valeur x est toujours
proportionnelle a A+ x*. C’est le parameétre a qui
varie entre les différents pays et explique des
différences dans la distribution des revenus.

Aujourd’hui, la loi de Pareto est encore couramment
utilisée en économie ou en sociologie pour étudier les
inégalités de revenus dans nos sociétés. Elle a
également fait 'objet de multiples applications en
gestion des risques, actuariat, dans le domaine du
management des entreprises ou dans la gestion des
flux de données sur internet.

La densité d'une loi de Pareto 2 (q, ¢) est donnée par
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5°. Déterminer sa fonction de répartition.

6°. Calculer E[X] et V(X).

7°. Soit X = (X3, ...,X;;) un n-échantillon de Pareto. La
notation ~- signifie « converge en loi lorsque » tend
vers I'infini ». On pose

F(x) =P[X; = x] (10)

Vi=1,..,n SiM, =maxXj,...,X,) etsiF, estla
fonction de répartition de M,;, déterminer le lien
entre F,, et F.

8°. Démontrer que I'estimateur de ¢ par la méthode
du maximum de vraisemblance est
"
¢ =minX;
i=1

(11

et déterminer sa loi.

9°. On suppose maintenant ¢ connu. Démontrer que
I'estimateur du maximum de vraisemblance de o est
-1

125 X
Q, = (—Zln—l (12)
nis ¢
10°. Montrer que Y; = In(X;/¢) suit une loi
exponentielle de parametre a.
11°. Déterminer la loi de
n
T,= Z In= (13)

12°. Déterminer I'espérance et la variance de @, et en
déduire un estimateur sans biais oy de a. Calculer sa
variance.

13°. Montrer que T,, est une statistique exhaustive et
que cette statistique est compléte. En déduire que o
est I'estimateur VUMSB de a.

14°. Montrer que @y, et oy sont des estimateurs
consistants de a. Déterminer la loi limite de

Vi@, - o) et yn(ok — o).

15°. Montrer que I'estimateur des moments de
(lorsque o > 2) est

X

= (14)
X-c

Ay =

oi1 X est la moyenne empirique de I’échantillon.
Calculer la loi limite de v/n(a, — o).

16°. Soit T une variable aléatoire de loi
(conditionnelle) exponentielle dont le parametre A
est aléatoire et suit une loi gamma de parametres
(s,p). Démontrer que la loi de T est une loi de Pareto
dont on précisera les parametres.

2.3 Etude théorique du modéle NBD

Le modele de calcul de la VVC le plus simple et le plus
ancien est le modeéle NBD (loi binomiale négative),
proposé par Ehrenberg en 1959. 1l se fonde sur deux
hypotheses :

» Le nombre d’achats X; réalisés par un client durant
une période ]0, f] est une variable aléatoire de Poisson
de parameétre Af :
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PX;=x]= " (15)
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17°. Calculer E[X;|A, t] et VXA, £].

Le modele suppose que les achats se font sans
mémoire et se produisent indépendamment les uns
des autres. On estime que cette hypothese est
crédible pour des biens de grande consommation,
peu onéreux.

18°. Démontrer que le temps A; = # — t;_; entre deux
achats k — 1 et k, suit une loi exponentielle dont on
précisera le parametre et que la probabilité qu'un
achat ait lieu a I'instant ¢ sachant que le précédent a
eu lieu al'instant #;_; a pour densité

felte-1,A) = ?\e_M’]l]o,oo[(tk)]l[o,oo[(tkq) (16)

Le parametre A représente la fréquence d’achat (le
nombre d’achat par unité de temps).

» On suppose que ce parametre est en fait une
variable aléatoire A dont les réalisations A sont des
fréquences qui varient en fonction des clients. On le
modélise A par une loi gamma de densité

.
FA) = ) = A"l ) )

I(r) o

Le choix de la loi Gamma vient de sa souplesse et du
fait qu’elle rende compte de plusieurs niveaux
d’hétérogénéité dans le comportement des clients.

19°. Montrer que

E[A|r, o] = é et VIAInal = — (18)

o2
Le coefficient r est un indicateur d’homogénéité de la
fréquence d’achat. Le fait que A ne varie pas dans le
temps signifie que les marchés sont stationnaires.

20°. Montrer que la loi de X; sachant r et o (et donc
sachant A = A) vérifie :

_F(r+x)( (o4

r r \*
PIX, = xln ol = I'(r)x! 0(+t) ((x+t) (19)

En déduire que I'espérance du nombre d’achats
réalisés durant une période de durée ¢ vaut

rt
IE[Xl’|tr ry(x] = (20)
(04

2.4 Le modele Pareto/NBD

En 1987, Schmittlein, Morrison et Colombo ont
proposé un modele plus réaliste modélisant I'attrition
du client a I'aide d'une variable aléatoire. Ce modele
est compatible avec la méthode d’analyse client

marketing appelée RFM (récence, fréquence,
montant). Le modele repose sur cinq hypotheses :

« Lorsqu'il est actif, le nombre d’achats d'un client
durant une durée ¢ suit une loi de Poisson de
parametre At .

* A est aléatoire et suit une loi gamma de parametre
d’échelle a et de parametre de forme r.

» Chaque client a une espérance de vie (qui
représente la durée de consommation dans
I'enseigne) de durée 1. Cette durée est aléatoire et suit
une loi exponentielle de parameétre y, dont la densité
est donnée par

g(1) =pe ™M L jg0or(T) 1)

* 1 est également aléatoire et suit une loi gamma de
parametre de forme s et de parametre d’échelle .

En toute rigueur, on devrait noter u majuscule cette
variable aléatoire et p la valeur d’'une observation (et
c’est la méme chose pour A et A). En fait, on notera a
la fois p la variable aléatoire et sa réalisation et il
faudra faire attention au contexte. Celui-ci sera dans
tous les cas précisé dans I’évenement par la barre
verticale |; sachant p signifiera une réalisation de p
(idem pour A). La densité de p est donc donnée par :

E)S

h(p) = e R e PRI oo (W) (22)

« Les variables aléatoires A et 1 sont indépendantes.

On a ainsi :
AT)*
PXy=xA\,T>T] = e_)‘T¥ (23)
X!
et 'on en déduit :
P[X7 = x|r,a,1 > T] F(Hx)( « )r( T )x (24)
= , &, T =
T rnx! \a+T/) {a+T

Autrement dit, Xt suit une loi une loi binomiale
négative. Il est important de noter la condition [t > T]
(le client est encore actif a T) car 'espérance de vie
n’est pas observée. On a aussi :

g(tls,p) = (25)

s s+1
H[LE R

Autrement dit, T suit une loi de Pareto et
Elt|s,p]l =p/(s—1), avec s > 1.

Le comportement observé de chaque client ¢ peut se
résumer par un triplet ¢ = [X = x, ty, T] représentant le
nombre X = x d’achats observés pendant la durée
10, T] et la date ¢4 €]0, T] du dernier achat (qui dépend
de x). Fréquence (modélisée par X = x) et récence
(modélisée par t,) forment une statistique exhaustive
pour prédire le comportment futur d'un client. En
marketing, on appelle cela '’analyse RFM (recency,
frequency, monetary value).



Les grandeurs d’intérét, a partir desquelles on pourra
calculer la VVC, sont alors :

e E[Xt], nombre moyen d’achats d'un client pendant
une période de durée T.

o P[t > TI|X = x, ty, T], probabilité qu'un client soit
actif, sachant [X = x, ,, T]. Nous noterons parfois A
(pour actif) I'évenement [t > T].

e E[Y;|X = x, ty, T], nombre moyen d’achats dans la
période future ]T, T + ¢] pour un client ¢ caractérisé
par un comportement observé [X = x, ty, T].

Ces grandeurs, qui sont des données individuelles,
devront ensuite étre agrégées pour calculer une CLV
globale a 'ensemble des clients.

Les questions suivantes sont plus difficiles. Les
résultats peuvent étre admis si vous souhaitez passer
directement aux simulations et aux données réelles.

21°. Selon que le client est toujours actif a la fin de la
période d’observation (c’est a dire T > T) ou pas,
montrer que la vraisemblance du parametre A s’écrit :

LAty b, T, T > T] = A AT
LAty by, T, T < T] = AXe AT

(26)
(27)
La donnée de 13, ..., tx, T est équivalente a la donnée
[X = x, ty,T] dés lors que fx = 0 quand x = 0.

22°. Déduire que

L(Ay H|X = x; thT) = L(r)(x) S)B|X = x» tXrT] =

S B Ax+1
M e~ AT

e—()\+p)T
A+ A+

L'étape suivante consiste a supprimer le
conditionnement en A et . On admet alors qu’en
intégrant par rapport a ses deux parametres, la
vraisemblance peut s’écrire sous la forme

L(r,a,s,pIX = x, tx, T]

+00 p+oo
:fo fo L plX = x, £, T) f (W fa (N dAdp =

I(r+x)a"p*
r'(r)

1
(a+T) PR +T)s

S
+( )Aol
r+s+x

ol Ap est une fonction gaussienne hypergéométrique
dépendant de tous les parametres, dont nous ne
préciserons pas la forme exacte.

23°. Le nombre moyen d’achats pendant la période
10,T] est AT si T > T. Par contre, si T < T, le nombre
moyen d’achats est At. En prenant en compte ces
deux cas, montrer que

E[XT|A, u] = % (1-e™M) (28)

En intégrant ensuite par rapport a A et i, montrer
que:

B

ElXt] =EXrlro,s,p] = aG-D

s—1
e

24°. En utilisant le théoréeme de Bayes, montrer que

1‘(ﬁ+T

LAlx, T,T>T)P[t > T|ul
[FD[T > T|)\) urX: x! tx;T] =
LA, ulX = x, £y, T)

)\xe—()\+p)T
- LA pIX=x, 1, T)

puis en déduire que

1
1+ F“p x [eA+(T-1) — 1]

Plt>TIA 1, X=X, 1, Tl =

Pour un client choisi au hasard, dont le
comportement d’achat passé est [X = x, tx, T],
montrer que la probabilité qu’il soit toujours actifa T
est:

P[A|r)(x)srﬁyX:x! tx;T] = (30)

+oo0 p+oo
f f PIAIN, X = X, £, TIF\, wdAdp  (31)
0 0

L'évenement A = [t > T] signifie que le client est actif
aladateT et f(A, ) estla densité jointe du couple de
variables aléatoires A et 1 sachant les parameétres
(r,a, 5,PB) et 'historique de consommation

[X = x, ty, T] du client. On admet que cette probabilité
peut se mettre sous la forme suivante :

PlAlna,s50,X=x,tTI= (32)

-1
(a+T) P +T)Ag (33)

()

r+s+x
ol Ap est une fonction gaussienne hypergéométrique
dont nous ne donnerons pas la form exacte.

25°. Au moment d’agréger les résultats de tous les
clients, on estime les 4 parametres (r,q, s,) du
modele par la méthode du maximum de
vraisemblance en utilisant la fonction de
log-vraisemblance de tout I’échantillon des N clients :

N
l(r)(x’ Srﬁ) = ZlnL(r)(xr Syﬁ|Xi = xir txi;Ti)
i=1

Il reste finalement a déduire une estimation de la
VVC. La formule exacte prenant en compte 1’aspect
probabiliste et agrégé du modele serait de la forme :

+00

E[CLV] :f EX¢|t > t]P[t > t]16(H)dt (34)
0

E[X;|t > t] représente la valeur du client. Pour nous,

c’est le nombre d’achats, qu’il faudrait

éventuellement multiplier par la valeur moyenne des

achats pour un modele prenant en compte cette

grandeur (partie M de RFM).



P[t > 1] est la probabilité qu'un client soit toujours
actifa t.

8(1) estla valeur présente de I'argent disponible au
temps t. Ce facteur integre donc l'inflation.

Mais cette formule doit étre approchée pour prendre
en compte I'aspect discret des dates d’achats et de
facon générale des statistiques de transactions. On
peut poser :

+00
EICLV] = ) EX|t > f]P[t > t]8(1)d ¢
t=0

(35)

Finalement, la VVC peut-étre approchée par la
formule suivante (en convenant toujours que I'on
s'intéresse uniquement a la fréquence des achats et
pas aleur montant) :

s [E[Y[ _Yt—llr) Q, S, B)X =X, tx;T]
CLV =
;] 1+ad)?

(36)

Pas de panique concernant les formules précédentes :
elles sont admises et tous les calculs les concernant
seront effectués de facon numérique en utilisant des
fonctions du package BTYD sous R ou lifetimes sous
Python.

3 FEtude empirique

3.1 Données simulées

Cette premiére partie empirique se propose de
modéliser les lois de probabilités introduite dans la
section précédente. Les librairies Python utiles sont
les suivantes : numpy, pandas, matplotlib.pyplot,
scipy, scipy.stats.

On va simuler le comportement de N clients
effectuant des achats durant deux ans, avec un
découpage de temps hebdomadaire de 104 semaines.
Chaque client ¢ sera caractérisé par une date
d’arrivée T correspondant a son premier achat, et
par les parameétres T et X; définis précédemment via
le modele Pareto / NBD.

1°. Nous supposons que les nouveaux clients arrivent
dans I'enseigne de facon uniforme au cours de ces
deux ans. A l'aide de la fonction uniform de
scipy.stats, créer un vecteur start de N
coordonnées représentant les différentes dates
d’entrées des N clients. En déduire un vecteur T dont
les coordonnées T, indiquent, pour chaque client c,
la période entre la date Ty du premier achat et la date
commune de fin d’observation de tous les clients, a
I'issue des deux ans.

2°. Déterminer un vecteur | représentant la
réalisation de N tirages d'une loi gamma (r,a) puis en
déduire un vecteur T dont les coordonnées sont les
espérances de vie des N clients.

3°. De la méme facon, déterminer un vecteur A
représentant la réalisation de N tirages d'une loi

gamma (s,p), dont les coordonnées sont différentes
valeurs de fréquence d’achat de chacun des N clients.

4°. Pour un client ¢ donné, I'intervalle de temps entre
deux achats consécutifs suit une loi exponentielle de
parametre A, (A, est une des coordonnées du vecteur
A et correspond a une réalisation d'une simulation de
laloiI'(r,a)). Afin de déterminer le nombre d’achats
effectués durant une durée donnée, écrire une
fonction générant les durées aléatoires entre les
achats consécutifs et comptant le nombre d’achats
effectués par un client entre sa date d’entrée Ty et la
date T. La fonction devra retourner comme valeur
I'instant ¢ du dernier achat ainsi que le nombre
d’achats effectués entre T (propre a chaque client) et
T (date de fin d’observation commune a tous les
clients).

5° Sachant p et A, la VVC se calcule de la facon
suivante : I'espérance de vie résiduelle 6 du client (sa
« Remaining Lifetime Value » ou RLV) est la différence
entre son espérance de vie et son age ('age est la
différence entre l'instant présent et la date T). La
VVC est égale au nombre d’achats effectués durant
cette espérance de vie résiduelle (on rappelle qu'on
ne tient pas compte de la valeur de chaque achat). On
la simule par une loi de Poisson X de parameétre AJ.
En donnant plusieurs valeurs de plus en plus grandes
a N, simuler des espérances de vie résiduelles et des
VVC.

6°. Visualiser les histogrammes de différents vecteurs
1, A et §, reconnaitre leurs lois et estimer leurs
parametres.

7°. Estimer les parameétres des lois binomiales
négatives et des lois de Pareto obtenues.

3.2 Données réelles : utilisation de la
librairie Python BTYD

Toutes les fonctions permettant la modélisation du
modele BTYD ("Buy Til You Die") sont implémentées
dans la librairie btyd (lien) qu’il faut installer a I'aide
del'instruction pip install btyd.

Les données a étudier proviennent d'une base
appelée CDNOW qui contient les achats d'un
échantillon de 2357 clients de la société de vente en
ligne CDNOW, sur deux périodes consécutives de 39
semaines (fichiers cdnow_data.x1s et fichier p2x).
Lunité de temps est donc la semaine.

Pour chaque client ¢, on dispose donc de
I'information [X = x, t, T] représentant le nombre
d’achats effectués, la date du dernier achat et le
temps d’observation entre son premier achat et la fin
des 39 premieres semaines.

8°. Décrire les données, les visualiser et les mettre en
forme en utilisant les fonctions du package BTYD
(«Buy til you die»). Vous pouvez vous inspirer du
document « BTYD - a Walkthrough » qui décrit les
différentes fonctions disponibles et les modalités


https://pypi.org/project/btyd/

d’utilisation.

9°. Estimer numériquement les parametres (7, a, s, 3)
du modeéle Pareto / NBD par la méthode du
maximum de vraisemblance.

10°. Estimer les parametres des lois binomiales
négatives et de Pareto sous-jacentes au modele, par la
méthodes des moments. Comparer avec les résultats
de la question précédente.

11°. Al'aide des données des 39 premiéres semaines,
donner les prévisions d’achats pour les dernieres 39
semaines et vérifier ces prévisions avec les données
empiriques.

3.3 Données réelles en Python

La bibliothéque équivalente 8 BTYD en Python
s’appelle lifetimes. Apres 'avoir installée et avoir
invoqué le package, vous pouvez compléter le
notebook initié en séance de TP et répondre aux
mémes questions que la partie R.
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